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Abstract

Fatty liver disease progresses through stages of fat accumulation and inflammation to non-alco-
holic steatohepatitis (NASH), fibrosis and cirrhosis and eventually hepatocellular carcinoma
(HCC). Currently available diagnostic tools for HCC lack sensitivity and specificity and deliver little
value to patients. In this study, we investigated the use of circulating serum glycoproteins to
identify a panel of potential prognostic markers that may be indicative of progression from the
healthy state to NASH and further to HCC. Serum samples were processed using a standard pre-
analytical sample preparation protocol and were analyzed using a novel high throughput glyco-
proteomics platform. Relative abundance of 413 glycopeptides, representing 57 abundant serum
proteins were determined and compared among the three phenotypes. We used PB-net, a peak
picking software built in-house, to quantify area under the peaks. Our initial dataset, containing
healthy, NASH, and HCC serum samples, yielded several glycopeptides that demonstrated statis-
tically significant differences in abundances in NASH and HCC compared to controls. We analyzed
the relative abundance of common glycoforms and observed higher levels of core-fucosylated,
sialylated and branched glycans, in NASH and HCC as compared to controls. We replicated these
findings in an independent set of samples of individuals with benign liver conditions and HCC,
respectively. Glycoproteomic analysis of serum proteins is a novel source of prognostic bi-
omarkers differentially associated with absence of liver disease vs. NASH vs. HCC, respectively.
Our results may be of value in the management of patients with liver disease.

Keywords: 1; NASH 2; NAFLD 3; HCC 4; glycoprotein 5; glycoproteomics 6; proteomics 7; liquid
biopsy 8; PTM 9; cancer 10; glycosylation

Introduction

Accumulation of fat deposits in the liver, in the absence of excess alcohol consumption, is the
hallmark of non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common cause of chronic
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liver disease, affecting approximately 25% of the global population[1]. NAFLD progresses through
various stages of fat accumulation from simple steatosis (NAFL) to steatosis and weak inflamma-
tion with or without fibrosis, a condition termed non-alcoholic steatohepatitis (NASH), which, in
turn, may progress to the development of liver cirrhosis. Since about 1-2% of patients with liver
cirrhosis will develop either end-stage liver diseases or hepatocellular carcinoma (HCC)[2-4],
early recognition of NAFLD and NASH represents an urgent unmet medical need. While liver bi-
opsy is the gold standard and the most commonly used method for diagnosing NAFLD, its utility
is limited by the invasive nature of the procedure as well as by the stochastic constraints imposed
by histological heterogeneity[5, 6].

A wide variety of noninvasive approaches have been developed for the noninvasive diagnosis of
NAFLD and NASH, including imaging techniques, hepatic stiffness measurements using shear
wave elastography or magnetic resonance elastography, and a multitude of biomarker-derived
indices such as the aspartate aminotransferase-to-platelet ratio index (APRI), the FibroTest
(gamma-glutamyl transferase, total bilirubin, alpha-2 macroglobulin [A2MG], apolipoprotein A1,
and haptoglobin [HPT], with/without alanine aminotransferase [ALT]), the Firm index, the Fibro-
Index, the fibrosis-2 index, the Hui index, the NAFLD fibrosis score, or the BAAT-score (BMI, Age,
ALT, triglycerides) [7]). In addition, a large number of individual biomarkers including cytokeratin
18 (CK18)[8], osteopontin[9], fucosylated AFP (AFP-L3)[10], des-gamma-gamma-carboxy pro-
thrombin (DCP)[11], glypican-3[12], alpha-1-fucosidase[13], Golgi protein-73 [14], alpha-1-acid
glycoprotein (AGP1)[15, 16], alpha-fetoprotein (AFP)[17], alpha-1-antitrypsin (A1AT) [18, 19],
HPT [18, 20-27], apolipoprotein-J, A2MG, ceruloplasmin (CERU), complement factor-H (CFAH),
fibronectin, hemopexin (HEMO), kininogen, paraoxonase-1, vimentin, vitronectin (VTNC) , mac-
2-binding protein, immunoglobulin G (1gG)[28], and miRNA[29] have variably been cited as po-
tentially useful to diagnose NAFLD/NASH and/or HCC; for the latter, AFP is used most widely[17].

Common to all these indices and biomarkers is an underwhelming performance in real world
testing, rendering them of limited utility and resulting in a multitude of missed diagnoses[30].
This is unfortunate, since NAFLD, and to a lesser extent NASH, in the absence of any approved
pharmacologic treatments, may be reversible via simple dietary and lifestyle modifications if di-
agnosed early-on. Therefore, the development of an accurate, noninvasive diagnostic test for
early recognition, with its expected major public health impact, has been the focus of numerous
efforts.

Common to many of these putative biomarkers is that they are glycoproteins (cytokeratin 18,
AGP1, AFP, A1AT, HPT, apolipoprotein-J, A2MG, CERU, CFAH, fibronectin, HEMO, kininogen,
paraoxonase-1, vimentin, VINC, mac-2-binding protein and IgGs). Indeed, higher levels of
branching, sialylation and core fucosylation for a range of proteins have been found to be a hall-
mark of HCC[31], and a “fucosylation index” has been considered as an indicator of progression
from NASH to HCC[32]. Only a few detailed studies have been carried out investigating the asso-
ciation of shifts in relative abundance of individual glyco-isoforms of these proteins with the pro-
gression from the healthy state to NAFLD, NASH, and HCC. A recent publication by Zhu et al.
found that characterization of HPT glycopeptide-isoforms might be useful in tracking progression
from NASH/cirrhosis to early and late stage HCC[27].


https://doi.org/10.1101/2021.09.30.462486
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462486; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In this study, we applied a novel, high-throughput glycoproteomics platform to the interrogation
of serum glycoprotein isoforms with the aim of finding clinically actionable, accurate biomarker
panels that would allow for early, noninvasive recognition of, NAFLD/NASH as well as for moni-
toring the progression of fatty liver disorder to HCC.

Materials and Methods

Biological samples:

The discovery set consisted of serum samples from 23 patients with a biopsy-proven diagnosis of
NASH (10 male, 13 female; Indivumed AG, Hamburg, Germany), 20 patients with a diagnosis of
HCC (16 male, 4 female; 6 stage |, 8 stage Il, 6 stage lll, 2 stage IV; Indivumed AG), and from 56
apparently healthy subjects with no history of liver disease (controls, 26 male, 30 female) which
were sourced from iSpecimen (n=23, Lexington, MA), Palleon Pharmaceuticals Inc. (n=12, Wal-
tham, MA) and Human Immune Monitoring Center (HIMC), Stanford University (n=21)). Our val-
idation set consisted of serum samples from 28 control subjects with a benign hepatic mass (16
male, 12 female) and 28 subjects (20 male, 8 female) with HCC (Table 1), all obtained from Indi-
vumed AG. Clinical diagnoses of patients with NASH and HCC were based on histopathological
characterization of hepatic tissue obtained either via needle biopsy or at surgery.

Chemicals and reagents:

Pooled human serum (for assay normalization and calibration purposes), dithiothreitol (DTT) and
iodoacetamide (IAA) were purchased from Millipore Sigma (St. Louis, MO). Sequencing grade
trypsin was purchased from Promega (Madison, WI). Acetonitrile (LC-MS grade) was purchased
from Honeywell (Muskegon, Ml). All other reagents used were procured from Millipore Sigma,
VWR, and Fisher Scientific

Preanalytical sample preparation:

Serum samples were reduced with DTT and alkylated with IAA followed by digestion with trypsin
in a water bath at 37°C for 18 hours. To quench the digestion, formic acid was added to each
sample after incubation to a final concentration of 1% (v/v).

Liquid chromatography/mass spectrometry (LC-MS) analysis:

Digested serum samples were injected into an Agilent 6495B triple quadrupole mass spectrome-
ter equipped with an Agilent 1290 Infinity ultra-high-pressure (UHP)-LC system and an Agilent
ZORBAX Eclipse Plus C18 column (2.1 mm x 150 mm i.d., 1.8 um particle size). Separation of the
peptides and glycopeptides was performed using a 70-min binary gradient. The aqueous mobile
phase A was 3% acetonitrile, 0.1% formic acid in water (v/v), and the organic mobile phase B was
90% acetonitrile 0.1% formic acid in water (v/v). The flow rate was set at 0.5 mL/min. Electrospray
ionization (ESI) was used as the ionization source and was operated in positive ion mode. The
triple quadrupole MS was operated in dynamic multiple reaction monitoring (dMRM) mode. The
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peptide and glycopeptide transitions employed in discovery and validation were a selection of
those published by Li et al[33]. Samples were injected in a randomized fashion with regard to
underlying phenotype, and reference pooled serum digests were injected interspersed with
study samples, at every 10" sample position throughout the run.

Data analysis:

We performed MRM analysis of peptides and glycopeptides representing a total of 73 high-abun-
dance serum glycoproteins. Our transition list consisted of glycopeptides as well as of non-glyco-
sylated peptides from each glycoprotein. The python library Scikit-learn (https://scikit-
learn.org/stable/) was used for all statistical analyses and for building machine learning models.
We used PB-Net, a peak-integration software, that had been developed in-house to integrate
peaks and to automatically obtain raw abundances for each marker[34]. Normalized abundance,
corrected for within run drift, was calculated using the following formula:

Normalized abundance = (raw abundance of any glycopeptide or peptide in sample/raw abun-
dance of a non-glycosylated peptide from the same glycoprotein) / average relative abundance
of the same glycopeptides or peptides in the flanking pooled reference serum samples.

Relative abundance was calculated as the ratio of the raw abundance of any given glycopeptide
to the sum of raw abundances of all glycopeptides.

Fold-changes for individual peptides and glycopeptides, were calculated on normalized abun-
dances of control vs. NASH samples and control vs. HCC samples after adjusting for age and sex.
False discovery rate was calculated using the Benjamini-Hochberg method[35]. We performed
principal component analysis (PCA) on normalized abundances of glycopeptides to investigate
differences among the three phenotypes studied. Prior to performing PCA, normalized abun-
dances were scaled so that the distribution had a mean value of 0 and a standard deviation of 1.
Logistic regression models were built using normalized abundances of selected glycopeptides.
The probability estimates of a sample in the test set predicted to belong to a particular phenotype
was obtained from the trained logistic regression model.

Ingenuity Pathway Analysis:

Core analysis was performed to identify canonical pathways, up-stream regulators, and associ-
ated protein network by using Ingenuity® Pathway Analysis (IPA) software (QIAGEN Inc.), relying
on IPA’s proprietary algorithm to evaluate and minimize sample source bias. The p-value of over-
lap was calculated based on right-tailed Fisher’s exact test to determine the statistical signifi-
cance of each canonical pathway, with p<103 being considered statistically significant. The 10
statistically most significantly associated upstream regulators of differentially abundant glyco-
proteins identified in our study were predicted by using Ingenuity® Knowledge Base. A molecule-
class filter was applied to include only genes, RNAs and proteins. The networks associated with
glycoproteins of interest were built based on both direct and indirect relationships. In addition,
a total of 11 fucosyltransferase (FUT) genes and 20 sialyltransferase (ST) genes were retrieved
from the CAZy database (www.cazy.org), and the IPA pathway explorer tool was used to explore
the molecular connections of glycosylation-modifying enzymes and identified glycoproteins of
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interest. The “shortest path+1 node” was selected to construct the networks. Abundance values
of the glycoproteins interrogated were not considered in these analyses.

Results

Normalized abundance of glycopeptides/peptides among control-, NASH-, and HCC-samples

We performed MRM analysis on control, NASH, and HCC serum samples. Normalized abundances
of 187 glycopeptides and peptides were found to be statistically significantly different between
samples from patients with NASH and controls with p-value of fold change less than 0.05. Like-
wise, normalized abundances of 254 glycopeptides and peptides were found to be statistically
significantly different between samples from HCC patients and controls with p-value of fold
change less than 0.05. Among these 254 glycopeptides and peptides, 215 showed differences
that were statistically significant at a false discovery rate (FDR) of <0.05. Among the two sets of
comparisons (NASH vs. controls, and HCC vs. controls), 89 glycopeptides and peptides were
shared, i.e., showed statistically significantly different abundances in both comparisons at
FDR<0.05. Among these 89 glycopeptides and peptides, the abundances of 40 glycopeptides and
23 peptides which exhibited statistically significantly differences that is also found in comparisons
between samples from patients with NASH and controls. These 40 glycopeptides originated from
20 glycoproteins (Fig 1.a, Table 2).

Principal component analysis was performed to assess the segregation between the three phe-
notypes across first and second principal components (Fig. S1). While HCC samples segregate
quite distinctly from control samples, most NASH samples do not. We trained a logistic regression
model on normalized abundances of potential “disease progression markers”, i.e., glycopep-
tides/peptides that displayed unidirectionally higher or lower abundances across the phenotypic
cascade from healthy to NASH to HCC. Fig 1.b shows the predicted probability of a sample repre-
senting the control, NASH, or HCC phenotype, respectively, based on this analysis. The coeffi-
cients of the logistic regression model are listed in Table 2. Among the 20 glycoproteins that were
found to demonstrate statistically significant, unidirectional differences in abundance across the
3 phenotypes were seen in A2ZMG, HPT, apolipoprotein C3 (APOC3), CFAH, serotransferrin (TRFE),
VTNC, CERU, A1AT.

Relative abundance of glycopeptides containing common glycans among control-, NASH- and
HCC-samples

We examined the cumulative relative abundances of glycopeptide motifs in control-, NASH- and
HCC-samples. Higher levels of branching as well as of sialylation and core fucosylation have pre-
viously been reported for a range of proteins in HCC[31]. To further explore these findings, we
examined glycopeptides with glycans containing no core fucosylation and either no sialylations
(0 Fuc, 0 Sial), three sialylations (0 Fuc, 3 Sial), or four sialylations (0 Fuc, 4 Sial) among the
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glycopeptides identified as statistically significantly differentially abundant in our study. There
were 49, 29, and 9 glycopeptides, respectively, in each of these 3 groups. We also examined gly-
copeptides with one core fucosylation and either two sialylations (1 Fuc, 2 Sial), three sialylations
(1 Fuc, 3 Sial), or four sialylations (1 Fuc, 4 Sial) among the glycopeptides that are statistically
significantly differentially abundant in our study (Fig 2). There were 33, 15, and 4 glycopeptides,
respectively, in each of these 3 groups. Statistically significantly higher abundances were ob-
served for all glycoforms with core fucosylation and multiple sialylations in NASH- and HCC-sam-
ples, respectively, as compared to control-samples. Statistically significant lower abundances of
O Fuc-, 3 Sial-glycoforms were observed in NASH- and HCC- as compared to control-samples. Con-
versely, statistically significant higher abundances of 0 Fuc-, 4 Sial-glycoforms were observed in
NASH- and HCC-samples as compared to control samples.

Examination of the relative abundances of glycopeptides containing glycan moieties 5400, 5401,
5411 and 5412 revealed that abundances of those lacking core fucosylation (5400 and 5401) were
statistically significantly less abundant in NASH- and HCC-samples as compared to control-sam-
ples. The abundances of glycans 5411 and 5412, which contain core fucose and sialic acid resi-
dues, were statistically significantly more abundant in NASH- and HCC-samples as compared to
control samples (Fig S2). We then analyzed the 65xx series of glycoforms, which contain 5 N-
acetyl-hexosamine (HexNaC), 6 hexose, and variable numbers of fucose and sialic acid residues,
finding similar trends. Higher abundances were observed for sialylated and core-fucosylated gly-
copeptides, such as glycans 6511, 6512, 6513, in HCC-samples as compared to control-samples.
Statistically significantly higher abundances were observed for sialylated and core-fucosylated
glycopeptides, such as glycans 6511, 6513, in NASH-samples as compared to control-samples.
For glycoforms lacking core fucosylation but containing one or more sialylations, the result is
more complex. Statistically significantly higher abundances were seen for 6501, but statistically
significant lower abundances were observed for 6502, 6503 in NASH- and HCC-samples as com-
pared to control-samples (Fig S3). We also analyzed the 76xx series of glycoforms that contain 6
HexNaC, 7 hexose and varying number of fucose and sialic acid residues. Multiply sialylated spe-
cies 7602 and 7604 were statistically significantly much higher in NASH- and HCC-samples com-
pared to control samples. Core fucosylated and multiply sialylated moieties 7613 and 7614 were
statistically significantly more abundant in HCC-samples as compared to control-samples. Glyco-
peptides with glycan 7614 were statistically significantly more abundant in NASH compared to
control samples. Meanwhile, their non-fucosylated, non-sialylated counterpart 7600 (Fig S4)
showed no statistically significant difference among NASH- and HCC-samples as compared to
control-samples.

Glycoproteins with the most pronounced unidirectional quantitative differences among con-
trols, NASH, and HCC

Alpha-2-macroglobulin (A2MG):

We observed statistically significant differences of four glycosylation sites (55, 247, 869 and 1424)
for this protein (Fig 3, Table S1). On site 1424, we found a statistically significantly lower abun-
dance of glycan 5401 in HCC as compared to control samples. Glycan 5402, containing no core
fucosylation and two sialylations, was statistically significantly more abundant in NASH and HCC
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than in control patients at all 4 glycosylation sites. We observed statistically significantly lower
abundances of the 5200-glycan moiety at amino acid position 247 in HCC as compared to control
samples. Likewise, glycans 5200, 6200 and 6300 at amino acid position 869 displayed statistically
significantly lower abundances in HCC as compared to controls. On the other hand, glycan 5401
was statistically significantly increased in HCC compared to control samples at site 869. Findings
at amino acid position 55 were similar to those at amino acid position 1424 and 247. Glycan
moiety 5402, containing no core fucosylation and two sialylations, was statistically significantly
more abundant in HCC-derived samples compared to samples derived from healthy subjects. At
site 55, glycans 5411 and 5412 were statistically significantly less abundant in HCC cases as com-
pared to controls. Also, statistically significantly higher abundances of A2MG protein were ob-
served in in HCC patients as compared to controls (Fig 3, Table S1, Table S2).

Alpha-1-acid glycoprotein 1 (AGP1):

The non-fucosylated, sialylated and tri- antennary (6503) glycopeptide at amino acid residue 103
was statistically significantly less abundant in HCC as compared to control samples (Fig S5, Table
S1, Table S2). Meanwhile, the non-fucosylated, sialylated (5402) glycopeptide moiety at amino
acid residue 33 was statistically significantly less abundant in NASH- and HCC- compared to con-
trol-samples. At amino acid site 93 statistically significantly lower abundances of moieties 6500,
6502 and 7604 (all lacking the core fucosylation) were observed in HCC as compared to control
samples. Also, statistically significantly lower abundances of glycan moieties 6500 and 7604 were
observed in in NASH-samples as compared to control samples on site 93. Moreover, statistically
significantly higher abundances of glycans 7613 (containing a core fucose) were seen among HCC
samples compared to controls at site 93. At amino acid residue 72, we observed statistically sig-
nificantly lower abundances of glycan moiety 6503, which lacks core fucosylation, in HCC as com-
pared to control samples. At the same glycosylation site 72, statistically significantly higher abun-
dances of branched, fucosylated, and multiply sialylated glycan moieties 7613, 7614 and 7601
(the latter lacking core fucosylation) were observed in HCC as compared to control samples (Fig
S5, Table S1, Table S2).

Haptoglobin (HPT):

We evaluated at amino acid residue positions 184, 207 and 241 (Fig S6, Table S1, Table S2). At
residue 184, we observed statistically significantly lower abundances of peptides carrying the
non-fucosylated, mono-sialylated (5401) and mono-fucosylated, non-sialylated (5410) glycan
motifs in HCC as compared to control. A statistically significantly higher abundance of glycans
containing multiple sialic acid residues with (5411, 5412) or without core-fucosylation (5402) and
multiple sialylations were observed in HCC as compared to control samples. The peptide contain-
ing site 207 has multiple sites of glycosylation. The identity of individual glycans and site of at-
tachment is not known. A statistically significant decrease in the glycans 10803, 11904, 121005,
and 121015 was observed in HCC compared to controls. A statistically significant decrease of
glycoforms 11904, 121005, and 121015 was also observed in NASH compared to controls. At
amino acid residue 241, statistically significantly lower abundances of glycan moieties 5401,
5402, 5511 were observed in NASH and HCC, as compared to control samples, while higher abun-
dances of highly branched, sialylated, and core fucosylated glycan moieties (6512, 6513, 7604)
were observed in HCC as compared to control samples (Fig S6, Table S1, Table S2).
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Complement Factor H (CFAH):

At amino acid position 1029 we observed a statistically significantly lower abundance of glycan
moieties 5401 and 5431 in HCC as compared to control samples. At site 882, we observed a sta-
tistically significantly lower abundances of glycans 5401 and 5402, both of which lack core fuco-
sylation, but are sialylated, in NASH and HCC as compared to control samples. Correspondingly,
at this glycosylation site, a statistically significantly higher abundance of glycan 5411 was ob-
served in HCC compared to control samples. At amino acid position 911, a statistically signifi-
cantly higher abundance of doubly sialylated glycan moiety 5402, along with a statistically signif-
icantly lower abundance of the singly sialylated glycan moiety 5401, was observed in HCC as com-
pared to control samples (Fig S7, Table S1, Table S2).

Alpha-1-antitrypsin (A1AT):

We observed statistically significantly higher abundances of core fucosylated, sialylated and
branched glycans 6512 and 6513 at site 107 and of 5412 at site 271 and, correspondingly statis-
tically significantly lower abundances of glycan species that lacked core fucosylation or sialyla-
tion, namely of 6502 at site 107 and of 5401 and 5402 at site 271, in NASH and HCC samples as
compared to normal controls. Total levels of A1AT protein were statistically significantly in-
creased in NASH compared to controls (Fig S8, Table S1, Table S2).

Validation of results

We validated the results of the initial model by analyzing an independent set of samples from
HCC patients and controls. The controls chosen were individuals with a diagnosis of a benign
hepatic mass, to assess directly the discriminant power of differential glycopeptide abundance
for HCC. In this set of samples, we were able to verify 12 glycopeptides and 2 of the peptides that
had previously shown differences among healthy controls and HCC patients, with the direction-
ality, magnitude of difference, and level of statistical significance being consistent among the 2
sample sets (Table 3, Fig 4). The 2 peptides and 9 of the 12 glycopeptides are associated with
A2MG with the remaining 3 glycopeptides belonging to HPT, IGG1 and afamin (AFAM), respec-
tively.

We built a logistic regression model using least absolute shrinkage and selection operator
(LASSO) [36] regularization based on the samples of individuals with benign hepatic masses and
of HCC patients, and performed a leave-one-out-cross-validation (LOOCV). We trained a LASSO
model on all of the validation set except for one that left out, to test the model on. We tested
the trained LASSO model on the data point that had been left out. We repeated this for every
data point in the validation set. The consolidated results from LOOCV is represented in Fig 5. Fig.
5 shows the receiver-operating-characteristic (ROC) curve for both the training and testing sets.
The area under the ROC curve (AUROC) for the training set was found to be 0.85, and 0.77 for
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the testing set. When the LASSO model derived from the validation set was applied to the healthy
controls and HCC samples from the discovery set, an AUROC of 0.85 was determined (Fig 5).

Molecular pathway analysis

To explore functional biological aspects relevant for the 20 glycoproteins that were found to
demonstrate statistically significant, unidirectional differences in glycopeptide abundance across
the 3 phenotypes (Table 2), we performed IPA analysis to find canonical pathways, to discover
potential regulatory networks, and to predict upstream regulators. The 10 statistically most sig-
nificant canonical pathways with an overlapping p-value <107 are plotted in Fig 6.a. The liver X
receptor and retinoid acid X receptor (LXR/RXR) pathways, which are involved in regulating cho-
lesterol and fatty acid metabolism, were identified as the most statistically significantly enriched
pathways. Of the 20 glycoproteins interrogated, 9 are associated with this pathway, including
A1BG, APOC3, CO4A/C4B, APOM, CLU, ORM1, SERPINA1, TF and VTNC. Additionally, the FXR/RXR
pathway, acute phase response signaling, the complement system, and clathrin-mediated endo-
cytosis signaling were among the 5 most enriched pathways. We next identified the 10 statisti-
cally most significantly associated upstream regulators for differentially abundant glycoproteins,
using a p-value <1073 as cutoff, including transcription regulators, transmembrane receptor, lig-
and dependent nuclear receptors and cytokines (Fig 6.b, Table S1). Solid lines in Fig 6.b represent
a direct interaction between two molecules. Dotted lines represent an indirect interaction.
Among the regulators thus identified, are hepatocyte nuclear factor 1a (HNF1la), hepatocyte nu-
clear factor 4a (HNF4a), and sterol regulatory element binding factor (SREBF1), three transcrip-
tion factors prominently expressed in hepatocytes with multiple roles in the regulation of liver-
specific genes. Dysregulation of HNF1la expression has been reported to be associated with both
liver cirrhosis and hepatocellular carcinoma [34]. SREBF1 is involved in synthesis of cholesterol
and lipids by regulating at least 30 pertinent genes[37]. The upstream regulator network, repre-
sented as a graph indicating the molecular relationships between these proteins, with the glyco-
proteins identified as statistically significantly abundant in our study highlighted in yellow (Fig
6.b). To gain further insight into molecular mechanisms associated with the N-linked glycosyla-
tion differences identified among these glycoproteins, 11 FUT and 20 ST genes were added to the
analysis. The IPA Pathway explorer function was used to probe putative functional relationships
of these glycosylation-modifying enzymes and the glycoproteins identified in our study as being
of interest, based on the IPA Knowledge Base. Ten of the 11 FUT genes interrogated have been
reported to be being directly or indirectly linked to glycoproteins identified in our study, via mo-
lecular intermediaries such as transcription factor HNF4a (Fig S9a), and 12 of the 20 ST genes
interrogated have been reported to affect 14 of the glycoproteins identified in our study, namely
A2M, APOC3, AZGP1, C6, CFI, CLU, CO4A, IGHM, HP, ORM1, TF, SERPINA1, SERPINA3 and VTN via
several transcription factors (e.g., SREBF1 and STAT6) or cytokines (e.g., IL1, IL2, IL6 and TNF) (Fig
S9b). These molecular networks indicate the potential crosstalk between several glycosyltrans-
ferases and the glycoproteins identified in our study.
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Discussion

Our study is consistent with several previous studies that found higher levels of core fucosylation,
branching, and sialylation of glycans in NASH and HCC patients as compared to healthy controls.
While many of the glycopeptides that we have identified as being associated with NASH had pre-
viously been reported in the literature, our study adds significant depth and detail for these bi-
omarkers. These include APOC3 [38], apolipoprotein D (APOD) [39], apolipoprotein A1[40],
apolipoprotein M (APOM) [41], retinol binding protein-4[42], HPT, A1AT, AGP1, VTNC, CFAH, IgA,
IgG, 1gM, hemopexin, TRFE [43], complement C8 alpha chain[44] and A2MG[45]. Importantly,
since a few of them (e.g., HPT [27, 46], A1AT [47], A2ZMG[48, 49], and VTNC) have been reported
previously as being differentially abundant at the protein level in NASH, our study opens im-
portant new insights into NASH biomarkers, as discussed below.

AGP1 has previously been studied as a potential biomarker for cirrhosis and HCC. Zhang et al.
reported statistically significantly higher glycan branching, sialylation, and fucosylation of AGP1
glycopeptides in samples from patients suffering from NASH and cirrhosis as compared to con-
trols [15]. Several other studies have reported similar results for AGP1 glyco-isoforms in HCC [16,
45, 50-52]. Our results confirm and expand these findings. We found higher abundances of highly
branched, core-fucosylated and multiply sialylated glycans in NASH and HCC as compared to
healthy controls. Determination of the abundances of AGP-1 glycans may thus be of value when
using this protein as a biomarker for NASH and HCC.

HPT has been proposed as a potentially useful marker for differentiating HCC from cirrhosis, with
extensive work over the past few years highlighting, specifically, fucosylated haptoglobin as a
marker for HCC and other liver diseases [15, 20-24, 26, 27, 43, 53-55]. In all these studies, rela-
tively higher levels of sialylated and fucosylated modifications of HPT in HCC as compared to con-
trols have been reported. Moreover, HPT has also been evaluated as a marker for distinguishing
NASH from hepatic steatosis [56]. Kamada and coworkers found fucosylated and hyper-sialylated
forms of HPT to be useful markers distinguishing NASH from NAFLD, and HCC from controls [46,
56]. Our results confirm many of these findings and would justify further study of the use of HPT
glyco-isoforms as markers for the diagnosis of NASH or HCC.

A1AT has previously been reported to be a marker for HCC. Communale et al. observed higher
levels of glycans with core and outer arm fucosylation among 5 isoforms of A1AT[19] in HCC as
compared to healthy controls. Ahn et al. also reported higher levels of fucosylation of A1AT in
HCC compared to hepatitis B virus (HBV) infected patients[57]. While decreased protein levels of
A1AT in NAFLD compared to control healthy subjects have been reported in the past[47], we
found that A1AT protein levels were statistically significantly higher in NASH compared to con-
trols.

APOC3 contains a single known O-glycosylation site. Overall protein levels of APOC3 have been
reported to be lower in HCC[58] compared to healthy controls. Our results are consistent with
these findings. We found statistically significant lower levels of APOC3 protein in HCC compared
to healthy controls. In addition, we found that levels were statistically significantly lower in NASH
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compared to healthy controls. We also found differences in O-glycosylation at amino acid posi-
tion 74. While glycosylation variants of APOC3 have been reported to occur in breast cancer [59]
and lung cancer [60], to our knowledge, our study is the first to demonstrate glycosylation differ-
ences of APOC3 in NASH and HCC.

CFAH has been extensively studied in HCC. Benicky and coworkers found that the ratios of fuco-
sylated to non-fucosylated forms of the same glycan at amino acid residues 217, 882, 911 and
1029 [61] were higher in HCC as compared to controls. Darebna and coworkers observed higher
core fucosylation levels at amino acid position 882[55] in HCC as compared to controls, and our
findings confirm these results. In addition, we found that the abundance of core fucosylation is
statistically significantly higher in NASH and in HCC, as compared to healthy controls. Contrary to
a previous report[61] based on a small number of samples and a different methodology, we
found statistically significantly lower abundances of core-fucosylated glycopeptide species at
amino acid residue 1029.

Specific glycopeptide moieties at amino acid position 1424 of A2MG have been reported to be
present in the plasma of HCC patients[45]. We confirm this finding in our current study. Differ-
ential expression of A2MG glycoisoforms has also been reported in NASH patients[48, 49]. In our
study, we demonstrate that A2MG glycoforms are associated with the progression from controls
to NASH and to HCC and confirmed this trend in samples of patients with HCC compared to those
with a benign hepatic mass. For several A2MG glycopeptides and peptides, the directionality and
magnitude of differences across the spectrum from healthy controls to NASH and HCC appears
representative of phenotype-aligned and phenotype-indicating progressive differences. We per-
formed leave one out cross validation (LOOCV) on our validation set consisting of benign hepatic
mass and HCC samples. Using logistic regression algorithm with LASSO regularization to build the
model and LOOCV, we demonstrate an AUROC of 0.85 for the training set samples, and of 0.77
for the testing set. Subsequently, we built the LASSO model on the contrast of benign hepatic
masses vs. HCCs using all samples in the validation set. When we used this trained model to pre-
dict on healthy controls vs. HCC, we determined an AUROC of 0.85, outperforming the validation
set, test AUROC of 0.77 (Fig 5). This speaks to the robustness of glycopeptides as biomarkers
distinguishing HCC from non-malignant liver conditions and from the healthy state.

Within the limitations inherent to the speculative nature of bioinformatics-based analyses, we
highlight several plausible canonical pathways and upstream regulators linked to a selection of
glycoproteins we found to have unidirectionally altered abundances among NASH and HCC sam-
ples. Likewise, we were able to demonstrate known interactions between a number of key en-
zymes involved in protein glycosylation and these glycoproteins. It is clear that these results, are
at best suggestive of actual functional interactions and should be viewed as no more than hy-
pothesis-generating; any more conclusive interpretation will have to await experimental confir-
mation.

In summary, our work confirms previous findings demonstrating altered protein glycosylation in
NASH and HCC. While previous studies explored either only single or few glycoproteins, we ana-
lyzed a large number of glycoproteins which resulted in the discovery of a broad panel of glyco-
peptide biomarkers associated with progression from the healthy state to NASH and ultimately
HCC. This allowed us to build a highly accurate multivariable predictive classifier that clearly
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distinguishes between these conditions and that paves the way for generating a tool for early
recognition of NASH and HCC. If confirmed in future prospective studies, our results may provide
important new diagnostic tools in an area of currently unmet medical need.
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Figure 1 (a). Glycopeptide biomarkers in serum with progressive unidirectional changes in
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1 (b). Probability score for samples from control-, NASH- and HCC-subjects

1.0
0.8
Q
| .
S
D 0.6
>
=
:a .
S
o 0.4- o
} .
2
0.2
H
0.0 | ———

Coﬁuol NASH HCC


https://doi.org/10.1101/2021.09.30.462486
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462486; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2. Relative abundances of common glycoforms by fucosylation and sialylation in control-
, NASH- and HCC-samples. Columns indicate average relative abundances of glycans among the
glycoproteins being monitored.
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Figure 3. Normalized abundances of peptides and glycopeptides of A2MG in control-, NASH-
and HCC-samples. Columns represent average normalized abundances of individual A2ZMG
glycopeptides.
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Figure 4. Normalized abundances of A2MG glycoforms in healthy controls and HCC, respec-
tively, in discovery sample set (top panel). Normalized abundances of A2MG glycoforms in pa-
tients with benign hepatic masses and HCC, respectively, in validation sample set (bottom

panel)
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Figure 5. ROC curves generated using LOOCYV in validation training and test sets, as well as ap-
plied to HCC and control samples in the discovery set.
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Figure 6: (a) Canonical pathways linked to proteins specified in Table 2 (IPA analysis). The hor-

izontal bars represent the negative logarithm function of overlap p-value.
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Figure 6 (b) Network of the 10 upstream regulator molecules statistically most significantly as-
sociated with genes encoding proteins specified in Table 2 (IPA analysis)
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Table 1. Details of samples used in the discovery and validation sets

Number of Age
subjects Male Female

Control (healthy) 56 26 30 23-91
NASH 23 10 13 45-70
Discovery HCC 19 15 4 32-85
Control (benign hepatic 52-71

mass) 28 16 12
Validation HCC 28 20 8 47-77

Table 2. Multiplicative differences, Student’s t-test p-values, and FDR values for unidirection-
ally differentially expressed glycopeptides (“progression markers”)

Marker protein| gene con- con- con- con- con- con- | Logistic | Logistic
trol/NAS|trol/NAS|trol/NA|trol/HC|trol/HCC [trol/HC| regres- | regres-
H (multi-| H (p- SH | C (mul-|(p-value)|C (FDR)| sion sion
plicative| value) | (FDR) | tiplica- model |[model co-
differ- tive dif- coeffi- |efficients
ence) ference) cients | (HCCvs
(NASH vs| Rest)
Rest)
A1AT (271)- | A1AT | SER- 0.85 <0.001 | 0.005 | 0.79 | <0.001 [<0.001| 0.013 | -0.412
5401 PINA1

A1AT (271)- | A1AT | SER- 0.87 <0.001 | <0.001| 0.82 | <0.001 |<0.001| 0.099 | -0.369

5402 PIN1A

A1BG (179)- | A1BG | A1BG 1.17 <0.001 | 0.003 | 1.28 | <0.001 |<0.001| 0.170 0.056
5402

A2MG (247) - |A2MG| A2M 1.23 <0.001 | 0.002 | 1.47 | <0.001 [<0.001] -0.045 | 0.235
5402

A2MG (55)- [A2MG| A2M 1.17 0.003 | 0.016 | 1.34 | <0.001 |<0.001| -0.108 | 0.327
5402

A2MG (869) - |A2MG| A2M 0.87 0.013 | 0.049 | 0.68 | <0.001 |<0.001| 0.576 | -0.435
6200

AACT (106) - | AACT | SER- 0.45 <0.001 | 0.001 | 0.63 0.003 | 0.009 | -0.287 | -0.0507
7604 PINA3

AGP1(33)- | AGP1 |[ORM1| 0.72 <0.001 | 0.003 | 0.75 0.002 | 0.008 | -0.138 | 0.110
5402

AGP1(93)- | AGP1 [ORM1| 0.82 0.009 | 0.038 | 0.69 | <0.001 |<0.001| 0.119 | -0.701
6502

APOC3 (74) - |APOC3|APOC3| 1.53 <0.001 |<0.001| 1.77 | <0.001 |<0.001| 0.312 | -0.123
1102

APOC3 (74) - |APOC3|APOC3| 1.73 0.001 | 0.008 | 2.55 | <0.001 |<0.001| 0.31 0.071
1202
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APOC3 (74) - |APOC3|APOC3| 2.01 <0.001 | 0.005 | 7.53 | <0.001 |<0.001| -1.44 0.588
1300
APOC3 (74) - |APOC3|APOC3| 1.93 <0.001 | <0.001| 2.98 | <0.001 |<0.001| 0.55 0.391
2110
APOM (135)- [APOM|APOM | 1.62 0.014 | 0.049 2.3 <0.001 [ 0.002 | -0.14 0.624
5421
CFAI (70) - 5401| CFAI CFI 0.76 0.004 | 0.024 | 0.74 0.004 [0.0124] -0.680 | 0.075
CLUS (374)- | CLUS | CLU 1.46 <0.001 | 0.005 | 1.53 | <0.001 | 0.003 | 1.119 | -0.644
6501
CO4A (1328) - | CO4A | C4A 1.17 <0.001 | <0.001| 1.39 | <0.001 |<0.001| 0.398 0.450
5402
CO6 (324) - co6 Cé 1.57 0.005 | 0.025 | 2.42 | <0.001 |<0.001| -0.295 | 0.082
5200
CO6 (324) - co6 Cé 1.76 0.002 0.01 1.9 0.008 | 0.023 | 0.186 0.101
5400
COB8A (437)- | CO8A | C8A 0.72 0.011 | 0.043 | 0.57 | <0.001 |<0.001| -0.277 | -0.974
5200
COB8A (437)- | CO8A | C8A 1.43 0.008 | 0.035 | 1.75 0.002 | 0.006 | 0.274 | -0.122
5410
HPT (207) - HPT HP 0.82 0.006 | 0.031 | 0.54 | <0.001 |<0.001| 0.769 | -1.036
11904
HPT (207) - HPT HP 0.72 0.005 | 0.025 | 0.56 | <0.001 |<0.001| 0.335 | -0.606
121005
HPT (241) - HPT HP 0.76 0.007 | 0.033 | 0.55 | <0.001 |<0.001| 0.104 | -0.743
5401
HPT (241) - HPT HP 0.8 <0.001 | <0.001| 0.75 | <0.001 |<0.001| -0.907 | -0.131
5402
HPT (241) - HPT HP 0.88 0.005 | 0.027 | 0.85 0.002 | 0.008 | -0.318 | -0.249
5511
HPT (241) - HPT HP 1.25 0.004 | 0.021 | 1.68 | <0.001 |<0.001| -0.417 | 0.508
6502
IGA2 (205) - IGA2 | IGHA2 | 0.42 0.003 | 0.016 | 0.08 | <0.001 |<0.001| -0.592 | -0.558
5510
IGG2(297) - | IGG2 [IGHG2| 0.69 0.004 | 0.022 | 0.52 | <0.001 |<0.001| -0.906 | -0.847
4400
IGG2(297) - | IGG2 [IGHG2| 1.24 0.008 | 0.035 | 1.59 | <0.001 |<0.001| 0.371 0.181
4411
IGM (209) - IGM | IGHM 1.5 0.003 | 0.016 | 1.47 0.011 [ 0.031] 0.170 0.266
5401
KLKB1 (494) - | KLKB1 | KLKB1 1.7 <0.001 | 0.001 | 2.87 | <0.001 |<0.001| 0.017 0.086
5401
KLKB1 (494) - | KLKB1 | KLKB1 | 1.84 0.003 | 0.017 | 2.99 | <0.001 |<0.001| 0.223 | -0.331
5402
KLKB1 (494) - | KLKB1 | KLKB1 | 1.27 0.01 0.041 | 1.79 | <0.001 [<0.001| -0.037 | 0.829
5410
KLKB1 (494) - | KLKB1 | KLKB1 | 1.51 <0.001 | 0.002 1.6 <0.001 [<0.001( 0.707 | -0.646
6503
TRFE (432) - | TRFE TF 1.19 0.001 | 0.008 | 1.66 | <0.001 |<0.001| -0.938 1.004
5402
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TRFE (432) - | TRFE TF 1.24 <0.001 | 0.001 | 1.47 | <0.001 |<0.001| 0.204 0.146
6501

TRFE (432) - | TRFE TF 1.13 0.013 | 0.049 | 1.42 | <0.001 |<0.001| -0.539 | 0.200
6502

VTNC (169) - | VINC [ VTN 0.71 <0.001 | 0.002 | 0.54 | <0.001 |<0.001| -0.280 | -0.238
5401

ZA2G (112)- | ZA2G |AZGP1| 1.49 0.008 | 0.034 | 2.06 | <0.001 |<0.001| -0.308 | 0.171
5402

Table 3. Glycopeptides displaying statistically significantly different abundances in both discov-
ery and validation sample sets

Healthy Benign he-
con- patic

trol/HCC | Healthy Healthy | mass/HCC | Benign he- | Benign he-
(multiplica- con- con- (multiplica- patic patic

tive differ- | trol/HCC | trol/HCC | tive differ- | mass/HCC | mass/HCC
Marker ence) (p-value) (FDR) ence) (p-value) (FDR)
A2MG (1424) - 5402 1.57 <0.001 <0.001 1.2 0.01 0.214
A2MG (247) - 5200 0.65 <0.001 <0.001 0.62 <0.001 0.005
A2MG (247) - 5401 0.89 0.04 0.089 0.84 0.012 0.218
A2MG (55) - 5411 0.69 <0.001 <0.001 0.66 <0.001 0.007
A2MG (55) - 5412 0.67 <0.001 <0.001 0.67 <0.001 0.009
A2MG (869) - 5200 0.74 <0.001 <0.001 0.82 0.003 0.107
A2MG (869) - 6200 0.68 <0.001 <0.001 0.79 0.002 0.092
A2MG (869) - 6300 0.62 <0.001 <0.001 0.63 <0.001 0.005
A2MG (991) - 5402 0.72 0.001 0.004 0.61 <0.001 0.007
AFAM (33) - 5402 1.33 0.002 0.006 1.12 0.049 0.348
HPT (207) - 10803 0.55 <0.001 <0.001 0.71 0.032 0.280
1GG1 (297) - 5411 1.54 0.037 0.078 1.28 0.047 0.340
A2MG - AIGYLNTGYQR 1.26 0.014 0.036 1.95 0.003 0.107

A2MG -
TEHPFTVEEFVLPK 1.26 0.029 0.064 1.97 0.003 0.098
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