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Serum Concentrations of 
Citrate, Tyrosine, 2- and 3- 
Hydroxybutyrate are Associated 
with Increased 3-Month Mortality 
in Acute Heart Failure Patients
Sarah Stryeck1, Michaela Gastrager1, Vesna Degoricija2,3, Matias Trbušić2,3, Ines Potočnjak3, 

Bojana Radulović4, Gudrun Pregartner5, Andrea Berghold5, Tobias Madl  1,6 & Saša Frank1,6

Considering the already established relationship between the extent of the metabolic dysfunction and 
the severity of heart failure (HF), it is conceivable that the metabolomic profile of the serum may have 
a prognostic capacity for 3-month mortality in acute heart failure (AHF). Out of 152 recruited patients, 
130 serum samples were subjected to the metabolomic analyses. The 3-month mortality rate was 
24.6% (32 patients). Metabolomic profiling by nuclear magnetic resonance spectroscopy found that 
the serum levels of 2-hydroxybutyrate (2-HB), 3-hydoxybutyrate (3-HB), lactate, citrate, and tyrosine, 
were higher in patients who died within 3 months compared to those who were alive 3 months after 
onset of AHF, which was confirmed by univariable logistic regression analyses (p = 0.009, p = 0.005, 
p = 0.008, p<0.001, and p<0.001, respectively). These associations still remained significant for all 
tested metabolites except for lactate after adjusting for established prognostic parameters in HF. In 
conclusion, serum levels of 2-HB, 3-HB, tyrosine, and citrate measured at admission are associated with 
an increased 3-month mortality rate in AHF patients and might thus be of prognostic value in AHF.

Heart failure (HF) is a �nal stage of various cardiovascular diseases and a common cause of disability and death1. 
�e European Society of Cardiology (ESC) de�nes HF as an abnormality of the cardiac structure and function, 
which results in a diminished oxygen supply to the metabolizing tissues2,3. Acute heart failure (AHF) is primarily 
characterized by the rapid onset of symptoms and signs of HF3.

Metabolic dysfunction, an inherent feature of the HF pathophysiology4,5, re�ects not only the altered metab-
olism of the myocardium but rather overall contributions from peripheral tissues and organs6. Hemodynamic 
impairment and the thereby accompanied tissue hypoperfusion and congestion increase the serum levels of 
catecholamines7, in�ammatory cytokines8, and natriuretic peptides9. �ese promote lipolysis, proteolysis, and 
oxidative stress, the hallmarks of metabolic dysfunction in HF5,10 either directly or via the induction of insulin 
resistance, a principal metabolic feature of the HF pathophysiology11. Metabolic dysfunction and the catabolic 
dominance in HF are further intensi�ed by a reduced appetite and an impaired intestinal nutrient absorption due 
to congestion and intestinal edema as well as the diminished biosynthetic capacity of the hypo-perfused and/or 
congested liver12–15.

�e extent of the metabolic perturbation parallels the hemodynamic impairment, i.e. the severity of HF. 
Accordingly, it is conceivable that the metabolomic pro�le of the patients’ serum at admission may have a valua-
ble prognostic potential for 3-month mortality in AHF. Untargeted metabolic pro�ling using 1H nuclear magnetic 
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resonance (NMR) spectroscopy has been successfully established in the recent years for a wide range of metabo-
lites and biological matrices, including human bio�uids16–20. �e aim of the present study was therefore to employ 
NMR spectroscopy to identify serum metabolites that are prognostic for 3-month mortality in patients with AHF.

Results
Clinical characteristics, pre-admission medication and comorbidities. Out of 152 AHF patients 
recruited in the study21–24, serum samples of 130 patients were subjected to the metabolomic analyses. Of these, 32 
(24.6%) died within three months a�er onset of AHF. As presented in Table 1, body mass index (BMI) and weight 
were signi�cantly lower and the liver enlargement and peripheral edema, were considerably more frequently 
observed in patients who did not survive compared to those who survived the �rst three months a�er onset of 
AHF. �ese groups were not signi�cantly di�erent regarding age, gender, smoking, New York Heart Association 
Functional Classi�cation (NYHA), mean arterial pressure (MAP), heart rate, ejection fraction, or systolic pul-
monary artery pressure. �e incidence of distended jugular veins and ascites as well as pre-admission medication 
were also similar in both groups (Table 1). Additionally, the groups did not di�er with respect to the history of 
hyperlipidemia, hypercholesterolemia, hypertension, type 2 diabetes mellitus (T2DM), chronic obstructive pul-
monary disease, chronic kidney disease, cardiomyopathy, or acute coronary syndrome (Supplementary Table 1).

Laboratory parameters. While glomerular �ltration rate (GFR) and total cholesterol were signi�cantly 
lower, the serum levels of urea, creatinine, N-terminal pro brain natriuretic peptide (NT-proBNP), alanine ami-
notransferase (ALT), and aspartate aminotransferase (AST) were signi�cantly higher in AHF patients who died 
within three months compared to those who survived three months a�er onset of AHF (Table 2). �e two groups 
did not di�er in the serum levels of proteins, albumin, interleukin-6 (IL-6), C-reactive protein (CRP), as well as 
low-density lipoprotein cholesterol (LDL cholesterol), high-density lipoprotein cholesterol (HDL-cholesterol), 
and triglycerides (Table 2).

Identification and prognostic value of metabolites differently abundant in patients who were 
alive and those who died within three months after onset of AHF. In order to assess metabolic 
di�erences between patients that did and did not die within three months a�er onset of AHF, nuclear magnetic 
resonance (NMR) metabolic pro�ling of 130 serum samples was performed. When comparing di�erences in 
metabolic �ngerprints between patients who were alive and those who died within 3 months a�er onset of AHF, 
Orthogonal-Partial Least Squares - Discriminant Analysis (O-PLS-DA) revealed a slight clustering of patient 
samples with correlation coe�cients R2 up to 0.18 and a Q2 of 0.104 (p < 0.01) (Fig. 1a). Reduced NMR spec-
tra revealed altered metabolites in normalized AHF serum samples (Fig. 1b) and indicated that the levels of 

All (N = 130) Alive (N = 98) Dead (N = 32) p-value

Age (years) 77.1 (45.5–96.7) 75.2 (45.5–93.0) 78.8 (50.9–96.7) 0.263

Female 67 (51.5%) 47 (48.0%) 20 (62.5%) 0.162

BMI (kg/m2) 28.4 (17.1–43.5) 29.0 (19.9–42.6) 25.4 (17.1–43.5) 0.017

Weight (kg) 80.0 (40.0–144.0) 84.5 (46.0–135.0) 72.5 (40.0–144.0) 0.001

Smoking 34 (26.2%) 28 (28.6%) 6 (18.8%) 0.356

NYHA class

2 11 (8.5%) 10 (10.2%) 1 (3.1%) 0.454

3 73 (56.2%) 55 (56.1%) 18 (56.2%)

4 46 (35.4%) 33 (33.7%) 13 (40.6%)

MAP (mmHg) 103.3 (65.0–160.0) 103.3 (65.0–160.0) 96.7 (70.0–150.0) 0.051

Heart rate (beats/min) 100.0 (36.0–160.0) 102.0 (36.0–160.0) 93.0 (60.0–140.0) 0.087

EF (%) 45.0 (20.0–70.0) 45.0 (20.0–70.0) 40.0 (20.0–70.0) 0.412

SPAP (mmHg) 45.0 (35.0–80.0) 45.0 (35.0–80.0) 50.0 (35.0–70.0) 0.144

JVD 46 (35.4%) 31 (31.6%) 15 (46.9%) 0.138

Enlarged liver 47 (36.2%) 30 (30.6%) 17 (53.1%) 0.033

Peripheral edema 89 (68.5%) 62 (63.3%) 27 (84.4%) 0.029

Ascites 20 (15.4%) 16 (16.3%) 4 (12.5%) 0.780

Statins 34 (26.2%) 24 (24.5%) 10 (31.2%) 0.490

ß-blockers 59 (46.5%) 41 (42.7%) 18 (58.1%) 0.152

ACEI 74 (56.9%) 56 (57.1%) 18 (56.2%) 1.000

Amplodipine 22 (17.1%) 19 (19.4%) 3 (9.7%) 0.279

Table 1. Baseline characteristics and pre-admission medication of AHF patients according to survival status 
a�er three months. Data are presented as n (%) or as median and range (minimum to maximum). Di�erences 
between the two groups were tested with Fisher’s exact test or the Mann-Whitney U test; signi�cant di�erences 
are depicted in bold. AHF, acute heart failure; BMI, body mass index; EF, ejection fraction; JVD, jugular venous 
distension; MAP, mean arterial pressure; NYHA, New York Heart Association Functional Classi�cation SPAP, 
systolic pulmonary artery pressure.

https://doi.org/10.1038/s41598-019-42937-w


3SCIENTIFIC REPORTS |          (2019) 9:6743  | https://doi.org/10.1038/s41598-019-42937-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

2-hydroxybutyrate (2-HB), 3-hydroxybutyrate (3-HB), lactate, alanine, citrate, and tyrosine were higher, whereas 
valine and glucose were lower in patients who died within three months a�er onset of AHF.

In order to assess the prognostic value of these metabolites, the absolute concentrations were determined. As 
shown in Fig. 2 the levels of 2-HB, 3-HB, lactate, tyrosine, and citrate, but not of alanine, valine, and glucose, were 
signi�cantly di�erent (increased) in patients who died compared to those who survived the �rst three months 
a�er onset of AHF. Furthermore, sensitivity and speci�city for each metabolite were assessed using Receiver 
Operating Characteristic (ROC) curves (Fig. 2). �e highest values for the area under the curve (AUC), indicating 
highest predictivity, were obtained for tyrosine and citrate, followed by 3-HB, lactate, 2-HB, alanine, glucose, and 
valine (Fig. 2).

Correlation of 2-HB, 3-HB, lactate, citrate, and tyrosine concentrations with laboratory and 
clinical parameters. To examine the relationship between the identi�ed metabolites, whose serum levels 
were signi�cantly higher in patients who did not survive compared to those who survived the �rst three months 
a�er onset of AHF, and clinical and laboratory parameters, correlation analyses were performed. As shown in 
Table 3, the serum concentration of citrate, but not of any other metabolite, was signi�cantly positively correlated 
with age, urea and creatinine as well as negatively correlated with �brinogen, and HDL cholesterol. Both citrate 
and tyrosine were signi�cantly negatively correlated with BMI, MAP, total cholesterol, LDL cholesterol, and tri-
glyceride levels. Citrate and 3-HB were negatively correlated with GFR but positively with urea. Additionally, 
2-HB, 3-HB, citrate, and tyrosine were signi�cantly positively correlated with NT-proBNP. While only 2-HB 
and lactate were signi�cantly positively correlated with ALT, all tested metabolites were signi�cantly positively 
correlated with AST. Serum concentrations of 3-HB, citrate, and tyrosine, but not of 2-HB and lactate, were fur-
thermore signi�cantly positively correlated with concentrations of IL-6.

Logistic regression analyses. To further examine the association of the metabolites with 3-month mortal-
ity, we performed logistic regression analyses (Table 4) for 2-HB, 3-HB, lactate, tyrosine, and citrate, the metab-
olites that were signi�cantly higher (Fig. 2) in patients who did not survive three months a�er onset of AHF as 
compared to those that did. As shown in Table 4, the univariable analyses showed a signi�cant positive associa-
tion of the serum levels of all tested metabolites with 3-month mortality. �ese associations remained signi�cant 
for all tested metabolites except lactate, upon adjusting for the established prognostic parameters in HF, namely 
age, sex, BMI, T2DM, NT-proBNP, GFR, MAP, and LDL cholesterol.

Discussion
Despite established multivariable predictive models comprising patients’ characteristics, clinical signs and serum 
biomarkers, the estimation of risk in AHF is di�cult, not accurate and poorly applicable in daily clinical prac-
tice25. �erefore, the identi�cation of new biomarkers, which are related to the complex mechanisms of the AHF 
pathophysiology, may help in identifying high risk patients and initiating timely therapeutic interventions.

Considering a positive relationship between metabolic dysfunction, which is an established inherent feature of HF, 
and the extent of hemodynamic impairment, serum metabolites might be useful prognostic markers in AHF5,26,27.

In the present study, we show, that serum levels of 2-HB, 3-HB, citrate, and tyrosine are independently associ-
ated with 3-months mortality in AHF patients, even a�er adjusting for other well-known risk factors. Increased 
levels of these metabolites as well as lactate in AHF patients who did not survive the �rst three months a�er onset 

All (N = 130) Alive (N = 98) Dead (N = 32) p-value

GFR (ml/min/1.73 m2) 51.3 (15.0–105.7) 55.1 (16.0–105.7) 42.3 (15.0–77.0) 0.002

Urea (mmol/L) 8.0 (3.0–64.0) 8.0 (3.0–64.0) 14.0 (4.0–41.0) <0.001

Creatinine (µmol/L) 106.0 (53.0–273.0) 102.5 (53.0–255.0) 126.0 (66.0–273.0) 0.024

NT-proBNP (ng/mL) 8220.5 (171–70000) 6304 (171–70000) 15683.5 (3903–46054) <0.001

ALT (U/L) 23.0 (6.0–623.0) 20.0 (6.0–623.0) 25.0 (13.0–556.0) 0.008

AST (U/L) 27.0 (10.0–666.0) 25.0 (10.0–666.0) 36.5 (15.0–487.0) 0.001

Serum protein (g/L) 68.0 (31.0–87.0) 68.0 (31.0–87.0) 65.0 (53.0–79.0) 0.076

Albumin (g/L) 40.0 (22.0–62.0) 40.0 (22.0–62.0) 36.0 (24.0–62.0) 0.085

IL-6 (pg/mL) 18.9 (0.4–300.0) 18.4 (0.4–300.0) 24.4 (1.2–300.0) 0.283

CRP (µg/mL) 9.0 (0.2–247.4) 7.7 (0.2–247.4) 13.0 (1.1–169.0) 0.169

Total cholesterol (mmol/L) 3.8 (1.7–9.1) 4.2 (1.7–9.1) 3.6 (2.1–6.9) 0.018

LDL cholesterol (mmol/L) 2.3 (0.8–6.3) 2.4 (1.0–6.3) 2.0 (0.8–4.7) 0.067

HDL cholesterol (mmol/L) 1.0 (0.3–3.6) 1.0 (0.4–3.6) 0.8 (0.3–2.3) 0.053

Triglycerides
(mmol/L)

1.1 (0.6–4.3) 1.1 (0.6–4.3) 1.0 (0.6–3.0) 0.179

Table 2. Laboratory parameters of AHF patients according to survival status a�er three months. Data are 
presented as median and range (minimum to maximum). Di�erences between AHF patients who died and 
those who survived the �rst three months a�er onset of AHF were tested with the Mann-Whitney U test; 
signi�cant di�erences are depicted in bold. ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
AHF, acute heart failure; CRP, C-reactive protein; GFR, glomerular �ltration rate; IL-6, interleukin-6; LDL,  
low-density lipoprotein; HDL, high-density lipoprotein; NT-proBNP, N-terminal pro brain natriuretic peptide.
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of AHF strongly indicate a more severe state of the disease and more severe systemic metabolic perturbations in 
this group of AHF patients, compared to AHF patients who survived 3 months a�er onset of AHF. Indeed, with 
the exception of lactate the levels of 2-HB, 3-HB, citrate, and tyrosine were signi�cantly positively correlated with 
NT-proBNP, re�ecting a positive relationship with the severity of HF28.

Figure 1. OPLS-DA plot of AHF serum samples. (a) Multivariate OPLS-DA plot of 3-month mortality.  
(b) Reduced NMR spectra reveal altered metabolites in normalized AHF serum samples. Positive covariance 
corresponds to metabolites present at increased concentrations, whereas negative covariance corresponds to 
decreased metabolite concentrations in patients that died within three months. Predictivity of the model is 
represented by R2. 1…2-hydroxybutyrate, 2…valine, 3…3-hydroxybutyrate, 4…lactate, 5…alanine, 6…citrate, 
7…glucose, 8…tyrosine.

https://doi.org/10.1038/s41598-019-42937-w


5SCIENTIFIC REPORTS |          (2019) 9:6743  | https://doi.org/10.1038/s41598-019-42937-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

It is well established that a decreased cardiac output and a subsequent decreased tissue perfusion, a conse-
quence of le�-sided HF, congestion, are accompanied by increased serum levels of catecholamines, natriuretic 
peptides and in�ammatory cytokines. �ese, in turn trigger lipolysis, proteolysis, and oxidative stress, either 
directly or via the induction of insulin resistance7–11. Increased 2-HB levels have been shown to re�ect insulin 
resistance and tricarboxylic acid (TCA) cycle overload29–31 as well as increased oxidative stress32,33. We observed 
increased serum levels of 2-HB in patients who died within three months a�er onset of AHF, which argues for the 

Figure 2. Serum levels and ROC analysis of altered metabolites. Di�erences between patients who were 
alive and those who died within three months a�er onset of AHF were tested with the Mann-Whitney U test. 
Absolute concentrations were used to calculate ROC curves for distinct metabolites and to assess the prognostic 
value of the distinct metabolites for 3-month mortality.
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role of insulin resistance and oxidative stress in metabolic perturbations and mortality in our AHF cohort. �is 
is further substantiated by increased 3-HB levels in these patients, since its hepatic synthesis and serum levels are 
known to be augmented in states of insulin resistance and excess fatty acid supply31. Alternatively or additionally, 

Metabolites (µmol/L)

2-HB 3-HB Lactate Citrate Tyrosine n

Age (years)
r −0.04 0.07 −0.04 0.27 0.06 130

p 0.627 0.430 0.690 0.002 0.513

BMI (kg/m2)
r 0.00 −0.12 −0.12 −0.22 −0.23 130

p 0.989 0.185 0.162 0.012 0.009

MAP (mm Hg)
r −0.12 −0.07 −0.04 −0.27 −0.28 130

p 0.163 0.398 0.665 0.002 0.001

NT-proBNP (pg/mL)
r 0.18 0.25 0.13 0.43 0.28 124

p 0.043 0.004 0.141 <0.001 0.002

GFR (ml/min/1.73 m2)
r −0.10 −0.17 −0.15 −0.57 −0.12 129

p 0.243 0.049 0.085 <0.001 0.183

Urea (mmol/L)
r 0.14 0.22 −0.01 0.48 0.10 129

p 0.111 0.013 0.901 <0.001 0.274

Creatinine (mol/L)
r 0.13 0.17 0.13 0.51 0.09 129

p 0.139 0.050 0.147 <0.001 0.333

ALT (U/L)
r 0.19 0.16 0.19 0.03 0.16 128

p 0.034 0.064 0.032 0.746 0.080

AST (U/L)
r 0.21 0.27 0.29 0.20 0.32 129

p 0.019 0.002 0.001 0.025 <0.001

Fibrinogen (g/L)
r 0.13 −0.07 −0.09 −0.38 −0.13 126

p 0.149 0.447 0.311 <0.001 0.148

IL-6 (pg/mL)
r 0.09 0.18 0.12 0.22 0.22 130

p 0.285 0.045 0.188 0.010 0.013

Total cholesterol (mmol/L)
r −0.02 −0.17 0.03 −0.44 −0.21 130

p 0.802 0.054 0.726 <0.001 0.018

LDL-cholesterol (mmol/L)
r −0.01 −0.14 0.05 −0.35 −0.19 130

p 0.898 0.125 0.545 <0.001 0.030

HDL-cholesterol (mmol/L)
r −0.04 −0.03 0.10 −0.23 −0.06 130

p 0.686 0.745 0.274 0.009 0.470

Triglycerides (mmol/L)
r 0.02 −0.12 0.01 −0.23 −0.19 130

p 0.829 0.187 0.929 0.009 0.029

Table 3. Correlation analyses of 2-HB, 3-HB, lactate, citrate and tyrosine with clinical and laboratory 
parameters. Data are presented as Spearman correlation coe�cient r, p-value, and number of available 
samples (n); signi�cant correlations are depicted in bold. ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BMI, body mass index; GFR, glomerular �ltration rate; HDL, high-density lipoprotein; 2-HB, 
2-Hydroxybutyrate; 3-HB, 3-Hydroxybutyrate; IL-6, interleukin 6; LDL, low-density lipoprotein; MAP, mean 
arterial pressure; NT-proBNP, N-terminal pro brain natriuretic peptide.

Unadjusted Adjusteda

OR (95% CI) p-Value OR (95% CI) p-Value

2-HB (µmol/L) 7.14 (1.73–33.50) 0.009 10.29 (1.78–74.18) 0.013

3-HB (µmol/L) 2.42 (1.32–4.58) 0.005 2.15 (1.06–4.50) 0.034

Lactate (µmol/L) 4.36 (1.52–13.57) 0.008 3.64 (1.01–14.92) 0.057

Citrate (µmol/L) 26.24 (5.89–139.62) <0.001 11.74 (1.44–113.20) 0.026

Tyrosine (µmol/L) 24.48 (5.11–157.78) <0.001 34.70 (4.49–386.70) 0.002

Table 4. Logistic regression analyses of 3-month mortality for 2-HB, 3-HB, lactate, citrate, and tyrosine. a�e 
model was adjusted for age, sex, BMI, T2DM, NT-proBNP, GFR, MAP and LDL-cholesterol. Log-transformed 
values of the metabolite concentrations were used as covariates. �e unadjusted analyses comprised data of 130 
patients (32 events) and the adjusted analyses data of 122 patients (29 events). Signi�cant results are depicted 
in bold. BMI, body mass index; 2-HB, 2-Hydroxybutyrate; 3-HB, 3-Hydroxybutyrate; CI, con�dence interval; 
LDL, low-density lipoprotein; MAP, mean arterial pressure; NT-proBNP, N-terminal pro brain natriuretic 
peptide; OR, odds ratio.
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increased 3-HB serum levels in this group of AHF patients may be a consequence of the decreased utilization of 
3-HB as an energy substrate in skeletal muscle. Previous studies have shown decreased 3-HB utilization in skeletal 
muscle of HF patients compared to healthy controls34.

Elevated serum 3-HB levels may result in an increased uptake and oxidation by the failing heart. �is in turn 
may diminish the uptake and utilization of glucose35, whose energy producing e�ciency outperforms that of 
3-HB36. Accordingly, by displacing glucose utilization, the elevated 3-HB might be detrimental when oxygen 
provision is limited due to decreased cardiac tissue perfusion and congestion, as is encountered in the failing 
heart. Furthermore, an increased intracellular pool of acetyl CoA, secondary to an increased 3-HB oxidation, may 
facilitate a hyperacetylated state in cardiac myocytes37. �is in turn may lead to a posttranslational modi�cation of 
enzymes involved in cellular energy metabolism, causing detrimental metabolic perturbations in the failing heart.

However, 3-HB has been shown to promote the myocardial blood �ow in healthy humans35, and 3-HB is a 
natural inhibitor of class I histone deacetylases (HDAC)38. Since HDAC inhibitors can block cardiac �brosis and 
thus improve diastolic function39,40, elevated 3-HB serum levels might be bene�cial for the failing heart. Along 
these lines, it would be important to examine whether ketogenic diet-induced ketosis, reported to exert positive 
e�ects on cardiovascular risk in some but not all studies41, would be bene�cial or detrimental in AHF.

Increased serum citrate levels in patients who died within three months a�er onset of AHF further substan-
tiate an increased supply of the liver and other tissues with fatty acids. Under this condition, an augmented fatty 
acid ß-oxidation gives rise to the increased levels of TCA cycle intermediates, including citrate. Citrate is a known 
potent allosteric inhibitor of pyruvate dehydrogenase which is why increased intracellular citrate levels redirect 
the conversion of pyruvate from acetyl coenzyme A to lactate, consequently leading to increased lactate plasma 
levels42,43. Indeed, the lactate serum levels were higher in AHF patients who died within three months a�er onset 
of AHF compared to those who survived and were signi�cantly positively correlated with citrate serum levels 
(r = 0.37, p < 0.001). Besides high intracellular citrate levels, diminished oxygen supply to the tissue due to a 
decreased tissue perfusion and congestion, which are both hemodynamic hallmarks of HF, augments anaerobic 
glycolysis and lactate production44. In the present study, the association of lactate serum levels with 3-month mor-
tality did not remain signi�cant (p = 0.061) a�er adjusting for parameters which are associated with mortality in 
HF patients. �is is in contrast with �ndings of a recent study that showed a signi�cant association of lactate with 
1-year mortality in AHF patients45. A possible explanation for this discrepancy is that lactate may have more of a 
long-term rather than a short-term prognostic capacity for mortality in AHF.

�e serum levels of tyrosine at admission were also higher in patients who died within three months com-
pared to those who were alive three months a�er onset of AHF. In the present study, tyrosine serum levels were 
signi�cantly positively correlated with the serum levels of NT-proBNP, IL-6, and 2-HB (r = 0.24, P = 0.007), the 
markers of HF severity, in�ammation, and oxidative stress, respectively, which are known to be associated with 
increased muscle proteolysis and protein turnover46,47. However, the fact that the serum levels of other amino 
acids were similar in the two patient groups presents an argument against the breakdown of proteins in the 
skeletal muscle being responsible for increased tyrosine serum levels in AHF patients that did not survive for 
three months. �erefore, the decreased uptake and use of tyrosine as a substrate for the biosynthesis of various 
biological molecules, including thyroid hormones, catecholamines, neurotransmitters, or serum proteins48, may 
better explain higher tyrosine serum levels in the group of patients who died within three months a�er onset 
of AHF. We observed a signi�cant positive correlation of the tyrosine serum levels with AST and a signi�cant 
negative correlation with serum �brinogen levels in the present study. �ese strongly argue for a contribution 
of an impaired liver function and hepatocyte damage, possibly due to hypoperfusion and/or congestion, to the 
increased tyrosine serum levels. �is is in line with results of previous studies showing that a decreased liver 
function and/or damage to the liver result in increased serum levels of tyrosine and other aromatic amino acids49.

Besides tyrosine, we observed positive correlations of 3-HB, 2-HB, lactate, and citrate with serum levels of 
liver transaminases, which are known to be increased as a consequence of hepatocyte damage due to reduced per-
fusion14. �is suggests that not only the increased production but also a lower uptake by the liver as well as an aug-
mented release from damaged hepatocytes likely contribute to the increased serum levels of those metabolites44.

�e serum levels of citrate and 3-HB were negatively correlated with GFR, suggesting that the renal excretion 
might be factor in the regulation of the serum levels of these metabolites in AHF. Alternatively, the negative 
relationship between the levels of these metabolites and GFR may conceivably be a consequence of their opposite 
regulation by the HF pathophysiology, which most likely also explains the negative correlations of both citrate 
and tyrosine with various serum lipids, BMI, and MAP, which are frequently decreased in HF50.

�is study is not free of limitations: Due to the study design we could not examine the mechanistic relation-
ship between the underlying pathophysiological processes and the serum levels of the identi�ed metabolites. In 
addition, our metabolic pro�les are just a snap shot of the patients’ metabolic state at hospital admission without 
capturing dynamic changes in the levels of the metabolites during hospitalization. �us we are unable to assess 
any temporal development or the impact of therapeutic interventions. Furthermore, we have no data on the 
patients’ nutritional state, i.e. whether and how long they were fasting before blood collection. Moreover, we pro-
�led only water-soluble metabolites without addressing lipid metabolites. Finally, because the statistical power 
of our analyses is a�ected by the moderate number of available serum samples (n = 130), our results need to be 
con�rmed in further and larger studies.

We conclude that serum levels of 2-HB, 3-HB, tyrosine, and citrate are associated with increased 3-month 
mortality in AHF patients and might thus be of prognostic value in AHF.

Methods
Study design and patients. Details of the study and its patient cohort have already been described in 
depth21–24. We conducted a prospective observational single-center study including consecutive hospitalized AHF 
patients. Written informed consent was obtained from all patients. �e study was conducted in adherence to the 
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ethical guidelines of the Declaration of Helsinki51, and was approved by the Ethics Committees of the University 
Hospital Centre Sisters of Charity, Zagreb, Croatia and the Medical University of Graz, Austria. �e patients were 
treated by local standard operating procedures outlined by the ESC Guidelines for AHF3,52.

Laboratory procedures. �e blood sampling and laboratory methods have already been described in pre-
vious reports on our AHF cohort21–24.

NMR metabolic profiling. To remove serum proteins and to quench enzymatic reactions in the sam-
ples 200 µL serum were mixed with 400 µL methanol and stored at −20 °C for 7 days until further processing. 
A�erwards the samples were spun at 17949 rcf at 4 °C for 30 minutes. Supernatants were lyophilized and mixed 
with 500 µL of NMR bu�er in D2O and transferred to 5 mm NMR tubes. Metabolites were measured as described 
previously53.

Spectral acquisition was performed on a 600 MHz Bruker Avance Neo NMR spectrometer equipped with 
a TXI 600S3 probehead and processing was performed as previously described53. Spectra pre-processing and 
data analysis have been carried out as previously described54 using Principle Component Analysis (PCA), 
O-PLS-DA55, and all associated data consistency checks as well as 7-fold cross-validation. In order to validate the 
statistical signi�cance of the determined di�erences between patients that did and did not survive three months, 
the quality assessment statistic Q2 is reported. �is measure provides information about cross-validation and 
is a qualitative measure of consistency between the predicted and original data, with a maximum value of 1. 
Processed spectra were imported into MestreNova 12.0.2 in order to quantify metabolites of interest. Glucose 
quanti�cation was performed using Chenomx Professional 8.0 with the existing Chenomx library.

Statistical analyses. Patients’ baseline characteristics, laboratory parameters, and metabolite serum levels 
were descriptively analyzed using absolute and relative frequencies or median and range. Di�erences between 
patients who did and did not survived the �rst three months a�er onset of AHF were assessed either by Fisher’s 
exact or the Mann-Whitney U test. Correlations between the metabolites and various clinical and laboratory 
parameters were determined by the Spearman correlation coe�cient. Metabolite concentrations were used to 
perform an ROC curves analysis in MetaboAnalyst 4.056. Additionally, the impact of the metabolites on 3-month 
mortality was examined using univariable as well as multivariable logistic regression analyses. �e latter was 
adjusted for age, sex, BMI, T2DM, NT-proBNP, GFR, MAP as well as LDL cholesterol. Odds ratios (OR) along 
with the respective 95% con�dence intervals (CI) are presented. In order for the resulting ORs to be on an inter-
pretable scale, all metabolites were log-transformed for the regression analyses. �e variance in�ation factor was 
used to assess the degree of multi-collinearity in the models. R version 3.4.4 was used for the statistical analyses.

All methods were carried out in accordance with the relevant guidelines and regulations.

Data Availability
All data generated or analysed during this study are included in this manuscript.
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