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Abstract

Background: The breakdown of the blood-brain-barrier vascular endothelium is critical for entry of immune cells
into the MS brain. Vascular co-morbidities are associated with increased risk of progression. Dyslipidemia, elevated
LDL and reduced HDL may increase progression by activating inflammatory processes at the vascular endothelium.

Objective: To assess the associations of serum lipid profile variables (triglycerides, high and low density
lipoproteins (HDL, LDL) and total cholesterol) with disability and MRI measures in multiple sclerosis (MS).

Methods: This study included 492 MS patients (age: 47.1 ± 10.8 years; disease duration: 12.8 ± 10.1 years) with
baseline and follow-up Expanded Disability Status Score (EDSS) assessments after a mean period of 2.2 ± 1.0 years.
The associations of baseline lipid profile variables with disability changes were assessed. Quantitative MRI findings
at baseline were available for 210 patients.

Results: EDSS worsening was associated with higher baseline LDL (p = 0.006) and total cholesterol (p = 0.001,
0.008) levels, with trends for higher triglyceride (p = 0.025); HDL was not associated. A similar pattern was found
for MSSS worsening. Higher HDL levels (p < 0.001) were associated with lower contrast-enhancing lesion volume.
Higher total cholesterol was associated with a trend for lower brain parenchymal fraction (p = 0.033).

Conclusions: Serum lipid profile has modest effects on disease progression in MS. Worsening disability is
associated with higher levels of LDL, total cholesterol and triglycerides. Higher HDL is associated with lower levels
of acute inflammatory activity.

Keywords: Multiple sclerosis, diet, lipid profile, MRI, environmental factors, gene-environment interactions, lesion
volume, brain atrophy

Introduction and Background
Multiple sclerosis (MS) is a complex inflammatory,
demyelinating and neurodegenerative disease with a het-
erogeneous pathology and clinical outcomes [1]. The
chronic inflammatory processes that characterize MS
pathology interfere with immune mechanisms that regu-
late and confine the inflammatory cascade to prevent
irreversible tissue damage [2].
Cholesterol is an important component of intact mye-

lin. Lipids, especially lipoproteins, are involved in the reg-
ulation of neural functions in the central nervous system
through local mechanisms that are linked to systemic

lipid metabolism [3,4]. High-density lipoproteins (HDL)
and low-density lipoproteins (LDL) play a key role in the
transport of cholesterol and lipids in human plasma.
Under normal physiological conditions, high concentra-
tions of HDL and LDL are present in CNS as a result of
transport across the blood-brain barrier [5,6]. Apolipo-
protein A-I, a major component of plasma HDL, is
synthesized within the vascular endothelial cells [7]. HDL
has immunomodulatory and anti-oxidant effects on
endothelial cells [8] and it has been shown to inhibit pro-
duction of the pro-inflammatory cytokines interleukin-
1beta and tumor necrosis factor [9,10]. Apolipoprotein
A-1 and paraoxonase are associated with HDL and
contribute to its anti-oxidant and anti-inflammatory
properties [9,11,12].
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Dyslipidemia can potentiate inflammatory processes at
the vascular endothelium, lead to the induction of adhe-
sion molecules, and the recruitment of monocytes
[13-15]. Associations between dyslipidemia and increased
inflammation are well established in conditions such
atherosclerosis, cardiovascular disease, metabolic syn-
drome and obesity [16].
In the context of autoimmune diseases, a strong associa-

tion between dyslipidemia and cardiovascular disease has
emerged in systematic lupus erythematosus [17] and
increased cardiovascular risk and lipid profile changes
have been reported in rheumatoid arthritis [18]. HDL and
LDL also modulate the function and survival of b-cells in
Type 2 diabetes mellitus [19]. Neuromyelitis optica
patients were reported to have significantly higher serum
cholesterol triglycerides and lower LDL than healthy
controls [20].
However, only limited information is available on the

effect of serum triglycerides and cholesterol levels and
the roles of HDL and LDL levels on MS disease progres-
sion. Increased total cholesterol was associated with
increases in the number of contrast-enhancing lesions on
brain MRI in clinically isolated syndrome patients follow-
ing a first clinical demyelinating event [21]. MS patients
were found to have a higher occurrence of hypercholes-
terolemia and paraoxonase-1, the anti-oxidant enzyme
associated with HDL, was decreased during relapses [12].
A retrospective analysis of a large dataset of 8,983
patients from the North American Research Committee
on Multiple Sclerosis Registry reported that the presence
of vascular comorbidities linked to dyslipidemia was
associated with an increased risk for disability progres-
sion in MS [22].
The aim of this study therefore was to assess the associa-

tions of serum lipid profile variables (serum cholesterol,
HDL, LDL and triglycerides) to clinical disability and brain
tissue integrity as measured with quantitative magnetic
resonance imaging (MRI) metrics in a large cohort of MS
patients.

Methods
Study Population
Ethics Statement
The study was approved by the University at Buffalo
Human Subjects Institutional Review Board. The Institu-
tional Review Board approval waived the requirement for
informed consent.
Study Design
Single-center, retrospective, longitudinal study.
Study Population
The study population included consecutive patients, fol-
lowed at the Baird MS Center, State University of New
York, Buffalo, NY, with clinically definite MS patients
according to the McDonald criteria [23] with available

baseline EDSS assessment within ± 6 months of lipid
profile testing and a follow-up EDSS assessment ≥ 6
months from the baseline clinical visit. Patients with CIS
and neuromyelitis optica were not included.
The collected data included demographic and clinical

information, statin use history, height and weight and fast-
ing lipid profile laboratory values: HDL, LDL, triglycerides,
total cholesterol and cholesterol to HDL ratio.
The exclusion criteria consisted of: any relapse with cor-

ticosteroid treatment at the time or within one month pre-
ceding study entry or MRI examination, pre-existing
medical conditions known to be associated with brain
pathology (e.g., neurodegenerative disorders, cerebrovas-
cular disease, positive history of alcohol abuse, etc.),
and insufficient quality of the MRI scan for quantitative
analysis [24].

MRI Analysis
Quantitative MRI analysis obtained within ± 3 months
from the baseline clinical visit (yielding EDSS and fast-
ing cholesterol levels) was available for 210 of 492
patients at baseline. MRI image analysis was conducted
at the Buffalo Neuroimaging Analysis Center using
approaches previously described [25,26]. MRI analysts
were blinded to lipid profile and clinical status. The
standardized acquisition and analysis methods for
obtaining contrast-enhancing lesion volume (CE-LV),
CE lesion number (CEL number), T2-LV, T1-LV and
brain parenchymal fraction (BPF) are detailed in Addi-
tional File 1.

Data Analysis
SPSS (SPSS Inc., Chicago, IL, version 15.0) statistical
program was used for all statistical analyses.
One-way ANOVA followed by post-hoc independent

sample t-tests were used to test for differences in means
of continuous demographic variables such as age, age of
onset, and disease duration. The 2 test was used for ana-
lysis of count variables for categorical data and the
Fisher exact test was used where appropriate.
The MS Severity Scale (MSSS) was calculated from

the EDSS and disease duration values using software
downloaded from http://www-gene.cimr.cam.ac.uk/
MSgenetics/GAMES/MSSS/Readme.html. The global
reference data set provided with the software was used
for calculations.
The difference between EDSS at follow-up and EDSS at

baseline was analyzed as the dependent variable in
regression analysis with gender, disease duration at base-
line EDSS, EDSS at baseline, time difference between fol-
low-up and baseline EDSS assessments, statin use and a
lipid profile variable of interest (either HDL, LDL, trigly-
cerides, total cholesterol or cholesterol to HDL ratio) as
predictor variables. The difference between MSSS at
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follow-up and MSSS at baseline was analyzed in the same
manner as the EDSS; however, the MSSS at baseline was
included as a predictor in place of EDSS at baseline and
the disease duration was not included as a predictor vari-
able. Similar regression analyses were also conducted in
the subset of patients who were not on statins to assess
the contributions of lipid profile variables in the absence
of statin treatment.
Baseline EDSS was dichotomized into two groups

based on EDSS < 4.0 and ≥ 4.0. The baseline EDSS
groups were analyzed using logistic regression with sex
as a factor and disease duration and lipid profile variable
of interest.
The CE-LV, T2-LV and T1-LV data were normalized

by cube-root transformation to reduce skew. The cube-
root-transformed T2-LV and T1-LV values were ana-
lyzed as dependent variables using multiple linear regres-
sion. The presence/absence of CE lesions (CEL) was
analyzed with logistic regression and the CEL number
was analyzed with Poisson loglinear regression and the
transformed CE-LV values were analyzed with Tweedie
regression [27]. All regression MRI analyses included sex,
disease duration at time of MRI, statin use, and a lipid
profile variable of interest (either HDL, LDL, triglycer-
ides, total cholesterol or cholesterol to HDL ratio) as pre-
dictor variables. Regression analyses were also conducted
in the subset of patients who were not on statins to assess
the contributions of lipid profile variables in the absence
of statin treatment.
To correct for the multiple testing involved, a conserva-

tive Type I error level of 0.01 was used to assess signifi-
cance; a trend was assumed if the Type I error level ≤ 0.10.

Results
Demographic and Clinical Characteristics
The clinical, demographic and MRI features of the cohort
are summarized in Table 1. The frequency of Caucasian-
Americans was 422 (85.8%), African-Americans was 28
(5.7%), Hispanics was 5 (1%), Native American 1 (0.2%),
and the racial information for 34 (6.9%) patients was
missing.
The median absolute time difference between lipid

profile and baseline EDSS assessment was 25 days
(Inter-quartile range: 51 days). The median absolute
time difference between MRI and lipid profile assess-
ments was 30 days (Inter-quartile range: 46 days). The
median time between baseline EDSS and follow-up
EDSS was 1.88 years (Inter-quartile range: 1.62 years).
The majority of patients were on disease-modifying

therapies: 45% were on interferon-beta-1a monotherapy,
0.8% were on interferon-beta-1b monotherapy, 14% were
on glatiramer acetate, 20% were on natalizumab, 8% were
on no therapy and the remainder were on combination
therapies or chemotherapies.

MRI data were available for 210 patients. There was no
evidence for lipid profile differences between the groups
with and without MRI available (See Additional File 1,
Table S1). The group with MRI differed from the group
without MRI in the higher frequency of progressive
forms of MS and a modestly shorter time between base-
line EDSS and follow up EDSS (See Additional File 1,
Table S1).
The frequency of statin usage was 109/491 patients

(22.2%). There was no evidence for differences in the
groups with and without statin treatment in the lipid
profile variables including HDL, LDL, triglycerides, total
cholesterol and cholesterol to HDL. Not surprisingly,
the group on statin treatment had a higher proportion
of males, greater mean age, disease duration, BMI and
baseline EDSS than the group not on statin treatment
(Table 2).
The frequency of disease-modifying therapy usage in the

group on statin treatment (51% interferon-beta 1a, 7% gla-
tiramer acetate, 20% natalizumab, 9% no current disease-
modifying therapy, with the remainder on combination

Table 1 Demographic and clinical characteristics of the
cohort

Demographic Variables Value

Females: Males (% Female) 370: 122 (75.2%)

MS course:

Relapsing-remitting 395 (80.3%)

Secondary progressive 82 (16.6%)

Primary progressive 15 (3.0%)

Age*, years 47.1 ± 10.8

Disease duration*, years 12.8 ± 10.1

Median EDSS* (IQR) 2.50 (2.50)

MSSS 3.79 ± 2.46

Time to follow-up, years 2.2 ± 1.0

Statin usage§ 109/491 (22.2%)

Lipid Profile Variables

Body mass index, kg/m2 27.8 ± 6.5

HDL, mg/dL 55.2 ± 16.6

LDL, mg/dL 116 ± 32.8

Total cholesterol, mg/dL 197 ± 38.1

Triglycerides, mg/dL 133 ± 82.0

Cholesterol to HDL ratio 3.85 ± 1.30

MRI Characteristics

CEL present 29/197 (14.7%)

CEL number 0.52 ± 0.15

CE-LV, cm3 0.032 ± 0.13

T2-LV, cm3 14.0 ± 14.7

T1-LV, cm3 3.1 ± 5.4

BPF 0.856 ± 0.0285

The continuous variables expressed as mean ± SD and categorical variables as
frequency (%).

* At baseline lipid profile assessment. §Statin usage status unavailable for one
patient.
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therapies or chemotherapies) was similar to the group not
receiving statins (43% interferon-beta 1a, 16% glatiramer
acetate, 20% natalizumab, 8% no therapy, with the remain-
der on combination therapies or chemotherapies). There
was no evidence for significant differences in the lipid pro-
file variables among the interferon-beta, glatiramer acetate,
natalizumab, combination therapy or chemotherapies and
no current disease-modifying therapy groups (one-way
ANOVA).

Associations with Disability and Disability Changes
Higher total cholesterol to HDL ratio showed an asso-
ciation trend with baseline MSSS (Slope = 0.161 ±
0.092, Partial correlation coefficient rp = 0.080, p =
0.080) and with higher probability of occurrence of
baseline EDSS ≥ 4.0 (p = 0.082, OR = 1.17). There was
no evidence for associations for the other lipid profile
variables or BMI. In the subset without statin treatment,
the probability of occurrence of baseline EDSS ≥ 4.0
exhibited increasing trends with higher total cholesterol

(p = 0.040) and cholesterol to HDL ratio (p = 0.017).
There was no evidence for an association with HDL.
Baseline MSSS trended higher with higher total choles-
terol to HDL ratio (Slope = 0.23 ± 0.11, rp = 0.11,
p = 0.038).
The associations of lipid profile variables with EDSS

and MSSS changes are summarized in Table 3. Worsen-
ing EDSS changes were associated with higher LDL (p =
0.006), triglycerides (p = 0.025), total cholesterol (p =
0.001) and exhibited a trend with total cholesterol to
HDL ratio (p = 0.047) levels. The EDSS change was not
associated with higher HDL (p = 0.79). Similarly, wor-
sening MSSS changes were associated with higher total
cholesterol levels (p = 0.008); trends were also found
with higher LDL (p = 0.012) and triglyceride (p = 0.037)
levels. BMI was not associated with disability changes
on either the EDSS or MSSS (results not shown). Quali-
tatively, similar results were obtained in the subset of
patients who were not on statin treatment (results not
shown).
These results indicate that LDL, triglyceride and total

cholesterol lipid profile variables are associated with dis-
ability changes in MS patients.

Associations with MRI
Higher HDL levels were associated with a lower probabil-
ity for the presence of CEL (p = 0.01) and lower CE-LV
(p < 0.001). A qualitatively similar pattern of protective
associations for higher HDL was found in the group not
receiving statin treatment for the presence of CEL (p =
0.029, a trend) and for CE-LV (p < 0.001).
In contrast, higher triglyceride levels were associated

with trends for a higher probability for the presence of
CEL (p = 0.038) and with higher CE-LV (p = 0.023).
There were similar trends for triglyceride levels with the
presence of CEL (p = 0.060) in the group not receiving
statins.
There was no evidence for associations between the

presence of CEL and LDL (p = 0.80) or total cholesterol
(p = 0.44) levels. There was also no evidence for associa-
tions between CE-LV with total cholesterol levels (p =
0.20). Greater levels of total cholesterol were associated
as a trend with lower CEL number (p = 0.046) in part
as a consequence of the HDL associations with CEL
number. Lower CE-LV was also associated as a trend
with lower levels of cholesterol to HDL ratio (p =
0.025). There was no evidence for associations of LDL
with CEL number (p = 0.44) or CE-LV (p = 0.89) in
patients not on statins.
There were no significant associations of T2-LV and

T1-LV with any of the lipid profile variables (HDL,
LDL, Triglycerides, total cholesterol and cholesterol to
HDL ratio) or BMI. However, lower BPF values were
associated with high total cholesterol levels (rp = -0.16,

Table 2 Demographic, clinical and MRI characteristics,
and lipid profiles of patient subsets with and without
statins

Variable No Statins Statins p-value

Females: Males (% Female) 301: 81 (78.8%) 69: 40 (63.3%) < 0.002§

MS course: 0.075‡

Relapsing-remitting 314 81 (74.3%)

Secondary progressive (82.2%)

Primary progressive 55 (12.8%)
13 (3.4%)

27 (24.8%)
1 (0.9%)

Age*, years 45.3 ± 10.7 53.4 ± 8.4 < 0.001

Disease duration*, years 11.9 ± 9.7 16.2 ± 11.0 < 0.001

Median EDSS* (IQR) 2.5 (2.0) 3.50 (3.50) < 0.001#

MSSS 3.67 ± 2.51 4.15 ± 2.18 0.061

Time to follow-up, years 2.13 ± 1.0 2.22 ± 1.0 0.43

Body mass index, kg/m2 27.4 ± 6.5 29.1 ± 6.5 0.013¶

HDL, mg/dL 55.6 ± 16.6 53.7 ± 16.5 0.72¶

LDL, mg/dL 115 ± 30.8 118 ± 39.0 0.62¶

Total cholesterol, mg/dL 196 ± 36.0 201 ± 44.7 0.38¶

Triglycerides, mg/dL 128 ± 84.0 149 ± 75.5 0.15¶

Cholesterol to HDL ratio 3.81 ± 1.28 4.00 ± 1.40 0.60¶

Presence of CEL
CEL number
CE-LV, cm3

25/156 (16%)
0.60 ± 2.3
0.035 ± 0.15

4/40 (10%)
0.23 ± 0.86
0.019 ± 0.080

0.47¶

0.026¶

0.035¶

T2-LV, cm3 13.6 ± 14.7 16.0 ± 14.7 0.30¶

T1-LV, cm3 2.7 ± 5.1 4.5 ± 6.3 0.019¶

BPF 0.858 ± 0.027 0.848 ± 0.035 0.056¶

Statin usage data were available for 491 patients.

* At time of baseline lipid profile assessment.
§ Fisher exact test
‡ Fisher exact test for presence of secondary progressive or progressive forms
of MS.

# Mann-Whitney test
¶ p-values for statin variable from regression analyses with sex, disease
duration and statin use as predictor variables.
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p = 0.033). There was also a trend toward an association
between lower BPF values with higher total cholesterol
in the sub-group that was not on statin treatment (rp =
-0.16, p = 0.054).

Discussion
In this paper, we have reported results indicating that
lipid profile variables such as increased LDL, triglycer-
ides and total cholesterol levels are associated with
increased disability progression in MS. Higher HDL
levels and lower levels of triglycerides were associated
with decreased CEL activity whereas higher total choles-
terol levels were associated with lower BPF.
The recruitment and extravasation of immune cells

across the activated vascular endothelium of the blood
brain is considered to a critical step in MS pathogenesis
[1]. MS is also associated with significant amounts of cer-
ebral vascular endothelial dysfunction [28,29] and with
cerebral hypoperfusion [30,31]. Our working hypothesis
is that the pro-inflammatory and thrombogenic processes
associated with dyslipidemia could plausibly contribute to
disease progression in MS via diverse mechanisms at the
blood brain barrier vascular endothelium, e.g., by enhan-
cing leukocyte recruitment, increasing endothelial dys-
function and by increasing the risk of hypoperfusion.
The effects size contributions of individual lipid profile

variables to disability change were modest but significant:
the partial correlation coefficient rp values were in the 0.10
- 0.15 range. We found greater EDSS worsening in
patients with higher cholesterol (p = 0.001) and LDL (p =
0.006) levels at baseline. Similar associations were seen for
MSSS, a disability measure with better metric properties
that corrects the EDSS for disease duration. Nonetheless,
our results provide mechanistic support, albeit indirect to
the epidemiological findings of Marrie et al. who found
that vascular comorbidities are associated with a substan-
tially increased risk of disability progression in MS [22].

Long-term adherence to a low saturated fat diet has been
implicated in better clinical outcomes in MS [32].
Although the MS cases in the Nurse Health Study cohort
did not indicate associations between diet and the risk of
developing MS, an association between obesity during
adolescence has been reported [33].
The primary limitations of our study stem from its ret-

rospective study design. Another caveat is the inclusion
of statin-treated patients (22.2% of sample). Because
hypercholesterolemia occurs with greater frequency in
older male patients, the inclusion of the statin-treated
sub-group introduces demographic heterogeneity. We
did not find evidence for differences in overall lipid pro-
files in the statin-treated subset but the group on statin
treatment was more frequently male, had greater mean
age, disease duration, BMI, baseline EDSS scores and also
a somewhat higher proportion of progressive MS, all of
which would also be expected in an older and male MS
patient group. This cluster of demographic characteristics
is generally representative of statin treated patients in the
population. All of our statistical analyses were corrected
for age and sex to address demographic differences. In
addition to their direct effects on cholesterol production,
statins exhibit pleiotropic immunomodulatory effects in
vitro [34] and in chronic and relapsing experimental
autoimmune encephalomyelitis, an animal model of MS
[35]. Cholesterol is a major component of myelin and
statins may hinder remyelination by inhibiting choles-
terol synthesis in the brain [36,37]. The studies of statin
treatment in MS have likewise also yielded mixed results
[38-42]. Therefore, to further address limitations
imposed by the pleiotropic effects of statins and the
representative demographic differences, we conducted
sub-analyses in patients who were not on statin therapy.
Our statin treated group did show a lower CEL number
and CE-LV, with a higher T1-LV and a trend toward
decreased BPF compared to the non-statin group.

Table 3 Lipid profile associations with disability changes

EDSS Change MSSS Change

Lipid Profile Group Slope ± SE rp p-value Slope ± SE rp p-value

HDL All 0.001 ± 0.003 0.012 0.79 0.000 ± 0.005 -0.010 0.83

No statin 0.000 ± 0.004 -0.008 0.87 -0.003 ± 0.005 -0.030 0.56

LDL All 0.004 ± 0.002 0.13 0.006 0.005 ± 0.002 0.12 0.012

No statin 0.003 ± 0.002 0.093 0.078 0.006 ± 0.003 0.11 0.038

Total cholesterol All 0.004 ± 0.001 0.15 0.001 0.005 ± 0.002 0.12 0.008

No statin 0.004 ± 0.002 0.12 0.020 0.005 ± 0.002 0.11 0.030

Triglycerides All 0.001 ± 0.0006 0.10 0.025 0.002 ± 0.0009 0.096 0.037

No statin 0.002 ± 0.007 0.12 0.025 0.002 ± 0.001 0.10 0.055

Cholesterol to HDL ratio All 0.083 ± 0.042 0.091 0.047 0.079 ± 0.062 0.059 0.20

No statin 0.093 ± 0.050 0.098 0.062 0.12 ± 0.074 0.082 0.12

Significant p-values are underlined.

SE is standard error of the slope and rp is the partial correlation.
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We avoided comparing the groups with and without sta-
tin treatment in results because this study was not
designed to address the specific role if any of statins in
MS therapeutics.
In a study of 30 MS patients, statin treatment resulted

in a significant decrease in the number and volume of
CEL on serial monthly MRI [39]. A post hoc analysis of
the interferon-beta treated control arm of the SENTINEL
study did not indicate an effect of statins on adjusted
annualized relapse rate, disability progression, number of
CEL, or number of new or enlarging T2-hyperintense
lesions over 2 years [40]. The STAYCIS trial to assess sta-
tin treatment in slowing the conversion of CIS did not
meet its primary endpoint [41]. The SIMCOMBIN trial
indicated that statin treatment did not provide benefit in
MS patients on interferon-beta [43].
Our data suggest a negative influence of high choles-

terol and triglycerides on disease course and a favorable
influence of higher HDL levels on acute inflammatory
activity in MS patients. Lifestyle changes including adop-
tion of a healthier diet and regular exercise in order to
improve the serum lipid profile may be beneficial for MS
patients to improve their neurological condition.

Additional material

Additional file 1: Additional file 1contains MRI Acquisition Protocol,
Image Analysis methods and Table S1.
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