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Abstract

Background

Serum lactate dehydrogenase levels reflect disease status in a variety of organs, but its role

in indicating pulmonary function is not yet clear. Therefore, this study explored the correla-

tion between pulmonary function and serum lactate dehydrogenase, and investigated

thresholds for changes in pulmonary function indicators in the total population as well as in

different strata of the population.

Methods

Based on data from the National Health and Nutrition Examination Survey (NHANES)

2011–2012 (n = 3453), univariate and stratified analyses were performed to investigate

factors associated with pulmonary function, and multiple regression analysis was used to

further investigate the specific relationship with serum lactate dehydrogenase. Smoothed

curve fitting, threshold effect and saturation effect analysis were used to explore the

threshold level of serum lactate dehydrogenase at the onset of changes in pulmonary

function indicators.

Results

Adjusted smoothed curve fit plots showed a linear relationship between serum lactate dehy-

drogenase levels and forced vital capacity and forced expiratory volume in one second: for

each 1 U/L increase in serum lactate dehydrogenase levels, forced vital capacity decreased

by 1.24 mL (95% CI = -2.05, -0.42, P = 0.0030) and forced expiratory volume in one second

by 1.11 mL (95% CI = -1.82, -0.39, P = 0.0025).

Conclusions

Serum lactate dehydrogenase was negatively and linearly correlated with pulmonary func-

tion indices in the total population analyzed. Based on the total population and different pop-

ulation stratifications, this study determined the threshold values of serum lactate
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dehydrogenase at the onset of decline of pulmonary function in different populations. This

provides a new serological monitoring indicator for patients suffering from respiratory dis-

eases and has implications for patients with possible clinical impairment of pulmonary func-

tion. However, our cross-sectional study was not able to determine a causal relationship

between these two factors, and further research is needed.

Introduction

The leading causes of disability and death worldwide are respiratory diseases, such as

chronic obstructive pulmonary disease (COPD) and asthma, respiratory viral infections,

and lung cancer. Since they have a mostly chronic progressive course they are a serious

social and economic burden [1, 2]. Pulmonary function tests (PFTs) are used to assess the

lung status of patients over time and have become an important component of pulmonary

disease assessment programs [3]. Currently, the common metrics reported in PFTs are

forced expiratory volume in one-second (FEV1) and the ratio to forced vital capacity

(FVC). Because pulmonary function reflects the respiratory function of an individual, it is

widely used for preoperative diagnosis of respiratory disease, surgical tolerance, postopera-

tive assessment of patient recovery, and clinical management. In clinical practice, however,

PFTs are contraindicated in patients with conditions such as severe cardiovascular disease,

hemoptysis, active tuberculosis, poorly controlled hypertension, recent sinus surgery or

middle ear surgery or infection, recent abdominal or thoracic surgery, or inability to follow

instructions [4]. In addition, although PFTs are widely available in large hospitals, they

remain to be improved in primary care hospitals due to uneven development [5]. This

makes it difficult for clinicians to correctly assess the pulmonary function of patients and

increases the risk of misdiagnosis and missed diagnosis.

Serological indicators may be a way to indirectly assess pulmonary function: previous stud-

ies found a significant correlation between serological indicator KL-6, cysteine-rich 61 and

lung function tests in patients with respiratory diseases [6, 7]. Hence, developing universal

serological screening indicators may be more accurate and efficient as well as less contraindi-

cated. Serum lactate dehydrogenase (LDH) is an important oxidoreductase enzyme of the gly-

colytic pathway that is widely present in human tissues and usually elevated during

inflammatory processes. Previous studies have found that LDH plays an important role as an

indicator of inflammation in organ damage and is also commonly used in the diagnosis of

myocardial infarction [8, 9], liver disease [10, 11], and malignancy [12–14]. The relationship

between lactate dehydrogenase and pulmonary function in clinical practice is currently

unclear although elevated concentrations of lactate dehydrogenase have been found in the

serum of COPD patients and smoking patients [15–17]. Many of the previous study popula-

tions were not representative, which may have led to an underestimation of the clinical signifi-

cance of lactate dehydrogenase.

The National Health and Nutrition Examination Survey (NHANES) is a multi-phase, ongo-

ing, representative survey conducted by the CDC to assess the health status of the U.S. popula-

tion based on a large body of data [18, 19]. The rigor and reliability of NHANES data has been

confirmed by numerous studies [20, 21], so data from NHANES 2011–2012 were used in this

study. Our goal was to conduct an in-depth and detailed stratified study to assess the relation-

ship between LDH and pulmonary function indicators.
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Materials and methods

Ethics statement

This study was approved by the ethical review committee of the National Center for Health

Statistics (NCHS) and the ethical review committee of the Second Clinical School of Nanchang

University. Written, informed consent was obtained from the participants.

Study population

The data for this study were obtained from NHANES III, and detailed information on the sur-

vey methodology and data collection is available on the NCHS website (http://www.cdc.gov/

nchs/). Our analysis was based on data recorded from 2011 to 2012, the most recent data avail-

able for the pulmonary function indicators FVC and FEV 1. A total of 4500 individuals were

included in our study. During data collation we excluded individuals with missing data on

FVC, FEV 1, serum albumin levels, and LDH levels. We also excluded patients whose behavior

prior to data collection could interfere with the findings, such as those collected after smoking,

eating, drinking alcohol, and thirty minutes after drinking coffee. Finally, patients with data

missing from their medical records such as pregnancy, history of respiratory disease, and chest

surgery were also excluded. The final total was 3453 participants and the detailed process is

shown in Fig 1.

Variables

LDH was the exposure variable in this study. We divided levels into three groups: low was�32

to 114 U/L (n = 1123); medium was�114 to 133 U/L (n = 1131), and high was�133 to�491

U/L (n = 1199). These groupings were predetermined based on previous studies that found an

association between LDH and respiratory function [15, 20, 21]. The outcome variables were

FVC and FEV 1, which were measured based on the latest American Thoracic Society standard

procedure for functional spirometry assessment. The following continuous covariates were

included: age, weight (kg), standing height (cm), systolic and diastolic blood pressure (mmHg)

serum glucose (mmol/L), albumin (g/L), globulin (g/L), cholesterol (mmol/L), creatinine

(μmol/L), and alanine aminotransferase (ALT, U/L). The following categorical variables were

included as covariates: gender, race, smoking, education level, chest or abdominal surgery, and

respiratory disease. LDH was measured using LD reagent (lactic acid as substrate) DxC800

(Beckman Instruments Inc, Brea, USA), which uses an enzyme rate method to measure LD

activity in biological fluids. The system monitors the rate of change of absorbance at 340 nm

over a fixed time interval, which is proportional to the activity of LD in the sample. More

information on LDH, FVC, FEV 1 and covariate assays is detailed at https://www.cdc.gov/

nchs/nhanes/.

Statistical analysis

SPSS v.26 (IBM Corporation, Armonk, NY, USA) and Empower Stats (https://www.empower

stats.com, X&Y Solutions, Inc., Boston, MA) were used for statistical analysis of all data.

P<0.05 indicates a statistically significant difference. The relationship between LDH levels and

FVC and FEV1 was analyzed according to a weighted multivariate logistic regression model.

The non-linear link between lactate dehydrogenase level and FVC and FEV 1 was addressed

using smooth curve fitting and a generalized additive model. We used smooth curve fitting to

examine whether the independent variable was partitioned into intervals. We applied seg-

mented regression (also known as piece-wise regression) that used a separate line segment to

fit each interval. A log-likelihood ratio test comparing a one-line (non-segmented) model to a
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segmented regression model was used to determine whether threshold exists (when p<0.05

was considered to apply to the segmented model). The inflection point that connected the seg-

ments was based on the model that gave maximum likelihood, and it was determined using a

two-step recursive method. For the analysis of differences between groups, we used a weighted

chi-square test for categorical data and a weighted linear regression model for continuous

variables.

Fig 1. Flowchart of the screening process for selecting eligible participants from NHANES 2011–2012.

https://doi.org/10.1371/journal.pone.0281203.g001
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Results

Baseline characteristics of participants

People in the high lactate dehydrogenase (LDH) group were older and had higher body weight

and blood pressure. The results showed that in the group with different lactate dehydrogenase

levels, FVC and FEV 1 were the only variables that decreased with increasing lactate dehydro-

genase levels (P<0.001). Variables with non-significant differences included gender, height,

serum glucose level, and respiratory disease. Among the serological indices, globulin, choles-

terol, creatinine, and ALT showed a gradual increase with lactate dehydrogenase (P<0.001).

The rest of the variables with statistically significant differences are detailed in Table 1.

Univariate and stratified analysis of the relationship between serum lactate

dehydrogenase and pulmonary function

The reference group for each variable in the univariate analysis was the first group. There was

a negative correlation between LDH levels and pulmonary function (Table 2, P<0.001). For

the baseline FVC analysis, the beta value (CI) for LDH levels was -126.02 (-213.51, -38.53) in

the middle tertile group and -332.56 (-418.80, -246.31) in the high tertile group compared to

the low tertile group, both P<0.0001. For analysis of baseline FEV 1, the beta value (CI) of

LDH levels was -129.34 (-201.51, -57.16) in the middle tertile group and -309.63 (-380.78,

-238.48) in the high tertile group compared to the low tertile group, both P<0.0001. Age, gen-

der, race, education level, thoracic/abdominal surgery, respiratory disease, weight, height, and

systolic blood pressure were associated with FVC and FEV1 as detailed in Table 2 (P<0.05).

For baseline FVC and FEV 1, differences in serum glucose and cholesterol were significant

only in the higher tertile groups. Smoking was only significantly associated with FVC and not

with FEV 1. Diastolic blood pressure was not significantly related to either FVC or FEV 1.

Therefore, for further study, a stratified analysis was performed (S1 Table).

Multiple regression equation analysis of the relationship between serum

lactate dehydrogenase levels and pulmonary function

The results of multivariate analysis showed a negative correlation between LDH and pulmo-

nary function (Table 3, P<0.01). In the different models, the beta values of both FVC and FEV

1 decreased progressively with increasing lactate dehydrogenase levels. In the unadjusted

model, lactate dehydrogenase levels were associated with lower FVC (β = -126.02, 95% CI =

-213.51, -38.53, P<0.001) and FEV 1 (β = -129.34, 95% CI = -201.51, -57.16, P<0.0001) in the

intermediate subgroup compared with the low tertile group. Higher subgroup lactate dehydro-

genase levels were associated with lower FVC (β = -332.56, 95% CI = -418.80, -246.31,

p<0.001) and FEV 1 (β = -309.63, 95% CI = -380.78, -238.48, p<0.0001) compared to the

lower tertile group. In adjusted models I and II, high lactate dehydrogenase levels were also

associated with lower FVC and FEV 1 (Table 3). In fully adjusted model III, high lactate dehy-

drogenase levels were associated with lower FVC (β = -56.75, 95% CI = -105.43, -8.08, p<0.05)

and FEV 1 (β = -53.28, 95% CI = -95.95, -10.62, p<0.05). The covariates used for adjustment

in the model are detailed in Table 3.

Smooth curve fitting, threshold effect and saturation effect analysis

between serum lactate dehydrogenase levels and pulmonary function

To further clarify the relationship between LDH levels and lung function, we performed a

smoothed curve fit (Fig 2) as well as threshold and saturation effect analyses (Table 4). The

smoothed curve fit was adjusted to detect a nonlinear relationship, to determine the presence
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or absence of a threshold effect, and the feasibility of using linear regression. The results

showed a linear relationship between LDH levels and FVC and FEV 1: for each 1 U/L increase

in LDH levels, FVC decreased by 1.24 mL (95% CI = -2.05, -0.42, P = 0.0030) and FEV 1

decreased by 1.11 mL (95% CI = -1.82, -0.39, P = 0.0025; Fig 2A and 2B and Table 4). The

covariates used for adjustment are detailed in Table 4.

Table 1. Baseline characteristics of participants (N = 3453).

Lactate dehydrogenase (U/L) Tertile Low(�32 to 114) Middle(�114 to 133) High(�133 to�491) P-value

Age, mean±SD (years) 40.14 ± 14.11 43.00 ± 14.14 46.35 ± 14.02 <0.001

Weight (kg) 78.74 ± 19.54 81.76 ± 20.98 85.36 ± 23.36 <0.001

Standing Height (cm) 168.98 ± 9.50 168.55 ± 10.19 168.10 ± 10.13 0.104

Systolic blood pressure (mmHg) 117.91 ± 14.74 120.24 ± 15.52 125.51 ± 18.24 <0.001

Diastolic blood pressure (mmHg) 70.86 ± 11.16 72.44 ± 11.34 73.91 ± 12.93 <0.001

Glucose, serum (mmol/L) 5.53 ± 2.17 5.53 ± 2.04 5.61 ± 2.04 0.520

Albumin (g/L) 43.18 ± 3.25 43.40 ± 3.19 42.91 ± 3.25 0.001

Globulin (g/L) 28.33 ± 4.39 28.86 ± 4.37 29.41 ± 4.77 <0.001

Cholesterol (mmol/L) 4.81 ± 0.95 4.99 ± 1.04 5.10 ± 1.12 <0.001

Creatinine (umol/L) 74.74 ± 19.45 76.74 ± 23.20 80.73 ± 36.86 <0.001

Alanine aminotransferase ALT (U/L) 20.81 ± 10.72 24.33 ± 14.26 30.69 ± 26.50 <0.001

Lactate dehydrogenase (U/L) 101.28 ± 9.58 122.84 ± 5.37 153.03 ± 22.72 <0.001

Baseline FVC (mL) 4108.70 ± 1026.93 3982.67 ± 1085.83 3776.14 ± 1064.77 <0.001

Baseline FEV 1 (mL) 3281.56 ± 862.37 3152.22 ± 880.56 2971.93 ± 879.05 <0.001

Gender (%) 0.400

Male 50.4 53.2 52.1

Female 49.6 46.8 47.9

Race/Hispanic origin (%) <0.001

Mexican American 10.6 11.2 10.8

Other Hispanic 10.2 11.8 8.3

Non-Hispanic white 39.1 35.1 30.3

Non-Hispanic black 20.2 24.3 34.9

Other races—Including multi-racial 19.9 17.6 15.6

Education level (%) <0.001

Less than 9th grade 5 7.3 7.6

9-11th grade 11.9 12 14.6

High school graduate 17.8 19.2 22.3

Some college or AA degree 33.9 32.3 31.4

College graduate or above 31.3 29.3 24.2

Thoracic/abdominal surgery 0.021

Yes 16.7 19.5 21.3

No 83.3 80.5 78.7

Respiratory disease 0.058

Yes 16.2 16.4 19.5

No 83.8 83.6 80.5

Cigarette 0.007

Yes 3.7 1.9 1.8

No 96.3 98.1 98.2

Note: continuous variables were presented as mean±SD; categorical variables were presented as n (%). FVC: forced vital capacity; FEV1: Forced expiratory volume in

one second.

https://doi.org/10.1371/journal.pone.0281203.t001
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Table 2. Crude univariate analysis for baseline FVC and baseline FEV 1.

Exposure Statistics Baseline FVC (mL) β(95%CI) P Baseline FEV 1 (mL) β(95%CI) P

Lactate dehydrogenase (U/L) 126.31 ± 25.96 -5.68 (-7.04, -4.32) <0.0001 -5.12 (-6.25, -4.00) <0.0001

Lactate dehydrogenase (U/L) Tertile

Low 1123 (32.52%) 0 0

Middle 1131 (32.75%) -126.02 (-213.51, -38.53) 0.0048 -129.34 (-201.51, -57.16) 0.0005

High 1199 (34.72%) -332.56 (-418.80, -246.31) <0.0001 -309.63 (-380.78, -238.48) <0.0001

Age (years) 43.23 ± 14.31 -27.59 (-29.90, -25.27) <0.0001 -30.87 (-32.66, -29.09) <0.0001

Age (years) Tertile

Low 1135 (32.87%) 0 0

Middle 1112 (32.20%) -305.25 (-387.77, -222.72) <0.0001 -409.34 (-473.52, -345.16) <0.0001

High 1206 (34.93%) -909.90 (-990.78, -829.01) <0.0001 -1017.19 (-1080.09, -954.29)<0.0001

Gender

Male 1793 (51.93%) 0 0

Female 1660 (48.07%) -1337.96 (-1393.59, -1282.33) <0.0001 -986.47 (-1035.40, -937.54) <0.0001

Race/Hispanic origin

Mexican American 376 (10.89%) 0 0

Other Hispanic 347 (10.05%) -246.87 (-394.76, -98.99) 0.0011 -182.61 (-307.22, -57.99) 0.0041

Non-Hispanic white 1199 (34.72%) 325.31 (207.89, 442.73) <0.0001 147.85 (48.91, 246.80) 0.0034

Non-Hispanic black 921 (26.67%) -493.60 (-615.18, -372.02) <0.0001 -416.15 (-518.60, -313.70) <0.0001

Other races—Including multi-racial 610 (17.67%) -307.81 (-438.06, -177.55) <0.0001 -200.60 (-310.36, -90.84) 0.0003

Education level (%)

Less than 9th grade 229 (6.63%) 0 0

9-11th grade 445 (12.89%) 205.73 (36.09, 375.37) 0.0175 188.19 (48.15, 328.22) 0.0085

High school graduate 684 (19.81%) 264.61 (105.36, 423.86) 0.0011 238.23 (106.77, 369.69) 0.0004

Some college or AA degree 1122 (32.49%) 309.07 (157.82, 460.32) <0.0001 302.57 (177.72, 427.43) <0.0001

College graduate or above 973 (28.18%) 396.50 (243.30, 549.71) <0.0001 372.00 (245.53, 498.47) <0.0001

Thoracic/abdominal surgery

Yes 663 (19.20%) 0 0

No 2790 (80.80%) 443.22 (353.96, 532.48) <0.0001 426.33 (352.89, 499.77) <0.0001

Respiratory disease

Yes 601 (17.41%) 0 0

No 2852 (82.59%) 151.43 (57.58, 245.29) 0.0016 151.71 (74.16, 229.25) 0.0001

Cigarette

Yes 85 (2.46%) 0 0

No 3368 (97.54%) -316.59 (-546.33, -86.84) 0.0069 -177.82 (-367.87, 12.23) 0.0668

Weight (kg) 82.02 ± 21.56 10.47 (8.85, 12.09) <0.0001 7.22 (5.87, 8.57) <0.0001

Weight (kg) Tertile

Low 1143 (33.27%) 0 0

Middle 1144 (33.29%) 465.97 (380.93, 551.01) <0.0001 309.38 (238.40, 380.36) <0.0001

High 1149 (33.44%) 595.51 (510.57, 680.46) <0.0001 410.99 (340.09, 481.89) <0.0001

Standing Height (cm) 168.53 ± 9.95 78.59 (76.15, 81.03) <0.0001 58.60 (56.37, 60.82) <0.0001

Standing Height (cm) Tertile

Low 1136 (33.05%) 0 0

Middle 1150 (33.46%) 784.13 (719.90, 848.36) <0.0001 572.14 (515.04, 629.23) <0.0001

High 1151 (33.49%) 1775.87 (1711.65, 1840.08)<0.0001 1327.41 (1270.33, 1384.49)<0.0001

Systolic blood pressure (mmHg) 121.31 ± 16.58 -7.56 (-9.73, -5.38) <0.0001 -8.76 (-10.55, -6.97) <0.0001

Systolic blood pressure (mmHg) Tertile

Low 1050 (31.70%) 0 0

(Continued)
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Smoothed curve fitting for each factor stratification, threshold effect and

saturation effect analysis

Smooth-fit curves were plotted for the relationship between the different strata of the six

covariates and LDH levels (Figs 3 and 4). For more detailed analysis, threshold effect and satu-

ration effect analyses were performed to clarify the changes in FEV and FEV 1 with increasing

Table 2. (Continued)

Exposure Statistics Baseline FVC (mL) β(95%CI) P Baseline FEV 1 (mL) β(95%CI) P

Middle 1102 (33.27%) 213.46 (124.15, 302.77) <0.0001 124.48 (50.91, 198.04) 0.0009

High 1160 (35.02%) -137.59 (-225.80, -49.38) 0.0023 -229.84 (-302.50, -157.18) <0.0001

Diastolic blood pressure (mmHg) 72.44 ± 11.92 3.59 (0.54, 6.63) 0.0210 0.44 (-2.08, 2.97) 0.7298

Diastolic blood pressure (mmHg) Tertile

Low 988 (29.83%) 0 0

Middle 1210 (36.53%) 66.21 (-23.38, 155.80) 0.1476 4.71 (-69.49, 78.91) 0.9010

High 1114 (33.64%) 84.63 (-6.69, 175.94) 0.0694 -17.95 (-93.57, 57.68) 0.6419

Glucose, serum (mmol/L) 5.56 ± 2.09 -60.91 (-77.88, -43.94) <0.0001 -58.41 (-72.40, -44.41) <0.0001

Glucose, serum (mmol/L) Tertile

Low 1113 (32.23%) 0 0

Middle 1119 (32.41%) -35.03 (-123.10, 53.05) 0.4358 -46.19 (-118.57, 26.20) 0.2112

High 1221 (35.36%) -273.30 (-359.52, -187.08) <0.0001 -311.36 (-382.23, -240.50) <0.0001

Albumin (g/L) 43.16 ± 3.24 114.79 (104.47, 125.10) <0.0001 102.05 (93.62, 110.48) <0.0001

Albumin (g/L) Tertile

Low 1027 (29.74%) 0 0

Middle 1257 (36.40%) 389.15 (305.67, 472.63) <0.0001 323.37 (255.00, 391.74) <0.0001

High 1169 (33.85%) 854.16 (769.28, 939.03) <0.0001 758.62 (689.11, 828.14) <0.0001

Globulin (g/L) 28.88 ± 4.54 -67.87 (-75.40, -60.34) <0.0001 -47.61 (-53.91, -41.31) <0.0001

Globulin (g/L) Tertile

Low 1030 (29.88%) 0 0

Middle 1002 (29.07%) -314.50 (-403.97, -225.03) <0.0001 -238.57 (-313.31, -163.83) <0.0001

High 1415 (41.05%) -691.55 (-774.13, -608.96) <0.0001 -491.29 (-560.28, -422.30) <0.0001

Cholesterol (mmol/L) 4.97 ± 1.05 -107.05 (-140.91, -73.20) <0.0001 -111.59 (-139.49, -83.69) <0.0001

Cholesterol (mmol/L) Tertile

Low 1130 (32.73%) 0 0

Middle 1163 (33.68%) -43.84 (-130.96, 43.29) 0.3241 -56.88 (-128.69, 14.93) 0.1207

High 1160 (33.59%) -224.22 (-311.40, -137.04) <0.0001 -246.06 (-317.92, -174.20) <0.0001

Creatinine (umol/L) 77.47 ± 27.87 6.47 (5.21, 7.73) <0.0001 4.38 (3.33, 5.42) <0.0001

Creatinine (umol/L) Tertile

Low 1121 (32.46%) 0 0

Middle 1161 (33.62%) 602.70 (520.03, 685.37) <0.0001 434.11 (364.69, 503.52) <0.0001

High 1171 (33.91%) 853.80 (771.30, 936.30) <0.0001 609.69 (540.42, 678.96) <0.0001

Alanine aminotransferase ALT (U/L) 25.39 ± 19.09 7.24 (5.39, 9.09) <0.0001 5.01 (3.48, 6.55) <0.0001

Alanine aminotransferase ALT (U/L) Tertile

Low 1140 (33.02%) 0 0

Middle 1112 (32.21%) 273.95 (187.55, 360.36) <0.0001 170.55 (98.69, 242.40) <0.0001

High 1200 (34.76%) 528.56 (443.77, 613.34) <0.0001 373.70 (303.19, 444.20) <0.0001

Note: continuous variables were presented as mean±SD; categorical variables were presented as n (%). The first group was used as the reference (β = 0) for each

univariate analysis group; (a) including multi-Racial; (b) includes 12th grade with no diploma; (c) GED or equivalent. Weighted by: full sample mobile examination

center exam weight. Abbreviations: FVC: forced vital capacity; FEV1, forced expiratory volume in one second.

https://doi.org/10.1371/journal.pone.0281203.t002
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LDH in the different strata of each covariate. A log-likelihood ratio of<0.05 in the table indi-

cated that a segmented model was applicable. The k value is the turning point value, i.e., the

level at which the relationship between LDH and lung function will probably change. Model II

is not applicable when the relationship between LDH and the outcome variable shows a linear

effect.

In men, LDH was linearly negatively correlated with both FVC (β = -1.57, 95% CI = -2.85

to -0.28, P = 0.017) and FEV1 (β = -1.75, 95% CI = -2.88 to -0.61, P = 0.026). In women, LDH

was linearly and negatively correlated with FVC (β = -1.14, 95% CI = -2.09 to -0.18, P = 0.0202;

Figs 3A and 4A and S2 Table). In people <60 years, LDH was linearly and negatively corre-

lated with FVC (β = -2.07, 95% CI = -3.04 to -1.10, P<0.001). In addition, the relationship

between LDH and FEV1 showed a segmental effect, with a negative correlation at levels >122

U/L (β = -4.14, 95% CI = -6.18 to -2.11, P<0.001). In those aged>60 years, the relationship

between LDH and FVC showed a segmental effect with a negative correlation at LDH levels

>163 U/L (β = -7.14, 95% CI = -13.14 to -0.81, P = 0.0275; Figs 3B and 4B and S3 Table).

There was a linear negative association with FVC among Mexican Americans (β = -2.98,

95% CI = -5.44 to -0.53, P = 0.0178) and non-Hispanic Black participants (β = -1.52, 95% CI =

-2.82 to -0.23, P = 0.0216). LDH was negatively and linearly associated with FEV1 in Mexican

Americans (β = -2.52, 95% CI = -4.42 to -0.62, P = 0.0098) and non-Hispanic Black partici-

pants (β = -1.21, 95% CI = -2.41 to -0.01, P = 0.0477). In non-Hispanic White participants (β =

-1.21, 95% CI = -2.41 to -0.01, P = 0.0477), LDH had a segmental effect with FEV1, with a neg-

ative correlation when levels were <132 U/L (β = -3.44, 95% CI = -5.86 to -1.02, P = 0.0054;

Figs 3C and 4C and S4 Table).

Table 3. Relationship between serum and serum lactate dehydrogenase and pulmonary function (multiple regression equation analysis).

Outcome Rough model β (95%CI)

P-value

Model I β (95%CI) P-value Model II β (95%CI) P-value Model III β (95%CI)

P-value

Y = Baseline FVC (mL)

Lactate dehydrogenase (U/L) -5.68 (-7.04, -4.32) <0.0001 -3.65 (-4.61, -2.69) <0.0001 -2.52 (-3.41, -1.64) <0.0001 -1.24 (-2.05, -0.42) 0.0030

Lactate dehydrogenase (U/L)

Tertile

Low 0 0 0 0

Middle -126.02 (-213.51, -38.53) 0.0048 -90.41 (-151.52, -29.29) 0.0038 -67.63 (-123.22, -12.03) 0.0172 -35.67 (-82.16, 10.82)

0.1328

High -332.56 (-418.80, -246.31)

<0.0001

-196.47 (-257.48, -135.47)

<0.0001

-131.46 (-187.38, -75.53)

<0.0001

-56.75 (-105.43, -8.08)

0.0224

Y = Baseline FEV 1 (mL)

Lactate dehydrogenase (U/L) -5.12 (-6.25, -4.00) <0.0001 -2.66 (-3.42, -1.89) <0.0001 -1.87 (-2.61, -1.14) <0.0001 -1.11 (-1.82, -0.39) 0.0025

Lactate dehydrogenase (U/L)

Tertile

Low 0 0 0 0

Middle -129.34 (-201.51, -57.16) 0.0005 -72.77 (-121.66, -23.88) 0.0036 -58.56 (-104.81, -12.31) 0.0131 -43.40 (-84.15, -2.65)

0.0369

High -309.63 (-380.78, -238.48)

<0.0001

-143.64 (-192.45, -94.83)

<0.0001

-98.52 (-145.05, -51.99)

<0.0001

-53.28 (-95.95, -10.62)

0.0144

Abbreviations: FVC: forced vital capacity; FEV1: forced expiratory volume in one second. Weighted by: full sample mobile examination center exam weight. Outcome

variable: baseline FVC; baseline FEV 1. Exposure variable: lactate dehydrogenase (U/L). Rough model: variables unadjusted. Model I adjusted by gender, age; Model II

adjusted by: gender, age, race; Model III adjusted by: age; gender; race/Hispanic origin; education level; thoracic/abdominal surgery (yes, no); respiratory disease (yes,

no); cigarette (yes, no); weight; standing height; systolic blood pressure; diastolic blood pressure; glucose, serum; albumin; globulin; cholesterol; creatinine; alanine

aminotransferase.

https://doi.org/10.1371/journal.pone.0281203.t003
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Fig 2. Association between serum lactate dehydrogenase and pulmonary function indicators FVC and FEV1. The red line represents the

smoothed curve fit between the variables. (a) Solid line plots of curve fits for baseline lactate dehydrogenase and FVC for the main variables. (b)

Solid line plots of curve fits for the primary variable between baseline lactate dehydrogenase and FEV 1. The blue line represents the 95%

confidence interval of the fit. Full sample mobile examination center exam weight. Adjusted for age (smooth), sex, education, race, surgery (yes,

no), respiratory disease (yes, no), cigarettes (yes, no), weight (smooth), standing height (smooth), diastolic blood pressure (smooth), systolic blood

pressure (smooth), glucose, serum (smooth), cholesterol (smooth), creatinine (smooth), alanine aminotransferase (smooth), albumin (smooth),

globulin (smooth).

https://doi.org/10.1371/journal.pone.0281203.g002

Table 4. Analysis of threshold effect and saturation effect.

Outcome Baseline FVC (mL) β (95%CI) P-

value

Baseline FEV 1 (mL) β (95%CI) P-

value

Model I

A straight-line effect -1.24 (-2.05, -0.42) 0.0030 -1.11 (-1.82, -0.39) 0.0025

Model II

Fold points (K) 93 96

< K-segment effect 1 4.53 (-2.44, 11.50) 0.2027 0.86 (-4.36, 6.07) 0.7474

>K-segment Effect 2 -1.46 (-2.32, -0.60) 0.0009 -1.21 (-1.98, -0.44) 0.0020

Effect size difference of 2 versus 1 -5.99 (-13.18, 1.20) 0.1026 -2.07 (-7.50, 3.37) 0.4564

Equation predicted values at break

points

4172.99 (4109.00, 4236.98) 3310.64 (3259.56, 3361.73)

Log likelihood ratio tests 0.101 0.455

Abbreviations: FVC: forced vital capacity; FEV1, forced expiratory volume in one second. Weighted by: full sample

mobile examination center exam weight. Outcome variable: baseline FVC, baseline FEV 1. Exposure variable: lactate

dehydrogenase. Adjusted for age, gender, race/Hispanic origin, education level, thoracic/abdominal surgery,

respiratory disease, cigarette, weight, standing height, systolic blood pressure, diastolic blood pressure, glucose,

serum, albumin, globulin, cholesterol, creatinine, alanine aminotransferase. When P<0.05 in Model I, the model

showed a straight-line effect. When P>0.05 in Model I, the model showed a segmented effect in Model II, with the K

value being the lactate dehydrogenase level at the fold point; β represents the slope of the curve, β for segments with

P<0.05 was statistically significant. The K value is the inflection point, which is the level of lactate dehydrogenase

content at which the relationship between lactate dehydrogenase and lung function changes.

https://doi.org/10.1371/journal.pone.0281203.t004

PLOS ONE Serum lactate dehydrogenase and lung function

PLOS ONE | https://doi.org/10.1371/journal.pone.0281203 February 2, 2023 10 / 18

https://doi.org/10.1371/journal.pone.0281203.g002
https://doi.org/10.1371/journal.pone.0281203.t004
https://doi.org/10.1371/journal.pone.0281203


Among non-smokers, LDH was linearly and negatively correlated with both FVC (β =

-1.33, 95% CI = -2.15 to -0.51, P = 0.0015) and FEV1 (β = -1.11, 95% CI = -1.83 to -0.39,

P = 0.0026; Figs 3D and 4D and S5 Table).

In those with previous respiratory disease, LDH was linearly negatively associated with

both FVC (β = -2.94, 95% CI = -4.86 to -1.03, P = 0.0028) and FEV 1 (β = -2.32, 95% CI = -4.11

to -0.52, P = 0.0116). In those without respiratory disease, serum albumin was linearly

Fig 3. Relationship between serum lactate dehydrogenase and FVC. (a) Stratified by sex. (b) Stratified by age. (c) Stratified by race.

(d) Stratified by smoking status. (e) Stratified by respiratory disease. (f) Stratified by surgery.

https://doi.org/10.1371/journal.pone.0281203.g003
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Fig 4. Relationship between serum albumin and FEV 1. (a) Stratified by sex. (b) Stratified by age. (c) Stratified by

race. (d) Stratified by smoking status. (e) Stratified by respiratory disease. (f) Stratified by surgery.

https://doi.org/10.1371/journal.pone.0281203.g004
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negatively correlated only with FEV 1 (β = -0.79, 95% CI = -1.57 to -0.01, P = 0.0471; Figs 3E

and 4E and S6 Table).

In those without chest or abdominal surgery, LDH was linearly negatively correlated with

both FVC (β = -1.03, 95% CI = -1.94 to -0.12, P = 0.0268) and FEV1 (β = -1.09, 95% CI = -1.89

to -0.29, P = 0.0075). In contrast, in those who had previous chest or abdominal surgery, LDH

levels were linearly associated with FVC (β = -2.31, 95% CI = -4.14 to -0.49, P = 0.0134). There

was a segmental effect with FEV1, which was negatively associated until levels were<113 U/L

(β = -6.67, 95% CI = -12.03 to -1.31, P = 0.0150; Figs 3F and 4F and S7 Table).

Discussion

Respiratory diseases remain a significant cause of morbidity and mortality worldwide. Ongo-

ing research continues to improve diagnostic tools and treatment options [22–25], and current

clinical investigations can be divided into laboratory and specific tests. Numerous previous

studies have demonstrated the value of PFTs for clinical applications [26–28], such as in

patients with COPD [29] and asthma [30]. However PFTs are not suitable for all patients [4].

For example, while they are not contraindicated in patients with tracheotomy or Morquio syn-

drome, performing PFTs is difficult and the results are not reliable [31, 32]. Furthermore, in

the current phase of the COVID-19 epidemic, PFTs may be a potential route of transmission

because of the aerosols generated during the procedure and the concentration of patients with

pulmonary disease in the laboratory [33].

Serologic indicators are more universal than PFTs, have fewer contraindications, and can

accurately and efficiently reflect relevant information about the sample. Previous studies have

confirmed that more and more serologic markers are being used to diagnose and monitor dis-

eases such as cancer, COVID-19, and cardiac diseases [34–38]. In addition, a large number of

studies describe indirect associations between serologic indicators and pulmonary function [7,

15, 39], but the status of these indicators in the diagnosis and treatment of respiratory diseases

needs to be further improved. The NHANES database has been used in many studies, and is a

well-collected and representative population [40–43]. Hence, we obtained a large amount of

valuable serological index data from this database for analysis and determined the potential

value of LDH.

LDH, an important inflammatory marker, is underestimated in terms of its clinical signifi-

cance [44]. Previous studies have suggested that LDH levels are associated with lung disease

[45]. In recent years, it has not only been shown to be a prognostic marker for diseases such as

non-small cell lung cancer [46], idiopathic pulmonary fibrosis [47], and metastatic breast can-

cer [48], but is also a common indicator in diagnosis [8–14]. In fact, LDH levels have impor-

tant implications in pulmonary disease activity and response to therapy. Mura et al. plasma

LDH was found to be induced by hypoxia and LDH levels were found to be increased in 22

patients diagnosed with IPF, but the relationship between LDH and IPF severity was unclear

[49]. Spruit et al. showed that increased muscle LDH activity was found in older men with

COPD and that resting serum LDH activity was increased in COPD patients compared to

healthy smoking and non-smoking peers [50]. However, the relationship between LDH levels

and pulmonary function was unclear. Previous studies have suggested that an inflammatory

response due to impaired pulmonary function may be responsible for elevated levels [51].

LDH is present in cells, and when lung injury or inflammation decreases pulmonary function,

LDH released from the cells increases serum levels. A previous study found lower indicators of

pulmonary function and elevated serum LDH in patients with COPD relative to healthy

patients [15]. Our results also showed a negative correlation between serum LDH and pulmo-

nary function. Although serum LDH levels are not exactly equivalent to tissue LDH levels,
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tissue-level LDH expression may correlate with serum LDH levels [52]. Previous studies found

that high expression of LDH in cancer mediates tumor immune escape leading to tumorigene-

sis or progression by suppressing the killing effect of immunity and promoting the suppressive

effect of immunity. Thus, serum LDH may also indicate decreased pulmonary function due to

progression of some respiratory cancers [53–56]. These studies provide guidance for future

monitoring of serum LDH levels in response to changes in pulmonary function and predicting

respiratory failure in specific populations.

Our study still has some limitations. The data from NHANES 2011–2012 are the most

recent and representative data available that contain indicators of pulmonary function. In

addition, although our sample size has improved compared to previous studies, data from a

larger number of participants would have made the findings more convincing. Our cross-sec-

tional study cannot mechanistically determine the causal relationship between these two fac-

tors, and further research is needed [57]. Although we controlled for confounding factors by

statistical methods, we still may not be able to exclude the interference of other confounding

factors. Hence, if more data are obtained or supported by more prospective and mechanistic

studies, we believe that the relationship between LDH and pulmonary function will be more

deeply interpreted in the future.

Conclusions

The relationship between the serum marker lactate dehydrogenase and pulmonary function

was explored in a large number of cases and in more detailed population stratification than

previous studies. LDH levels were negatively correlated with pulmonary function. This study

provides a new way to monitor changes in pulmonary function in patients for whom PFTs are

clinically contraindicated. This provides a theoretical basis for lactate dehydrogenase as an

indicator of pulmonary function. Identifying a threshold for LDH when PFTs begin to decline

provides guidance for the diagnosis of respiratory disease.
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