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ABSTRACT
Objective Bile acid diarrhoea (BAD) is debilitating 
yet treatable, but it remains underdiagnosed due to 
challenging diagnostics. We developed a blood test- 
based method to guide BAD diagnosis.
Design We included serum from 50 treatment- 
naive patients with BAD diagnosed by gold standard 
75selenium homotaurocholic acid test, 56 feature- 
matched controls and 37 patients with non- alcoholic 
fatty liver disease (NAFLD). Metabolomes were generated 
using mass spectrometry covering 1295 metabolites and 
compared between groups. Machine learning was used 
to develop a BAD Diagnostic Score (BDS).
Results Metabolomes of patients with BAD 
significantly differed from controls and NAFLD. 
We detected 70 metabolites with a discriminatory 
performance in the discovery set with an area 
under receiver- operating curve metric above 0.80. 
Logistic regression modelling using concentrations of 
decanoylcarnitine, cholesterol ester (22:5), eicosatrienoic 
acid, L- alpha- lysophosphatidylinositol (18:0) and 
phosphatidylethanolamine (O- 16:0/18:1) distinguished 
BAD from controls with a sensitivity of 0.78 (95% CI 
0.64 to 0.89) and a specificity of 0.93 (95% CI 0.83 to 
0.98). The model was independent of covariates (age, 
sex, body mass index) and distinguished BAD from 
NAFLD irrespective of fibrosis stage. BDS outperformed 
other blood test- based tests (7- alpha- hydroxy- 4- 
cholesten- 3- one and fibroblast growth factor 19) 
currently under development.
Conclusions BDS derived from serum metabolites in 
a single- blood sample showed robust identification of 
patients with BAD with superior specificity and sensitivity 
compared with current blood test- based diagnostics.

INTRODUCTION
Bile acid diarrhoea (BAD) is a gastrointestinal 
disease with high stool frequency, diarrhoea, faecal 
urgency and incontinence as primary symptoms.1 
It is caused by a pathophysiological spill- over of 
bile acids to the colon, where these natural deter-
gent molecules irritate the colonic mucosa causing 
the abovementioned symptoms.1–3 BAD can be 
idiopathic (primary BAD) or secondary to other 
diseases such as inflammatory bowel disease, coeliac 
disease or cholecystectomy.1 4–12 Due to the nature 
of the symptoms, BAD is a socially debilitating 
disease with a high cost to the individual13 and at 

the societal level.14 15 BAD is normally treated with 
bile acid sequestrants that bind bile acids in the 
intestinal lumen diminishing the symptoms, but the 
effect of bile acid sequestrants is variable and they 
are associated with gastrointestinal side effects.16–18 
Recently, a new treatment strategy based on the 
glucagon- like peptide 1 (GLP- 1) receptor agonist 
liraglutide has shown promising results.19 Studies 
have estimated that the prevalence of BAD is 1% 
in the adult population,9 20–22 but BAD is heavily 
underdiagnosed partly due to the use of different 
and often challenging diagnostic procedures. BAD 
can be diagnosed in several ways, but currently, 
the most accurate diagnostic test is the 75selenium 
homotaurocholic acid (SeHCAT) test where the 
7- day retention of an orally administered radio- 
labelled bile acid is measured.23 The SeHCAT test 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Bile acid diarrhoea (BAD) is a common disorder 
estimated to affect 1% of the population 
worldwide though many patients remain 
undiagnosed. The current gold standard for 
BAD diagnosis is 75selenium homotaurocholic 
acid test, which is not approved in several 
countries (including USA). The fibroblast growth 
factor 19 and 7- alpha- hydroxy- 4- cholesten- 
3- one currently aid BAD diagnosis, but their 
accuracy is low. The BAD metabolic landscape 
is unknown.

WHAT THIS STUDY ADDS
 ⇒ This is the first study presenting a 
comprehensive serum lipidomic and 
metabolomic landscape of patients with BAD at 
the time of diagnosis. Significant alterations in 
metabolomic profiles allowed the development 
of a serum- based diagnostic model and 
prediction of treatment response.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The new diagnostic model based on a single 
serum sample may improve and accelerate the 
diagnostic process and, thus, increase treatment 
accessibility. Also, the serum- based prediction 
of treatment response may spur improved 
individualisation of BAD treatment.
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is not approved in all countries (including USA) where instead a 
48- hour stool collection,24 trial and error with bile acid seques-
trants17 18 or a breath test16 25 26 can be used. Also, 7- alpha- hyd
roxy- 4- cholesten- 3- one (C4),24 27 which represents a surrogate 
marker for bile acid synthesis, and fibroblast growth factor 19 
(FGF19), a surrogate marker of bile acid resorption and regu-
lator of bile acid metabolism, can be used to diagnose BAD. All 
the current diagnostic methods have limitations. The SeHCAT 
test is expensive, entails radioactive exposure and requires two 
visits to the clinic with precisely 7 days interval; 48- hour stool 
collection is time- consuming and irksome; trial and error with 
bile acid sequestrants has a potential high false- negative rate; 
and the breath test is imprecise and time- consuming.24 Using C4 
or FGF19 as diagnostic tools have still not been standardised 
for clinical use and often presents low sensitivity.28–30 Thus, new 
accurate diagnostic tools, which can be used worldwide, at low 
cost and with minimal intervention, are urgently needed.

Here, we investigated the untargeted metabolomic and lipi-
domic serum landscapes of primary BAD and used machine 
learning to take an unbiased approach to the development of a 
blood test- based diagnostic tool.

MATERIALS AND METHODS
Patients
Serum samples were collected from fasting, treatment- naive 
patients at the time of diagnosis (SeHCAT method) at Gentofte 
Hospital, University of Copenhagen, under the clinical protocol 
number EudraCT 2018- 003575- 34.19. Written informed consent 
was obtained from all participants. The study was approved in 
accordance with institutional review board approval number 
504- 0307/22- 5000. Patients with non- alcoholic fatty liver 
disease (NAFLD) (n=37) and controls (CTRLs) included in this 
study were previously described.5 31 Out of 37 patients with 
NAFLD, 17 showed simple steatosis with no/limited fibrosis and 
20 patients had non- alcoholic steatohepatitis (NASH). Clinical 
characteristics of BAD, patients with NAFLD and CTRLs are 
presented in table 1. Neither patients nor the public was involved 
in designing or evaluating the study.

Metabolite extraction and profiling
In brief, metabolites were measured in serum using four plat-
forms (lipidomic platforms 1 and 2, amino acid platform 3 and 
oxylipins) at One Way Liver, S.L. The approach combines the 
ultra high- performance liquid chromatography and mass spec-
trometry approaches were used allowing extensive profiling of 

circulating metabolome. A detailed description of metabolomic 
profiling is in online supplemental material and methods.

Statistical analysis
The detailed statistical analyses are presented in online supple-
mental material and methods. In short, differences in biochem-
ical parameters were established using Mann- Whitney for 
non- normally distributed values, t- test for normally distributed 
values and Fisher’'s exact test for categorical data (Prism V.9.3.0, 
GraphPad software, USA). The covariate- testing and correction 
were performed with linear regression before analysis. Covari-
ates included age, sex and body mass index (BMI), as well as 
batch, which were adjusted in differential expression analysis 
(R V.4.0.4, R Core Team (2022)). Receiver operating character-
istic (ROC) curve analysis was used to identify and evaluate the 
performance of individual metabolites (MetaboAnalyst V.5.0).32 
The post hoc power analysis established the minimal sample 
size of 24 samples per group at false discovery rate corrected p 
value=0.05, and statistical power of 90%. The linear support 
vector machine (SVM) method was used for sample classifica-
tion. Feature selection was performed with SVM mean impor-
tance measure. A logistic regression model was generated to 
calculate the BAD Diagnostic Score (BDS). Metabolite selection 
was performed based on the SVM mean importance measure 
and LASSO Frequencies (MetaboAnalyst V.5.0),32 which were 
used to generate the logistic regression equation: logit(P) = ln(P 
/ (1 − P)) = α + βX, where α is the intercept term, β is the 
regression coefficient estimated from the sample data set, Xi is 
the set of covariate (concentration) values, and P=Pr(y=1|x) is 
the probability of the disease (ie, BAD).

RESULTS
Enrolment and metabolic characterisation of patients
Serum samples obtained from 50 patients with SeHCAT- 
verified primary BAD were subjected to untargeted metabolo-
mics using ultra- high performance liquid chromatography- mass 
spectrometry (UHPLC- MS). In total, we detected 427 metabo-
lites including amino acids, bile acids, fatty acids, glycerolipids 
and steroids (online supplemental figure 1A). Fifteen patients 
within the BAD cohort had previously undergone a cholecys-
tectomy, but we observed no difference in their serum metab-
olomic profiles compared with the remaining 35 patients with 
BAD (online supplemental figure 2A,B). In terms of age, sex, 
BMI and normal liver function, based on biochemical measures 
such as alanine transaminase (ALT) and alkaline phosphatase, 
we found no difference between patients with BAD and CTRLs 
(table 1). Furthermore, we compared patients with BAD to 37 
patients with age- matched and sex- matched NAFLD (17 with 
simple steatosis and 20 with NASH). Patients with NAFLD had 
significantly higher BMI compared with CTRL and patients with 
BAD, but retained normal liver function based on ALT, alkaline 
phosphatase and bilirubin (table 1).

Development of the BDS
To develop a serum- based diagnostic model for BAD, we 
randomised all samples into two sets: a discovery (DISCO) 
set, comprising 25 patients with BAD and 25 feature- matched 
CTRLs, and a validation (VALID) set, consisting of the remaining 
25 patients with BAD and 31 feature- matched CTRLs. First, 
we computed the area under ROC (AUROC) univariate anal-
ysis for all 427 significantly detected metabolites and found 
that 70 metabolites presented a promising diagnostic potential 
with a discriminatory performance metric above 0.80 and p 

Table 1 Clinical characteristics of study population

CTRL n=56 BAD n=50 NAFLD=37 P value

Sex

  Female % 58 64 65 0.76

  Male % 42 36 35

Age 50.2±14.5 50.2±12.9 50.5±11.5 0.99

Body mass index (kg/m2) 29.0±7.0 29.9±5.0 42.7±8.7 <0.0001*†

Alanine transaminase (U/L) 28.0±13.2 33.2±16.0 27.2±10.7 0.11

Alkaline phosphatase (U/L) 72.7±30.8 78.3±17.9 69.8±18.5 0.32

Bilirubin (mg/dL) 0.66±0.30 0.57±0.19 0.51±0.24 0.10

The values are expressed by mean±SD. P values arise from one- way analysis of 
variance or Fisher’s exact test.
*NAFLD versus BAD.
†NAFLD versus CTRL.
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value <0.05 (figure 1A, online supplemental figure 1B, online 
supplemental table 1). Next, we used the linear SVM algorithm 
to determine if a specific combination of metabolites would 
improve the diagnostic potential of individual metabolites. We 
established that the best performance was a combination of 
five metabolites with an 86% accuracy or above (figure 1B). As 
such, we employed logistic regression using metabolites with the 
highest mean importance measures to complete the diagnostic 
model. From this step, we generated the BDS, which is based 
on logistic regression modelling including the five metabolites. 
The BDS is calculated as: logit(P) = log(P / (1 − P)) = −2.362 
to 1.09 × decanoylcarnitine − 1.007 × cholesterol ester (22:5) 
+ 1.229 × phosphatidylethanolamine (O- 16:0/18:1) + 2.227 
× L- alpha- lysophosphatidylinositol (18:0) + 6.344 × eicosatrie-
noic acid with a cut- off value of 0.59.

The diagnostic potential of the BDS achieved an AUROC of 
0.94 with a sensitivity of 0.83 (95% CI 0.78 to 0.88) and spec-
ificity of 0.89 (95% CI 0.85 to 0.93) (figure 1C). To test our 

model, we used the 10- fold cross- validation resampling method 
that reached an AUROC of 0.90 (95% CI 0.81 to 0.98), sensi-
tivity of 0.84 (95% CI 0.84 to 0.98) and specificity of 0.84 (95% 
CI 0.70 to 0.98) (figure 1D).

Validation of the BDS
To validate the model in an independent sample set, we calcu-
lated BDS in the additional 25 patients with BAD (VALID) and 
compared with the remaining 31 feature- matched CTRLs. BDS 
significantly distinguished patients with BAD from CTRLs in the 
validation set with an AUROC of 0.91 (95% CI 0.83 to 0.99), 
sensitivity of 0.74 (95% CI 0.57 to 0.86) and specificity of 0.84 
(95% CI 0.65 to 0.94) (figure 2A). Furthermore, combining the 
DISCO and VALID data sets the BDS had a sensitivity of 0.78 
(95% CI 0.64 to 0.89) and a specificity of 0.93 (95% CI 0.83 
to 0.98). The relative abundance of BDS metabolites in BAD 
(DISCO), BAD (VALID) and NAFLD are presented in figure 2C. 

Figure 1 Diagnostic potential of serum metabolites. (A) The area under receiver operating characteristic (AUROC) curve and p values of individual 
metabolites distinguishing bile acid diarrhoea (BAD) from controls (CTRLs) in the discovery set. The dotted line indicates a p value of 0.05. Black 
dots represent metabolites with AUROC >0.8 and p<0.05. (B) The predictive accuracies of support vector machine models with different numbers of 
features. (C) The receiver operating characteristic curve (ROC) of BAD Diagnostic Score in the discovery set. (D) 10- cross validation (10- CV) of BAD 
Diagnostic score (BDS) in the discovery (DISCO) set showing 95% CI band in shaded area.
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Multivariate analysis showed that BDS is independent of the 
covariates age, sex, and BMI (p=0.54, p=0.20, and p=0.22, 
respectively). Since BAD has been shown to share similarities 
with NAFLD, with altered regulation of fibroblast growth factor 
receptor 4/FGF19 and Klotho beta pathways, we next compared 
BDS to a serum data set of 37 patients with NAFLD. In compar-
ison to NAFLD, both BAD DISCO and VALID sets were 
significantly different (figure 2B), and BDS was independent 
of the liver fibrosis score (online supplemental figure 3A–C). 
Importantly, the diagnostic yield (defined as the proportion 
of patients with true positive BAD) for the BDS reached 90%, 
while FGF19 (cut- off <145 pg/mL) reached 70% and C4 (cut- 
off >48.7 ng/mL) reached only 56%, both significantly inferior 
to BDS. Furthermore, combining FGF19 and C4 (reaching cut- 
off of either FGF19 or C4) improved diagnostic yield to 82% 
remaining inferior to BDS.

Serum metabolomic landscape of BAD
To investigate the metabolomic landscapes of patients with BAD, 
we merged the cohorts (DISCO and VALID sets) and performed 
a pair- wise comparison of patients with BAD (n=50) and CTRLs 
(n=56). We first examined the concentration of bile acids in the 
systemic circulation (figure 3). As such, we found that patients 
with BAD presented significantly higher (p=0.035) concentra-
tions of primary bile acids (cholic acid and chenodeoxycholic 
acid combined) (figure 3B), with an increased abundance specif-
ically of unconjugated and glycine- conjugated bile acid species 
(p=0.0006 and p=0.0075, respectively) (figure 3D and F). On 
the contrary, secondary bile acids (figure 3C and H–K) and 
primary taurine- conjugated bile acids (figure 3G) remained 
unchanged between patients with BAD and matched CTRLs. 
Notably, serum bile acid levels of patients with NAFLD did not 

Figure 2 Validation of BAD Diagnostic Score. (A) The receiver operating characteristic (ROC) curve of bile acid diarrhoea (BAD) Diagnostic Score 
in the validation (VALID) set. (B) ROC curve of BAD Diagnostic Score of BAD discovery (DISCO) and validation sets against non- alcoholic fatty liver 
disease (NAFLD) patients. (C) Waterfall plot presenting the relative abundance of BDS metabolites in relation to control (CTRL) in BAD (DISCO), BAD 
(VALID) and patients with NAFLD groups. FC, fold change.
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Figure 3 Serum bile acid concentrations in patients with BAD. (A) The abundance of total bile acids (BA) in serum of bile acid diarrhoea (BAD) 
patients, controls (CTRLs) and patients with non- alcoholic fatty acid liver disease (NAFLD). (B) The abundance of primary BA in serum of BAD, CTRL 
and NAFLD. (C) The abundance of secondary BA in serum of BAD, CTRL and NAFLD. (D) The abundance of primary unconjugated BA in serum of BAD, 
CTRL and NAFLD. (E) The abundance of primary conjugated BA in serum of BAD, CTRL and NAFLD. (F) The abundance of primary glycine- conjugated 
BA in serum of BAD, CTRL and NAFLD. (G) The abundance of primary taurine- conjugated BA in serum of BAD, CTRL and NAFLD. (H) The abundance 
of secondary unconjugated BA in serum of BAD, CTRL and NAFLD. (I) The abundance of secondary conjugated BA in serum of BAD, CTRL and NAFLD. 
(J) The abundance of secondary glycine- conjugated BA in serum of BAD, CTRL and NAFLD. (K) The abundance of primary taurine- conjugated BA in 
serum of BAD, CTRL and NAFLD, *p<0.05, **p<0.01, ***p<0.0001, ****p<0.00001, Mann- Whitney test. AU, arbitrary unit; ns, not statistically 
significant.
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Figure 4 Serum metabolomic landscape of patients with BAD. (A) Heatmap representing classes of metabolites and rations of metabolic classes. 
Significantly different (t- test, p<0.05) classes of metabolites are bold, blue colour indicates depleted and red upregulated metabolic classes in 
patients with BAD. (B) Volcano plot presenting differentially abundant (false discovery rate corrected p<0.05) metabolites between patients with bile 
acid diarrhoea (BAD) and controls (CTRL). Each dot represents one metabolite; grey colour indicates no significant difference (non- SIG), blue colour 
indicates significantly downregulation in patients with BAD and red colour indicates significantly upregulation in patients with BAD. For abbreviations, 
see online supplemental table 10.
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Figure 5 Serum metabolomics identifies two distinctive clusters of patients with bile acid diarrhoea (BAD). (A) Heatmap representing unsupervised 
hierarchical clustering of BAD and controls (CTRL) identifying two clusters of patients with BAD. (B) Volcano plot representing differentially abundant 
metabolites between two BAD clusters. BMI, body mass index.
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differ from CTRLs (figure 3). Next, we sought to investigate the 
differences in the metabolic classes. Among a total of 72 meta-
bolic classes, and the ratios of these metabolites, 42 metabolic 
classes showed significant deregulation in the metabolomes of 
patients with BAD (false discovery rate- adjusted p<0.05). The 
serum of patients with BAD was significantly depleted in amino 
acids, fatty acids and glycerophospholipids, whereas acylcar-
nitines, triglycerides (TGs), ceramides, phosphatidylcholines, 

phosphatidylethanolamines, and lysophosphatidylethanolamines 
showed increased concentrations. Moreover, we observed a 
significantly higher sarcosine/glycine ratio in patients with BAD, 
which may suggest an increased glycine N- methyltransferase 
activity causing the breakdown of methionine (figure 4A, online 
supplemental table 2).

Differential abundance analysis on individual metabolites was 
performed using a linear model adjusting for covariates (age, sex 
and BMI) and batch correction. We detected 256 significantly 
different metabolites, of which 119 were significantly upregu-
lated and 137 were depleted in the serum of patients with BAD 
(figure 4B, online supplemental table 3). In patients with BAD, the 
most abundant metabolites were TGs, while monoetherglycero-
phosphocholines and free fatty acids were significantly depleted 
compared with the level of these metabolites in CTRLs. Thus, 
we quantified the levels of oxylipins in 50 patients with BAD 
(compared with a random subset of the CTRLs, n=12), showing 
that oxylipins like free fatty acids were significantly depleted in 
patients with BAD, with the only exception of an increase in 
the unsaturated fatty acid 14,15- DiHETE (online supplemental 
table 4). Using BioPAN33 to perform lipid pathway enrichment 
analysis, we identified an increased activity of choline phospho-
transferase 1, sphingomyelin phosphodiesterase 1 and 4 and 
fatty acid desaturases (online supplemental figure 4). Interest-
ingly, the unsupervised hierarchical clustering of all metabolites 
revealed two distinct BAD clusters (figure 5A), with a significant 
difference in the level of TG species (figure 5B), which was not 
detected by routine blood testing (table 2). Cluster 1 (BAD_1) 
represented patients with a significantly higher BMI (t- test, 
p=0.004) and elevated ALT levels (t- test, p=0.003) compared 

Table 2 Clinical characteristics of BAD clusters

BAD_1 n=25 BAD_2 n=25 P value

Sex

  Female % 44 28 0.38

  Male % 56 72

Age 53.6±11.3 46.8±13.5 0.06

Body mass index (kg/m2) 31.9±4.5 27.9±4.8 0.004

Alanine transaminase (U/L) 39.7±16.0 26.5±12.9 0.003

Alkaline phosphatase (U/L) 81.8±20.9 74.6±13.0 0.16

Bilirubin (mg/dL) 0.58±0.20 0.56±0.17 0.83

FGF19 (pg/ml) 109.3±85.22 101.0±77.88 0.66

Triglycerides (mmol/l) 2.1±1.0 2.6±2.4 0.89

SeHCAT (%) 3.53±2.96 4.13±3.50 0.52

Stools/day (baseline) 3.82±1.89 3.25±1.77 0.28

The values are expressed by mean±SD. P values arise from paired t- tests or Mann- 
Whitney test.
Statistically significant P values are marked with bold font.
BAD, bile acid diarrhoea; FGF19, fibroblast growth factor 19; SeHCAT, 75selenium 
homotaurocholic acid test.

Figure 6 Differential metabolomic profiles of two bile acid diarrhoea BAD clusters. (A) Volcano plot illustrating differentially expressed metabolites 
(DEM) between BAD_1 cluster and patients with non- alcoholic fatty liver disease (NAFLD). (B) Volcano plot illustrating DEM between BAD_2 cluster 
and patients with NAFLD. (C). Venn diagram representing DEM (upregulated (red) and reduced (blue)) in patients with BAD compared with NAFLD.
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with cluster 2 (BAD_2). Importantly, we found no difference 
between the patients in these clusters in the baseline SeHCAT 
(%) or in the number of stools per day in a week (p=0.52 and 
p=0.28, respectively) (table 2). Next, we compared pairwise the 
two BAD clusters to the metabolomic profiles of patients with 
NAFLD (figure 6A,B, online supplemental table 5–6). In BAD_1 
versus NAFLD, we identified 75 upregulated and 55 downreg-
ulated metabolites, whereas patients with BAD_2 only were 
defined by eight upregulated metabolites. This suggests that 
patients with BAD_2 are more alike to NAFLD, than BAD_1. 
Surprisingly, TGs were among the most upregulated metabolites 
in BAD_1, suggesting prominent dyslipidaemia. A previous study 
has linked hypertriglyceridaemia with FGF19 levels in patients 
with BAD34; however, FGF19 levels did not differ between BAD 
clusters (table 2) nor did it correlate with TG levels (p=0.185 
in BAD_1, p=0.569 in BAD_2, p=0.988 in combined clusters). 
Furthermore, many of the downregulated metabolites were 
shared between the two BAD clusters (figure 6C), with signifi-
cant depletion compared with CTRLs of unsaturated fatty acids, 
taurine, hypotaurine and phosphatidylcholines (online supple-
mental table 7).

Serum metabolomics predicts response to novel BAD 
treatment
Serum samples were collected from treatment- naive SeHCAT- 
verified patients with BAD enrolled into a phase 1b clinical trial 
(EudraCT 2018- 003575- 34) comparing the efficacy and safety 
of the GLP- 1 receptor agonist liraglutide and the bile acid seques-
trant colesevelam for the treatment of BAD.19 We investigated if 
any metabolites before treatment correlated with the observed 
therapeutic response (% reduction in the number of stools/day) 
to the administered treatment.19 We identified 17 metabolites 
that significantly correlated with the response to liraglutide 
(online supplemental table 8), and 16 metabolites were shown to 
correlate with the response to colesevelam (online supplemental 
table 9). Interestingly, six glycerophosphocholines (GPCs) over-
lapped between the two subgroups (figure 7A), showing a signif-
icant collinearity (Spearman r: 0.58–0.96) (online supplemental 
figure 5), which allowed us to calculate a GPC score. This score 
is the sum of the six metabolites (figure 7B) that showed a nega-
tive correlation with liraglutide (Y=−0.04536 × X + 8.251, 

R2=0.3, p=0.0045) and a positive correlation with colesevelam 
response (Y=0.01653 × X + 5.577, R2=0.2412, p=0.0127). 
Therefore, a higher GPC score and elevated metabolite concen-
trations are associated with an improved outcome on cole-
sevelam. Importantly, and in line with the recent outcome of 
the clinical trial, a lower GPC score is predictive of a significant 
improvement of the BAD condition for patients treated with lira-
glutide. The GLP- 1 receptor, which is the target of liraglutide, is 
a member of the G protein- coupled receptor family known to 
interfere with GPCs and thus, a higher GPC score could warrant 
a dose- adjustment of liraglutide.

DISCUSSION
In this study, we used comprehensive state- of- the- art metabolo-
mics to investigate more than 1200 metabolites to distinguish 
patients with BAD from healthy individuals and patients suffering 
from NAFLD. We present the first comprehensive serum metab-
olome of patients with BAD, from which we developed a diag-
nostic model based on the concentrations of five metabolites 
with high predictive accuracy, that is, with an AUROC of 0.94 
and 0.91 in the discovery and validation cohorts, respectively. 
Furthermore, we show that the model is independent of obesity 
and can distinguish patients with BAD from obese patients with 
NAFLD.

To succeed in developing a new diagnostic method, the new 
tool needs to supersede the existing methods in one or more 
ways. Comparing the BDS to SeHCAT,35–37 both the sensitivity 
(70–100% for SeHCAT vs 78% for BDS) and the specificity 
(80–90% for SeHCAT vs 93% for BDS) were similar. Moreover, 
the BDS is less time- consuming and does not include radioactive 
exposure. Whether it would be cheaper is hard to say at this 
point since the price for a test with BDS in the clinic is unknown. 
However, this study warrants the development of an easy and 
cheap BDS assay to be used in the clinic, since using UHPLC- MS 
is not convenient or possible for routine clinical measurements.

Compared with measurements of serum C4 or FGF19, the 
BDS was superior in identifying true positives in our data set 
when using the standard cut- off value for C4 (>48.7 ng/mL) and 
for FGF19 (<145 pg/mL) (56% vs 70% vs 90%, respectively). As 
biomarkers, C4 and FGF19 do not seem to have clinical poten-
tial to stand alone due to low sensitivity, at least in our data set. 

Figure 7 Glycerophosphocholines (GPCs) predict response to BAD treatment. (A) Venn diagram presenting number of metabolites predictive of 
response to treatment. (B) The linear relation between GPCs score and response to treatment expressed as % reduction on number of stools per 
week. Each dot represents one patient diagnosed with BAD, and the solid lines are trendlines (blue, colesevelam- treated patients; red, liraglutide- 
treated patients).
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The reported sensitivity and specificity for serum C4 measure-
ments vary greatly depending on population and cut- off values,38 
hence, making direct comparisons difficult. Furthermore, 
both C4 and FGF19 have diurnal variations,39 thus, requiring 
sampling in the morning before 09:00, which is not relevant for 
the BDS. Overall, it seems that the BDS is superior to serum C4 
and FGF19 measurements, but a prospective study with direct 
comparison is needed to properly compare the methods.

The machine learning approach used to identify the optimal 
number of metabolites in the present model and its components 
has previously been shown successful in the early detection 
of liver cancer and other diseases.31 Using the combination of 
several metabolites, the simultaneous analysis of the metab-
olome can provide useful information not only for biomarker 
discovery, but also inform on biological relevance. Hence, 
the use of a data- driven, unbiased approach has revealed that 
the combination of the five specific metabolites of the BDS is 
consistently deregulated in patients with BAD. This might be a 
clue to unknown metabolic changes important in BAD patho-
physiology. As such, decanoylcarnitine has been previously 
linked to an altered microbiome40 and, thus, could associate 
with previously reported alterations in the BAD microbiome.5 
Future studies are needed to identify the possible link between 
these metabolites and BAD. Indeed, many circulating lipids are 
highly correlated with hepatic lipids,41 which can reflect the 
alterations in the hepatic metabolic function. Furthermore, the 
present comprehensive metabolomic landscape of BAD shows 
increased levels of primary unconjugated and glycine- conjugated 
bile acids in systemic circulation. As such, bile acids act as signal-
ling molecules42 and metabolic integrators that activate nuclear 
farnesoid X receptor (FXR), which induces ceramide synthesis 
and increases serum and liver ceramide concentrations, orches-
trates TG homoeostasis43 and decreases release of GLP- 1.44 
Thus, the present findings showing deregulated metabolites 
including upregulation of serum ceramides and TGs in patients 
with BAD may allude to novel pathophysiological processes in 
BAD (figure 4A). Indeed, previous studies have linked hypertri-
glyceridaemia to BAD34 45 and correlated this with FGF19 levels. 
However, we did not observe a correlation of these features in 
our study. Furthermore, in patients with a total TG level within 
the normal range (<2 mmol/L), we detected significant alter-
ations of specific TG profiles, linking bile acid- FXR- TG metab-
olism to patients with BAD.46 Moreover, we demonstrated that 
the concentrations of six GPCs correlate with the response to 
BAD treatment, which perhaps in the future can be used to guide 
treatment selection.

The strength of this study is the well- defined patient with 
BAD cohort (SeHCAT- verified with retention <10%), feature- 
matched control donors and the reproducible design of the 
study. However, the relatively small sample size including a total 
of 50 patients diagnosed with BAD is a limitation and requires 
further, prospective validation. Furthermore, the study lacks a 
group of SeHCAT- referred, SeHCAT- negative patients. Whether 
the BDS can distinguish SeHCAT- negative from SeHCAT- 
positive patients needs to be investigated. Association of deregu-
lated metabolites in BAD with the treatment response should be 
seen as preliminary data and should be tested in future clinical 
studies.

CONCLUSIONS
The serum metabolome is significantly altered in patients 
suffering from BAD. We were able to exploit these alterations 
to develop a highly accurate diagnostic model yielding a BDS 

from a single blood sample. We hope that this will form the 
basis for developing an easy, convenient and reliable blood test- 
based diagnostic method that can be used in primary care and 
ultimately decrease diagnostic delay. Such a test would likely 
increase chances of timely and relevant treatment and, thus, 
improve the lives of people suffering from BAD and decrease 
healthcare expenses. Furthermore, the serum lipidome can 
potentially predict treatment response, which opens the possi-
bility of personalised treatments.
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