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Abstract
Background. A number of US observational studies re-
ported an increased mortality risk with higher intact para-
thyroid hormone (iPTH), calcium and/or phosphate. The
existence of such a link in a European haemodialysis popu-
lation was explored as part of the Analysing Data, Recognis-
ing Excellence and Optimising Outcomes (ARO) Chronic
Kidney Disease (CKD) Research Initiative.
Methods. The association between the markers of mineral
and bone disease and clinical outcomes was examined in
7970 patients treated in European Fresenius Medical Care
facilities over a median of 21 months. Baseline and time-
dependent (TD) Cox regression were performed using
Kidney Disease Outcomes Quality Initiative (KDOQI)
target ranges as reference categories, adjusting for demo-
graphics, medical history, dialysis parameters, inflamma-
tion, medications and laboratory parameters. Fractional
polynomial (FP) models were also used.
Results. Hazard ratio (HR) estimates from baseline ana-
lysis for iPTH were U-shaped [>600 pg/mL, HR = 2.10,
95% confidence interval (CI) 1.62–2.73; <75 pg/mL,
HR = 1.46, 95% CI 1.17–1.83]. TD analysis confirmed
the results for iPTH. Baseline analysis showed that cal-
cium >2.75 mmol/L increased risk of death (HR = 1.70,
95% CI 1.19–2.42). TD analysis showed that both low
(HR = 1.19, 95% CI 1.04–1.37) and high calcium (HR =
1.74, 95% CI 1.30–2.34) increased risk of death. Baseline
analysis for phosphate showed a U-shaped pattern
(<1.13 mmol /L, HR = 1.18, 95% CI 1.01–1.37;
>1.78 mmol/L, HR = 1.32, 95% CI 1.13–1.55). TD analysis
confirmed the results for phosphate <1.13 mmol/L. HR es-
timates were higher in patients with diabetes versus those
without diabetes for baseline analysis only (P-value =
0.014). FP analysis confirmed the results of baseline and
TD analyses.

Conclusion. Patients with iPTH, calcium and phosphate
levels within the KDOQI target ranges have the lowest
risk of mortality compared with those outside the target
ranges.

Keywords: calcium; KDOQI; mineral bone disorders; parathyroid
hormone; phosphate

Introduction

Over the past decade, a number of large observational
studies have evaluated whether markers of chronic kidney
disease–mineral and bone disorder (CKD–MBD) deter-
mine long-term mortality in haemodialysis (HD) patients
[1–6]. These studies, mainly from the USA, generally
found higher levels of intact parathyroid hormone (iPTH),
calcium and/or phosphate to be associated with an in-
creased risk of mortality.

Based on these findings and supplemented by expert
opinion, the US National Kidney Foundation Kidney Dis-
ease Outcomes Quality Initiative (NKF-KDOQI™) pub-
l ished clinical practice guidelines in 2003. The
guidelines provided recommended target ranges for vari-
ous markers of MBD, such as iPTH, total serum calcium
and serum phosphate [7]. The KDOQI guidelines were
widely adopted throughout Europe despite possible differ-
ences in patient characteristics and practice patterns be-
tween Europe and the USA [8–10]. Furthermore, it is
unclear whether achieved target levels of soluble markers
of MBD effect outcomes in the European HD population
as had been previously shown for the US HD population.

The Analysing Data, Recognising Excellence and Opti-
mising Outcomes (ARO) CKD Research Initiative began
in 2007 in an effort to better understand the practice of
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care and improve patient outcomes in European HD pa-
tients. A unique strength of the ARO CKD Research Ini-
tiative is the inclusion of Eastern European populations
who have largely been excluded in previous studies
(authors' unpublished data). The aim of the present ana-
lysis was to examine the relation between levels of soluble
markers of MBD (iPTH, total serum calcium and serum
phosphate) and long-term mortality in this population.

Materials and methods

Study population

This study was carried out in accordance with the ethical standards of the
relevant committees on human experimentation in the individual insti-
tutes and countries involved, and also with the Declaration of Helsinki
1975, as revised in 2000. Details of the rationale and methods of the
study are described elsewhere (de Francisco et al., submitted for publi-
cation). Briefly, the investigated population (n = 11 153) consisted of ran-
domly selected patients who underwent HD therapy between 1 January
2005 and 31 December 2006 at a participating European Fresenius
Medical Care (EU-FME) dialysis facility from 11 countries: Czech Re-
public, France, Hungary, Italy, Poland, Portugal, Slovakia, Slovenia, Spain,
Turkey and the UK. Patients were classified as incident if they were on HD
therapy for <6 months at the time of enrolment; patients were otherwise
classified as prevalent.

We excluded 1352 patients from centres which had missing data on
key dialysis parameters, 90% of which had missing baseline Kt/V or ac-
tual blood flow. UK patients were excluded because information was
missing on all medications (n = 838). Patients with a history of parathyr-
oidectomy (n = 173), those who underwent parathyroidectomy during the
course of follow-up (n = 44) and patients who had a history of cinacalcet
use (n = 247) were excluded to remove possible confounding effects. In-
cident patients who remained in the study for <3 months (n = 529) were
excluded as their risk profile for mortality could differ from that of pa-
tients who had survived the initial phase of dialysis treatment. A total of
7970 patients were included in the present analysis.

CKD–MBD parameters

Individual measures for iPTH, calcium and phosphate were averaged over
the first quarter of follow-up and were then divided into clinically relevant
categories. The KDOQI target ranges for each MBD marker were used as
the reference category: iPTH [150–300 pg/mL (15.9–31.8 pmol/L)], total
serum calcium (2.10–2.37 mmol/L) and serum phosphate (1.13–
1.78 mmol/L). Although second-generation assays were used for iPTH
measurements, a standard assay was not used across all ARO facilities.
Approximately 75% of iPTHmeasures captured in AROwere assayed with
the Elecsys® System (Roche Diagnostics, Indianapolis, IN, USA) or with
an Immulite Assay (Diagnostic Products Corporation, Los Angeles,
CA, USA).

Covariates of interest

Patient demographic characteristics available for this study included age,
gender, country of origin, smoking history and body mass index (BMI).
Information on medical history included aetiology of CKD, history of car-
diovascular disease (CVD) (defined as peripheral vascular disease, con-
gestive heart failure, coronary artery disease, myocardial infarction,
angina, cerebrovascular accident or transient ischaemic attack), history
of diabetes (defined as a recorded history of diabetes, diagnosis of diabetic
nephropathy or history of diabetic medications use at baseline) and history
of cancer.

Detailed information was available on dialysis vintage (incident/
prevalent), dialysis access [arteriovenous (AV) fistula, AV graft, tempor-
ary venous catheter and permanent venous catheter], actual blood flow
and dialysis adequacy (Kt/V). All dialysers were of the single-use variety.
Information on dialyser type was not available.

Data on medications included phosphate binders, oral vitamin D ster-
ols, anti-aggregants, antihypertensives [including angiotensin-converting

enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)] and
oral anticoagulants. Information on intravenous vitamin D was not avail-
able. Laboratory data included markers of inflammation [C-reactive pro-
tein (CRP) and albumin], haemoglobin, ferritin, total cholesterol and
blood leucocyte count.

Study outcomes

All-cause mortality was the primary outcome of interest in this study.
CVD-related mortality was considered as a secondary outcome of inter-
est. Patients were considered to be lost to follow-up if they left a dialysis
facility for any reason and did not return to the same facility within
45 days.

Statistical analysis

Variables, which followed a normal distribution, were described using
mean and standard deviation; median and interquartile range (IQR) were
otherwise reported. The association between categories of iPTH and pa-
tient characteristics was assessed using a linear model for continuous
variables and a chi-square test for trend for categorical variables.

Crude and adjusted hazard ratios (HR) for mortality were determined
using baseline (i.e. fixed-covariate) Cox regression models. The assump-
tion of proportional hazardswas checked graphically using a log-minus-log
Kaplan–Meier plot. The multivariable Cox analysis adjusted for demo-
graphic characteristics (age, gender, country, BMI, smoking status),
medical history (CKD aetiology, diabetes, CVD, cancer), dialysis vin-
tage, dialysis parameters (vascular access type, Kt/V, blood flow), markers
of inflammation (serum albumin, CRP), CVD-related medications (ACE
inhibitors, ARBs, other antihypertensive drugs, oral anticoagulants, anti-
aggregants), MBD-related medications (oral vitamin D, phosphate binders)
and laboratory parameters (iPTH, calcium, phosphate, haemoglobin, fer-
ritin, cholesterol, blood leucocyte counts). Quantitative variables (i.e. la-
boratory parameters and dialysis prescription) were averaged over the
first quarter of study follow-up and categorized into clinically meaningful
intervals or into quartiles. The adjustment also included hospitalization or
change in vascular access type that may have occurred during the first quar-
ter of follow-up.

Time-dependent Cox analysis was performed to evaluate any poten-
tial effects of updating exposure and selected covariates over time. The
analysis included all of the covariates adjusted for in the baseline ana-
lysis except for serum albumin, CRP, oral vitamin D use, phosphate
binder use, ferritin, hospitalization and change in vascular access type
which were included in the Cox model as time-dependent covariates.
Missing data in the time-dependent models were handled using last
observation carried forward (LOCF).To evaluate the presence of a pos-
sible non-linear relation between markers of MBD and mortality, we
repeated both the baseline Cox analysis and the time-dependent Cox
analysis using fractional polynomial (FP) analysis [11,12]. Casewise
deletion was applied in all analyses involving FP. We carried out a
formal test of interaction to evaluate whether history of diabetes modi-
fies the relation between MBD markers and mortality.

All statistical analyses were performed using Stata SE (version 10,
College Station, TX, USA) and were reproduced independently by a sec-
ond statistician. A P-value of <0.05 was considered to be statistically sig-
nificant.

Results

Consequent to the open-cohort study design, incident
patients had a shorter duration of follow-up (median
12.6 months, IQR 7.6–20.0 months) than prevalent patients
(median 23.9 months, IQR 13.5–23.9 months). Of the 7970
patients selected for analysis, 1477 (19%) died, 399 (5%)
underwent a successful renal transplant, 884 (11%) were
lost to follow-up and 5210 (65%) completed the study.
Overall, patients were followed up for a median of
20.9 months (IQR 9.8–23.9 months) and contributed a total
of 11 304 patient-years.
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In our study population (Table 1), patients with lower
levels of iPTH were more likely to be older and have a
history of diabetes, CVD or cancer compared to those with
higher levels of iPTH. They were also more likely to have
higher serum calcium levels but lower phosphate levels
during the first quarter of follow-up. Patients with lower
iPTH had higher ferritin and CRP levels as well as lower
albumin levels, consistent with an activated inflammatory
response. They were also more likely to have been hospi-
talized during the first quarter of follow-up.

iPTH and the risk of mortality

In the adjusted baseline Cox analysis, the relative risk esti-
mates for mortality by iPTH category showed a U-shaped
relation (Table 2), where patients with iPTH levels outside

the KDOQI target range (150–300 pg/mL) had a greater risk
of death compared to those who were within target range.
Patients in the highest iPTH category (>600 pg/mL) experi-
enced a 2-fold increase in risk [HR 2.10; 95% confidence
interval (CI) 1.62–2.73, P < 0.001] compared to patients
who were within target range, whereas those in the lowest
iPTH category (<75 pg/mL) had almost a 50% greater risk
of death (HR 1.46; 95%CI 1.17–1.83, P = 0.001). The over-
all U-shaped pattern was preserved in the adjusted time-
dependent analysis.

We found evidence of an interaction between history of
diabetes, iPTH and mortality in the baseline Cox model, in
which the relative risk estimates were higher among pa-
tients with diabetes than those without diabetes (P =
0.014). Patients with diabetes in the highest iPTH category
had nearly a 3-fold increase in risk of death compared to

Table 1. Patient characteristics by baseline iPTH category (n = 7970)

Patient characteristics
<75 pg/mL
(n = 670)

75–<150 pg/mL
(n = 833)

150–300 pg/mL
(n = 1092)

>300–600 pg/mL
(n = 890)

>600 pg/mL
(n = 461)

Missing
(n = 4024) P-value*

Age (years) 66.6 ± 14.4 65.8 ± 14.1 65.7 ± 14.0 63.2 ± 15.0 61.2 ± 15.0 61.4 ± 15.1 <0.01
Gender
Female 314 (46.9) 325 (39.0) 403 (36.9) 381 (42.8) 222 (48.2) 1711 (42.5) 0.56
Male 356 (53.1) 508 (61.0) 689 (63.1) 509 (57.2) 239 (51.8) 2313 (57.5)

Dialysis vintage
Prevalent 471 (70.3) 562 (67.5) 692 (63.4) 584 (65.6) 337 (73.1) 2536 (63.0) 0.92
Incident 199 (29.7) 271 (32.5) 400 (36.6) 306 (34.4) 124 (26.9) 1488 (37.0)

Calcium (mmol/L) 2.3 ± 0.2 2.3 ± 0.2 2.3 ± 0.2 2.3 ± 0.2 2.3 ± 0.3 2.2 ± 0.2 <0.01
Phosphate (mmol/L) 1.4 ± 0.4 1.4 ± 0.4 1.5 ± 0.4 1.6 ± 0.4 1.7 ± 0.4 1.5 ± 0.4 <0.01
History of diabetes 201 (30.0) 237 (28.5) 292 (26.7) 209 (23.5) 79 (17.1) 1048 (26.0) <0.01
History of CVD 562 (83.9) 667 (80.1) 854 (78.2) 686 (77.1) 352 (76.4) 2785 (69.2) <0.01
History of cancer 63 (9.4) 63 (7.6) 66 (6.0) 58 (6.5) 29 (6.3) 193 (4.8) 0.02
CKD aetiology
Hypertension/vascular 101 (15.1) 129 (15.5) 148 (13.6) 137 (15.4) 59 (12.8) 489 (12.2) 0.40
Glomerulonephritis 98 (14.6) 128 (15.4) 158 (14.5) 119 (13.4) 82 (17.8) 719 (17.9) 0.65
Diabetic nephropathy 109 (16.3) 129 (15.5) 188 (17.2) 127 (14.3) 51 (11.1) 521 (12.9) 0.03
Tubulointerstitial 87 (13.0) 119 (14.3) 141 (12.9) 109 (12.2) 71 (15.4) 582 (14.5) 0.82
Polycystic kidney disease 32 (4.8) 46 (5.5) 64 (5.9) 55 (6.2) 36 (7.8) 202 (5.0) 0.04
Miscellaneous 24 (3.6) 19 (2.3) 42 (3.8) 41 (4.6) 22 (4.8) 162 (4.0) 0.04
Unknown 219 (32.7) 263 (31.6) 351 (32.1) 302 (33.9) 140 (30.4) 1349 (33.5) 0.95

Vascular access
Fistula 461 (68.8) 619 (74.3) 787 (72.1) 646 (72.6) 318 (69.0) 2544 (63.2) 0.99
Graft 30 (4.5) 28 (3.4) 47 (4.3) 39 (4.4) 33 (7.2) 42 (1.0) 0.04
Temporary catheter 80 (11.9) 79 (9.5) 110 (10.1) 86 (9.7) 43 (9.3) 411 (10.2) 0.20
Permanent catheter 64 (9.6) 59 (7.1) 71 (6.5) 71 (8.0) 41 (8.9) 286 (7.1) 0.77
Other/missing 35 (5.2) 48 (5.8) 77 (7.1) 48 (5.4) 26 (5.6) 741 (18.4) 0.85

Haemoglobin (g/dL) 11.3 ± 1.6 11.3 ± 1.5 11.5 ± 1.5 11.5 ± 1.5 11.4 ± 1.5 10.8 ± 1.5 0.04
Ferritin (ug/L) 407 (224, 746) 390 (204, 677) 362 (185, 617) 322 (145, 549) 334 (166, 540) 531 (227, 943) <0.01
Total cholesterol (mmol/L) 4.4 ± 1.1 4.3 ± 1.1 4.4 ± 1.1 4.4 ± 1.1 4.4 ± 1.0 4.5 ± 1.1 0.47
C-reactive protein (mg/L) 10 (4,22) 8 (3, 18) 7 (3, 15) 7 (3, 16) 7 (3, 15) 9 (4, 19) <0.01
Albumin (g/L) 38 ± 5 39 ± 6 40 ± 6 39 ± 6 41 ± 7 38 ± 5 <0.01
Antihypertensive drugs 165 (24.6) 241 (28.9) 324 (29.7) 263 (29.6) 122 (26.5) 933 (23.2) 0.28
ACE inhibitors 106 (15.8) 173 (20.8) 219 (20.1) 179 (20.1) 87 (18.9) 590 (14.7) 0.22
Anti-aggregants 126 (18.8) 191 (22.9) 233 (21.3) 195 (21.9) 95 (20.6) 562 (14.0) 0.56
Oral vitamin D sterols 117 (17.5) 152 (18.2) 261 (23.9) 260 (29.2) 94 (20.4) 586 (14.6) <0.01
Phosphate binders
None 385 (57.5) 491 (58.9) 610 (55.9) 476 (53.5) 248 (53.8) 2742 (68.1) 0.03
Calcium-containing only 211 (31.5) 232 (27.9) 297 (27.2) 207 (23.3) 89 (19.3) 961 (23.9) <0.01
Other type 74 (11.0) 110 (13.2) 185 (16.9) 207 (23.3) 124 (26.9) 321 (8.0) <0.01

Hospitalization 118 (17.6) 126 (15.1) 150 (13.7) 110 (12.4) 64 (13.9) 526 (13.1) <0.01
Vascular access type change 94 (14.0) 118 (14.2) 147 (13.5) 124 (13.9) 50 (10.8) 685 (17.0) 0.22

*P-value indicates test for linear trend for continuous variables and chi-square test for trend for nominal variables. The missing category was excluded in
the tests for trend. Mean ± standard deviation are reported if the variable is normally distributed; median (interquartile range) are reported otherwise.
Categorical variables are reported using n (%). Incident dialysis was defined as <6 months of dialysis treatment.
ACE, angiotensin-converting enzyme; CKD, chronic kidney disease; CVD, cardiovascular disease.
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patients who were within the target range (HR 2.89, 95%
CI 1.73–4.82, P < 0.001). Conversely, for patients without
diabetes, the increase in risk of death was <2-fold (HR
1.85, 95% CI 1.36–2.52, P < 0.001). Moreover, patients
with diabetes in the lowest iPTH category had almost a
2-fold increase in the risk of mortality (HR 1.89, 95%
CI 1.27–2.81, P = 0.002) than patients without diabetes,
whose relative risk estimates were attenuated (HR 1.29,
95% CI 0.98–1.70, P = 0.070). In contrast to the baseline
analysis, the test for interaction between diabetes, iPTH
and mortality in the time-dependent analysis was not sta-
tistically significant (P = 0.233). Results of the Cox regres-
sion models based on FP analysis confirmed the overall
trends in the relative risk estimates for iPTH (Figures 1a
and 2). The FP analysis also showed an attenuation of
effect in the time-dependent analysis with higher values
of iPTH.

Serum calcium and the risk of mortality

With regard to the adjusted baseline analysis for total
serum calcium, we found that patients with high serum cal-
cium levels (>2.75 mmol/L) had a higher risk of death than
those who were within target range (2.10–2.37 mmol/L)
(HR 1.70, 95% CI 1.19–2.42, P = 0.003). The results for
high calcium levels in the adjusted time-dependent analysis
were consistent with those found in the baseline analysis
(HR 1.74, 95% CI 1.30–2.34, P < 0.001). Although the
adjusted baseline analysis for low serum calcium levels
(<2.10 mmol/L) showed no effect on the risk of death
(HR 0.98, 95% CI 0.83–1.16, P = 0.808), the time-
dependent analysis showed that patients with low calcium
levels had a slightly higher risk of death than those who
were within target range (HR 1.19, 95% CI 1.04–1.37,
P = 0.015). The test for interaction between history of

diabetes, mortality and total serum calcium was not sig-
nificant in the baseline analysis (P-value = 0.604) as
well in the time-dependent analysis (P-value = 0.908).
The time-dependent analysis for total serum calcium ap-
peared to be more accentuated in the regions outside
the KDOQI target range. The FP analysis confirmed
the overall trends in the relative risk estimates for total
calcium (Figure 1b).

Serum phosphate and the risk of mortality

The overall pattern of results for serum phosphate was
similar to that for iPTH showing a U-shaped pattern in
the adjusted relative risk estimates. In the baseline Cox
analysis, patients with low serum phosphate as well as
those with high serum phosphate had an increased risk
of death compared to those who were within target range
(1.13–1.78 mmol/L) (HR 1.18, 95% CI 1.01–1.37, P =
0.033 and HR 1.32, 95% CI 1.13–1.55, P = 0.001, respect-
ively) after covariate adjustment. The adjusted time-
dependent analysis was consistent with the baseline-ad-
justed analysis for low phosphate (HR 1.31, 95% CI
1.15–1.48, P < 0.001), but not for high phosphate levels
(HR 1.05, 95% CI 0.91–1.22, P = 0.495). The test for
interaction between history of diabetes, mortality and
serum phosphate was marginally significant in the baseline
analysis (P-value = 0.044), but not in the time-dependent
analysis (P-value = 0.831). The results of the FPmodel con-
firmed the U-shaped association between serum phosphate
and mortality in the baseline Cox model (Figure 1c).

Discussion

Given that most previous epidemiological studies in large
CKD patient cohorts have been performed in the USA,

Table 2. Results of baseline and time-dependent Cox regression for all-cause mortality in the ARO population (n = 7970)

Baseline analysis Time-dependent analysis

Crude Adjusted Crude Adjusted
MBD marker HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

iPTH (pg/mL)
<75 2.02 (1.63–2.51) 1.46 (1.17–1.83) 2.10 (1.79–2.45) 1.46 (1.24–1.71)
≥75–<150 1.46 (1.18–1.82) 1.31 (1.05–1.64) 1.45 (1.22–1.71) 1.18 (1.00–1.40)
≥150–≤300 1.00 1.00 1.00 1.00
>300–≤600 1.20 (0.96–1.50) 1.43 (1.14–1.79) 1.08 (0.90–1.31) 1.28 (1.06–1.55)
>600 1.51 (1.17–1.94) 2.10 (1.62–2.73) 1.21 (0.97–1.52) 1.53 (1.22–1.92)

Total calcium (mmol/L)
<2.10 1.11 (0.95–1.31) 0.98 (0.83–1.16) 1.37 (1.20–1.58) 1.19 (1.04–1.37)
≥2.10–≤2.37 1.00 1.00 1.00 1.00
>2.37–≤2.75 1.03 (0.89–1.19) 1.05 (0.90–1.22) 0.96 (0.84–1.09) 1.06 (0.93–1.21)
>2.75 1.51 (1.08–2.12) 1.70 (1.19–2.42) 1.51 (1.13–2.00) 1.74 (1.30–2.34)

Phosphate (mmol/L)
<1.13 1.45 (1.25–1.68) 1.18 (1.01–1.37) 1.83 (1.62–2.06) 1.31 (1.15–1.48)
≥1.13–≤1.78 1.00 1.00 1.00 1.00
>1.78 0.99 (0.85–1.16) 1.32 (1.13–1.55) 0.83 (0.71–0.95) 1.05 (0.91–1.22)

Adjusted for demographics (age, gender, country, BMI, smoking status), medical history (CKD aetiology, history of diabetes, history of CVD, history of
Cancer), dialysis parameters (vintage, vascular access type, Kt/V, blood flow), markers of inflammation (serum albumin, CRP), CVD medications
(antihypertensive drugs, ACE inhibitors, oral anticoagulants, anti-aggregants), BMD medications (vitamin D, phosphate binders) and other lab para-
meters (PTH, calcium, phosphate, Hb, ferritin, cholesterol, blood leucocytes) and miscellaneous (hospitalization, change in vascular access type).
Serum albumin, CRP, oral vitamin D use, phosphate binder use, ferritin, hospitalization and change in vascular access type were updated over time
in the time-dependent models.
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our findings help to clarify associations between MBD
markers and mortality in the wider European HD com-
munity, including patients from Western Europe and the
more rarely studied patients from Eastern Europe. For the
three MBD markers considered, the overall findings from
this study show that the lowest risk of mortality was
among patients whose MBD markers were within the
KDOQI target range.

Our results should be considered in the context of other
controversial studies [2,4–6]. Results from previous studies
evaluating the effect of serum calcium on mortality using

baseline Cox analysis have been inconsistent (Table 3). In
contrast, nearly all studies based on time-dependent analysis
have shown that low calcium levels increase the risk of mor-
tality. Thus, a high calcium level seems to have strong prog-
nostic value for long-term mortality (as evidenced by our
baseline analysis), whereas a low calcium level has little
prognostic value despite its positive association with mor-
tality, when all values of calcium are updated over time.

The evidence for serum phosphate seems to suggest that
either a low or a high level is a risk factor for mortality
(Table 3). With respect to low phosphate levels, this seems
clinically plausible since a low serum phosphate is a mar-
ker for malnutrition, a known predictor of mortality [13].
However, we found that the relation persisted even after
adjustment for serum albumin [14], which suggests the
possibility that the effect of serum phosphate on mortality
is acting through another biological mechanism besides
nutritional status. Nevertheless, our findings for serum
phosphate support the current KDOQI target range
(1.13–1.78 mmol/L) as patients who were within the target
range had the lowest risk of mortality compared to those
with phosphate levels outside the range.
Perhaps the most notable finding of this study was the

U-shaped association between iPTH and mortality. In con-
trast to most previous studies which have reported that
high iPTH (but not low iPTH) increases the risk of mortal-
ity (Table 3), our data suggest that low iPTH levels
(<75 pg/mL) are a potential risk factor for mortality. This
has been previously reported by Kalantar-Zadeh and col-
leagues [4], although the result was significant only in
their time-dependent Cox model and not in their baseline
model. Another, albeit much smaller, study (n = 345) pub-
lished by Avram and colleagues showed that patients with
iPTH <65 pg/mL (n = 67) had a higher risk of death than
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Fig. 1. (a) Relative risk of all-causemortality for iPTH comparing baseline
versus time-dependent Cox regression using fractional polynomials. Values
<0.5% percentile and >99.5% percentile were removed from both models
(baseline model = 29 observations removed and time-dependent model =
838 observations removed). iPTH values >1000 pg/mL not shown.
Baseline model: log (HR) = −0.28iPTH0.5 + 0.04iPTH0.5 log iPTH +
βk×k (P = 0.001); time-dependent model: log (HR) = −0.38 log iPTH +
0.05iPTH0.5 + βk×k (P < 0.001). (b) Relative risk of all-cause mortality
for total serum calcium comparing baseline versus time-dependent Cox
regression using fractional polynomials. Calcium values <1.15 mmol/L
and >3.74 mmol/L not shown. Baseline model: log (HR) = −0.23
calcium2 + 0.19 calcium2 log calcium + βk×k (P = 0.82); time-dependent
model: log (HR) = −4.10 calcium1 + 2.26 calcium1 log calcium + βk×k (P =
0.015). (c) Relative risk of all-cause mortality for serum phosphate
comparing baseline versus time-dependent Cox regression using
fractional polynomials. Baseline model: log (HR) = −6.48 phosphate0.5 +
2.78 phosphate0.5 log phosphate + βk×k (P = 0.027); time-dependent
model: log (HR) = 5.18 phosphate−0.5 + 1.98 log phosphate + βk×k (P <
0.001). (a–c) Adjusted for demographics (age, gender, country, body
mass index, smoking status), medical history (chronic kidney disease
aetiology, history of diabetes, history of CVD and history of cancer),
dialysis parameters [dialysis vintage, vascular access type, dialysis
adequacy (Kt/V) and blood flow], markers of inflammation (serum
albumin and CRP), CVD medications (antihypertensives, angiotensin-
converting enzyme inhibitors, oral anticoagulants and anti-aggregants),
mineral and bone disorder medications (oral vitamin D and phosphate
binders), calcium, phosphate, iPTH, haemoglobin, ferritin, cholesterol,
blood leucocytes, hospitalization, and change in vascular access type. In
the time-dependent model, serum albumin, CRP, vitamin D, phosphate
binders, hospitalization and change in vascular access were treated as
time-dependent covariates.
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patients with iPTH levels >200 pg/mL [15]. Furthermore,
Stevens and colleagues showed patients with iPTH levels
<257 pg/mL in association with high serum calcium and
phosphate had a lower chance of survival compared with
patients with iPTH levels >257 pg/mL and well-controlled
serum calcium and phosphate levels [16]. Interestingly, our
findings agree with those from the CORES study (Prof.
Cannata, personal communication) that showed reduced
and elevated iPTH (<150 pg/mL and >500 pg/ml, respect-
ively), as well as albumin-corrected calcium and phos-
phorus levels were associated with an increase in all-cause
mortality based on the results of time-dependent analysis.

The findings of our FP analysis confirmed those of the
categorical analysis, showing that low iPTH is an import-
ant risk factor for mortality. Furthermore, the analysis sug-
gests that this is not entirely explained by the use of
arbitrary cutoff points in the categorical analysis. Overall,
the trends in the adjusted relative risk estimates for CVD-
related mortality were consistent with those for all-cause
mortality (data not shown).

The lack of consistency between this study and other
studies with respect to the association between very low
iPTH levels and mortality may be due, in part, to the cov-
ariates adjusted for in the multivariable analysis [2,4,6].
For instance, Block and colleagues [2] did not include
smoking status, history of CVD, history of cancer, vascular
access type or CRP as covariates in their multivariable ana-
lysis. Another reason for the discrepancy may have been the

potential differences in patient characteristics and practice
patterns between the USA and Europe. It is unlikely, how-
ever, to be a result of variation inherent in the assay [17]
since variability in patients with a low iPTH was minimal.

Results from previous studies that have evaluated the as-
sociation between iPTH and bone histology have indicated
that an iPTH level <79.7 pg/mL or as low as 57 pg/mL
[median 142 pg/mL (95% CI 57–570 pg/mL)] is indicative
of low bone turnover or adynamic bone disease [18,19].
Some recent studies have suggested that adynamic bone
disease is the most common type of bone disorder in
HD patients [20,21]. Adynamic bone disease, in turn,
often results in hypercalcaemia, given the impaired cap-
acity of the bone to buffer calcium loads [22]. This im-
paired calcium-buffering capacity has been associated
with accelerated cardiovascular calcification in a cross-
sectional study [19] as well as in a recent prospective clin-
ical trial reported by Ok et al. at the American Society of
Nephrology Renal Week 2008 (Abstract LB-005 avail-
able at: http://www.abstracts2view.com/asn/). Given that
any cardiovascular calcification in dialysis patients is
a potent predictor of mortality [23–25], our study fur-
ther strengthens the assumption that over-suppression of
iPTH is associated with low turnover bone disease, car-
diovascular calcification and mortality. Excessively high
iPTH levels, in contrast, may stimulate excessive cal-
cium release from bone and thereby initiate a similar
cascade of accelerated calcif ication and mortality
[26,27].

Our baseline Cox analysis of iPTH suggests a possible
link between glucose metabolism, bone metabolism and
long-term mortality in HD patients. We found that the
risk of mortality associated with low iPTH levels was par-
ticularly pronounced among patients with diabetes, who
had nearly twice the risk of death compared to those
without diabetes. Previous studies have reported an inter-
action between bone and diabetic nephropathy as a poten-
tial cause of lower bone turnover [28]. In addition, there
is clinical evidence that glycosylated haemoglobin levels
>6.5% predispose to very low serum iPTH levels in pa-
tients with diabetes [29]. Finally, in dialysis patients who
switch from a calcium-containing to a calcium-free phos-
phate binder, iPTH levels increase to a significantly
greater extent in individuals without diabetes compared
with those with diabetes [30]. Previous studies have re-
ported an interaction between bone as well as parathyroid
glands and diabetes as a potential cause of lower bone
turnover [31]. These observations imply that patients with
diabetes, in particular those with suboptimal glycemic
control, are predisposed to low turnover bone disease.
Interestingly, transgenic mouse models also show that
low serum osteocalcin levels, as observed in adynamic
bone disease, are a cause of glucose intolerance and in-
sulin resistance, highlighting the possibility that ady-
namic bone disease may exacerbate diabetes [32].

A key strength of this study is that serum calcium, serum
phosphate and iPTH were analysed as a continuous variable
using the method of FP [11]. This has several advantages
over analyses carried out using categories of exposure: the
cutoff points used in categorical data analysis are chosen
arbitrarily, which also assumes that all values within the cat-
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Fig. 2. Relative risk of all-cause mortality for iPTH baseline Cox
regression using fractional polynomials in patients with diabetes and
without diabetes. Values <0.5% percentile and >99.5% percentile were
removed from both models (no history of diabetes model = 22
observations removed; history of diabetes model = 7 observations
removed). Number of observations used: no history of diabetes model =
2906; history of diabetes model = 1011. iPTH values >1000 pg/mL not
shown. No history of diabetes: log (HR) = −0.23 log iPTH + 0.001iPTH1 +
βk×k (P = 0.03); history of diabetes model: log (HR) = −0.70 log iPTH +
0.11 iPTH0.5 + βk×k (P = 0.03). Adjusted for demographics (age, gender,
country, bodymass index, smoking status), medical history (chronic kidney
disease aetiology, history of diabetes, history of CVD and history of
cancer), dialysis parameters [dialysis vintage, vascular access type,
dialysis adequacy (Kt/V) and blood flow], markers of inflammation (serum
albumin and C-reactive protein), CVD medications (antihypertensives,
angiotensin-converting enzyme inhibitors, oral anticoagulants and anti-
aggregants), mineral and bone disorder medications (oral vitamin D and
phosphate binders), calcium, phosphate, haemoglobin, ferritin, cholesterol,
blood leucocytes, hospitalization, and change in vascular access type.
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egory are homogeneous with respect to the magnitude of
effect on the outcome. Furthermore, the FP analysis uses
all available information by representing the exposure as
a continuous variable and maximizing the power to detect
any differences in effect. It also allows the variable to take
on a non-linear form and does not therefore restrict the ex-
posure–disease association to a linear relation. However,
the method of FP should be used with caution, especially
in areas in which data are sparse, since the functional form
of the model can be influential to outliers.

A limitation of this study is that the analyses were based
on observational data, and therefore, no causal inference
can be made from the study results. Missing data were
common among all the MBD markers considered, as were
some potentially important confounding factors such as di-
alysate calcium concentration and intravenous administra-
tion of active vitamin D therapy derivatives. We attempted
to adjust for any potential effects of missing data by in-
cluding a separate indicator variable as part of the multi-
variable analysis. Another limitation was that the results
could not be stratified by dialysis vintage (incident versus

prevalent) due to the relatively small sample size of the in-
cident subgroup. We could not adjust for serum 25(OH)
vitamin D because this information was not captured in
the ARO database.

In conclusion, patients whose serum iPTH, serum total
calcium and serum phosphate values were within the
KDOQI recommended targets experienced the lowest risk
of mortality compared to those who were outside the re-
spective target ranges. The data presented here are consist-
ent with the more recent Kidney Disease: Improving
Global Outcomes (KDIGO) recommendations on CKD–
MBD target parameters [33], although some patients could
be at increased risk of mortality compared to those treated
to within the KDOQI target range. Our findings also sug-
gest that very low or high values of iPTH and phosphate,
as well as high values of calcium, should be avoided.
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aetiology, diabetes, CVD, cancer), dialysis vintage, dialysis parameters (vascular access type, Kt/V, blood flow), markers of inflammation (serum albumin,
C-reactive protein), CVD-related medications (antihypertensive drugs, angiotensin-converting enzyme inhibitors, oral anticoagulants, anti-aggregants),
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leucocyte counts). Adjustment for iPTH, calcium and phosphate was omitted where these markers were the main exposure variables of interest. The
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iPTH, intact parathyroid hormone.
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