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Abstract

Background Biomarkers of fibrosis are associated with outcome in several cardiovascular diseases. However, their relevance 

to chronic kidney disease and dialysis is uncertain, as it remains unclear how the kidneys and the dialysis procedure itself 

affect their elimination and degradation. We aimed to investigate the relationship of the blood levels of two markers associated 

with fibrosis: procollagen type I C-terminal pro-peptide (PICP) and galectin-3 (Gal-3) with mortality in dialysis patients.

Methods Procollagen type I C-terminal pro-peptide and galectin-3 were measured at baseline in 2773 patients enrolled in 

the AURORA trial, investigating the effect of rosuvastatin on cardiovascular outcomes, in patients on hemodialysis, and their 

interaction with CV death or all-cause mortality using survival models. The added prognostic value of these biomarkers was 

assessed by the net reclassification improvement (NRI).

Results The median follow-up period was 3.8 years. Blood concentrations of PICP and Gal-3 were significantly associated 

with CV death [adjusted HR per 1 SD = 1.11 (1.02–1.20) and SD = 1.20 (1.10–1.31), respectively] and all-cause mortality 

(all adjusted p < 0.001). PICP and Gal-3 had a synergistic effect with regard to CV death and all-cause mortality (interac-

tion p = 0.04 and 0.01, respectively). Adding PICP, Gal-3 and their interaction on top of clinical and biological covariates, 

resulted in significantly improved prognostic accuracy NRI = 0.080 (0.019–0.143) for CV death.

Conclusion In dialysis patients, concomitant increase in PICP and Gal-3 concentrations are associated with higher rates of 

CV death. These results suggest that concomitantly raised PICP and Gal-3 may reflect an activated fibrogenesis relevant to 

risk stratification in dialysis, raising the hypothesis that anti-fibrotic therapy may be beneficial for cardiovascular protection 

in such patients.
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Introduction

Cardiovascular (CV) diseases are the leading cause of mor-

tality in patients on dialysis. But for now, no therapeutic 

intervention was proven to improve CV outcomes [1, 2].

Several studies reported that patients with end-stage renal 

disease (ESRD) and undergoing hemodialysis (HD) have 

increased level of inflammation and oxidative stress, which 

are associated with a higher risk of CV death [3–6]. These 

mechanisms can lead to high collagen turnover resulting in 

fibrosis [7], which could be a therapeutic target.

In heart failure (HF), circulating biomarkers of myocar-

dial fibrosis, in particular collagen turnover biomarkers, may 

be useful for predicting clinical risk or response to treat-

ment [8, 9]. Collagen I and III are also identified as relevant 

biomarkers of vascular disease in chronic kidney disease 

(CKD), as they were associated with arterial stiffness [10, 

11]. Nevertheless, in non-dialysis CKD patients, the inter-

pretation of collagen biomarkers may be difficult as they 

may reflect the process of renal fibrosis, the decrease of the 

glomerular filtration rate (for biomarkers of low molecular 

weight), increased bone collagen turnover, as well as fibro-

sis in non-renal and non-cardiovascular tissue (i.e., liver or 

lungs) [12].

Serum procollagen type I C-terminal pro-peptide (PICP) 

was found to be correlated with total myocardial collagen 

volume fraction in patients with hypertensive heart disease. 

This would suggest that PICP is a key marker of the develop-

ment of myocardial fibrosis [13, 14].

Galectin-3 (Gal-3) is a marker of inflammation and is 

involved in aldosterone-mediated fibrosis [15, 16]. Accord-

ing to guidelines [17], Gal-3 can be used for additional risk 

stratification in HF. Gal-3 acts as a profibrotic agent within 

the kidneys and therefore high plasma concentrations pre-

cede the development of CKD [15, 16]. Considering the 

negative association between Gal-3 and renal functions, its 

prognostic utility for CV disease in non-dialyzed CKD is 

controversial [18], but in dialysis, several studies reported 

an association between the concentration of Gal-3 and CV 

mortality [19–22].

In this framework, the investigation of PICP, a circulating 

collagen synthesis biomarker, in combination with Gal-3 

could be a future strategy to identify patients at particularly 

high CV risk in hemodialysis, because these biomarkers may 

reflect active cardiovascular fibrogenesis.

We primarily aimed to evaluate the association of PICP 

and Gal-3 with adjudicated CV outcomes in the large multi-

center, randomized control AURORA trial (a study to evalu-

ate the use of rosuvastatin in subjects on regular hemodialy-

sis: an assessment of survival and cardiovascular events). In 

addition, as PICP and Gal-3 could complementarily investi-

gate ongoing active fibrosis, we investigated their interplay 

with regard to clinical outcomes, and further attempted to 

identify a fibrotic biomarker phenotype [23].

Methods

Study population

The description, baseline data and main results of the 

AURORA study have been published previously [24–26]. In 

short, AURORA is a double-blind, randomized, multicenter 

study involving 2773 men and women aged 50–80 years, 
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who had been treated with maintenance hemodialysis or 

hemofiltration for at least 3 months. After providing written 

informed consent, eligible patients were randomly assigned 

in a 1:1 ratio to receive either rosuvastatin, 10 mg daily or 

matching placebo.

There was no significant effect of rosuvastatin on the 

composite primary endpoint of major adverse cardiovas-

cular event (MACE) (i.e., nonfatal myocardial infarction, 

nonfatal stroke, or death from CV causes) [HR 0.96 (95% CI 

0.84–1.11), p = 0.59). Rosuvastatin also exhibited no signifi-

cant effects on the secondary endpoint of all-cause mortality 

[HR 0.96 (95% CI 0.86–1.07), p = 0.51].

Outcomes

The pre-specified considered outcomes are CV death, all-

cause mortality, and the composite primary endpoint of 

the AURORA trial (MACE). All the recorded events were 

reviewed and adjudicated by a clinical endpoint commit-

tee to ensure consistency of the event diagnosis. The com-

mittee members were unaware of the randomized treatment 

assignments.

Biomarkers

PICP [reference range, 69–163 ng/mL] was measured in 

serum samples by an ELISA (Quidel Corporation, Santa 

Clara, USA). The dynamic range for this assay is 0.2–80 ng/

mL and interassay coefficients of variation were 7%.

Gal-3 was measured in serum by a chemiluminescent 

microparticle immunoassay (CMIA, Abbott GmbH, Wies-

baden, Germany) on an Abbott ARCHITECT i2000 ana-

lyzer. Interassay coefficients of variation were 4.4, 5.2, and 

1.6% at low, middle and high concentrations.

PICP was available for all the 2349 patients of the 

AURORA trial and Gal-3 as available for 2343 patients of 

the study.

Statistical analysis

Categorical variables are expressed as frequencies (%) and 

continuous variables are expressed as means ± standard 

deviation or median (25th and 75th percentiles), depending 

on the variable distribution.

Associations of PICP and Gal-3 with CV death, all-

cause mortality or MACE were assessed using both con-

tinuous and categorized variables (tertiles) using Cox 

models. Models were adjusted on clinical and biological 

covariates based on previously published data in AURORA 

[23] (age, history of CV disease, diabetes mellitus, albu-

min, and high sensitivity C-reactive protein), and variables 

correlated to PICP and Gal-3 concentrations (sex, dialysis 

vintage, body mass index, systolic blood pressure). His-

tory of CV disease is defined by history of coronary heart 

disease (i.e., prior myocardial infarction, prior coronary 

angioplasty or stent, and coronary artery bypass graft), 

history of vascular disease (i.e., peripheral artery disease, 

abdominal aortic aneurysm, carotid artery disease, carotid 

stenosis ≥ 50%, and carotid endarterectomy), and history 

of neurovascular disease (i.e., prior ischemic vascular 

accident and transient ischemic attack). High sensitivity 

C-reactive protein (hs-CRP) was best modeled by using 

its natural logarithm. Interaction between PICP and Gal-3 

was assessed using a multiplicative interaction term in the 

Cox models.

The added prognostic value of PICP and Gal-3 in pre-

dicting CV death or all-cause mortality was assessed by 

the net reclassification improvement (NRI) on top of rou-

tine prognostic variables used as adjustment variables (i.e., 

age, history of CV disease, diabetes mellitus, sex, dialysis 

vintage, body mass index, systolic blood pressure, albumin 

and log hs-CRP at baseline).

All analyses were performed using R version 3.6.1 (R 

Development Core Team, Vienna, Austria). The two-sided 

significance level was set at p value < 0.05.

Results

Baseline characteristics of patients 
across the tertiles of each biomarker

The mean PICP was 176 ± 91 ng/mL and mean Gal-3 con-

centration was 69 ± 25 ng/mL. The correlation between 

PICP and Gal-3 was weak (Pearson correlation 0.068, 

p = 0.002). The correlation between hs-CRP and Gal-3 was 

also weak (Pearson correlation 0.124, p < 0.0001), whereas 

there was no correlation between hs-CRP and PICP (Pear-

son correlation − 0.009, p = 0.64).

Patients with higher PICP concentrations were younger 

(median age 63 in tertile (T) 3 vs. 66 in T1, p < 0.001) and 

had longer dialysis vintage (median 3.88 years vs. 2.04, 

p < 0.001). Concentrations of hs-CRP were similar across 

the PICP tertiles. Patients with higher PICP concentrations 

were more likely to be women (p < 0.001) and had lower 

BMI (p < 0.001), and lower hemoglobin levels (p < 0.001) 

(Table 1). 

Patients with higher Gal-3 concentrations were younger 

(median age 63 in T3 vs. 65 in T1, p = 0.008), had longer 

dialysis vintage (median 3.82 years vs. 1.89, p < 0.001) 

and higher levels of hs-CRP (p < 0.001) (Table 2).

The hs-CRP (mg/L) tertiles are presented in Supple-

mentary Table 1.
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Association of PICP, Gal‑3, and hs‑CRP with CV 
mortality, all‑cause mortality, and MACE

In multivariable analysis (Table 3), after adjusting for key 

prognostic factors (including age which was inversely cor-

related to PICP concentrations), PICP was associated with 

CV death [HR per 1 SD = 1.11 (1.02–1.20)]. PICP was 

also significantly associated with all-cause mortality [HR 

per 1 SD = 1.12 (1.05–1.19) and HR for T3 vs. T1 = 1.26 

(1.08–1.46)] (Table 3). 

The association of Gal-3 either considered as a continu-

ous variable or categorized variable with CV death and 

all-cause mortality were significant in multivariable mod-

els [adjusted HR per 1 SD = 1.20 (1.10–1.31) and 1.18 

(1.10–1.25), respectively; adjusted HR for T3 vs. T1 = 1.36 

(1.11–1.67) and 1.26 (1.08–1.46), respectively] (Table 3).

Gal-3 as a continuous variable was significantly associ-

ated with MACE [crude HR per 1 SD = 1.11 (1.03–1.19) 

and adjusted HR per 1SD = 1.15 (1.07–1.24)]. However, 

PICP either considered as a continuous variable or catego-

rized variable was not significantly associated with MACE 

(Supplementary Table 2). Age, diabetes, history of CV dis-

ease, as well as a low serum albumin or an elevated hs-CRP 

were also significantly associated with MACE in the models 

(Supplementary Table 3).

When further including an interaction term between bio-

markers tertiles (either PICP or Gal-3) and dialysis vintage 

in the multivariable models, we did not identify a signifi-

cant modification of the associations of biomarkers with CV 

death, all-cause mortality and MACE related to dialysis vin-

tage (p for interaction > 0.05, data not shown). Also, further 

including the underlying cause of ESRD in the multivariable 

models did not significantly change the association of bio-

markers (either PICP or Gal-3) as a continuous variable or 

categorized variable with CV death, all-cause mortality, and 

MACE (data not shown).

The effect of PICP (per 1-SD) and Gal-3 (per 1-SD) 

on CV death was homogenous across pre-specified sub-

groups. In contrast, the association of PICP with all-cause 

mortality was stronger in patients without history of CV 

disease [p for interaction = 0.012 (Fig. 1); p for interaction 

in multivariable adjusted analysis = 0.010 (Supplementary 

Table 1  Baseline characteristics 

according to PICP tertiles

hs-CRP high sensitivity C-reactive protein, BMI body mass index, ESRD end-stage renal disease

Results with p value less than 5% were emphasized using bold letters

PICP

(ng/mL)

1st tertile

(11.3–130)

2nd tertile

(> 130–186)

3rd tertile

(> 186–800)

p value

n 783 784 782

Female gender (%) 271 (34.6) 284 (36.2) 343 (43.9)  < 0.001

Age (years) 66 [58–73] 66 [57–73] 63 [56–71]  < 0.001

Dialysis vintage (years) 2.04 [0.91–4.35] 2.53 [1.05–4.86] 3.88 [1.77–7.69]  < 0.001

Measured  (Kt/V) 1.36 [1.19–1.58] 1.36 [1.20–1.56] 1.36 [1.19–1.59] 0.915

Albumin (g/L) 39.73 (3.35) 39.71 (3.47) 39.37 (3.53) 0.065

Hemoglobin (g/dL) 11.89 (1.51) 11.78 (1.53) 11.45 (1.65)  < 0.001

hs-CRP (mg/L) 1.01 (1.14) 1.02 (1.17) 1.01 (1.18) 0.984

BMI (kg/m2) 25.53 (4.90) 25.73 (5.05) 24.71 (4.73)  < 0.001

Systolic blood pressure (mmHg) 134 (23.15) 135 (24.01) 138 (25.46) 0.003

Diastolic blood pressure (mmHg) 74 (12.35) 75 (12.11) 77 (13.01)  < 0.001

Pulse pressure (mmHg) 60 [49–70] 60 [46–71] 60 [50–73] 0.368

Current smoker (%) 139 (17.8) 123 (15.7) 116 (14.8) 0.271

Diabetes (%) 199 (25.4) 200 (25.5) 190 (24.3) 0.827

Peripheral artery disease (%) 136 (17.4) 111 (14.2) 116 (14.8) 0.179

History of coronary heart disease (%) 106 (13.5) 106 (13.5) 100 (12.8) 0.883

History of cardiovascular disease (%) 284 (36.3) 270 (34.4) 237 (30.3) 0.038

Cause of ESRD, n (%) 0.088

 Diabetes 136 (17.4) 146 (18.6) 133 (17.0)

 Genetic conditions 100 (12.8) 106 (13.5) 104 (13.3)

 Glomerulonephritis or vasculitis 126 (16.1) 160 (20.4) 173 (22.1)

 Nephropathy or nephrosclerosis 180 (23.0) 145 (18.5) 134 (17.1)

 Pyelonephritis or interstitial 119 (15.2) 109 (13.9) 128 (16.4)

 Unknown/unspecified 80 (10.2) 75 (9.6) 76 (9.7)

 Other 42 (5.4) 43 (5.5) 34 (4.3)
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Fig. 1)] and without history of coronary diseases [p for 

interaction = 0.084 (Fig. 1); p for interaction in multivari-

able adjusted analysis = 0.048 (Supplementary Fig. 1)]. 

The association of Gal-3 with all-cause mortality was also 

stronger in patients without history of coronary diseases [(p 

for interaction = 0.077 (Fig. 2); p for interaction in multivari-

able adjusted analysis = 0.085 (Supplementary Fig. 2).

Interaction of PICP, Gal‑3 and hs‑CRP to predict CV 
mortality, all‑cause mortality, and MACE

We identified a significant positive interaction between PICP 

and Gal-3 with regard to CV death and all-cause mortality 

(p for interaction with continuous variables = 0.04 and 0.01, 

respectively).

The magnitude of the association of an elevated concen-

tration of PICP with either CV death or all-cause mortal-

ity was more pronounced among patients having also an 

elevated concentration of Gal-3 (Fig. 3). Patients with both 

raised PICP and Gal-3 had sizeable increase in rates for CV 

death (HR in patients in T3 of PICP and T3 of Gal-3 = 1.64, 

p = 0.004), whereas patients with isolated Gal-3 or PICP 

increase, respectively, had no significant increase in rates 

of CV death (all p > 0.20, Fig. 3). In contrast, there was no 

significant interaction between hs-CRP and PICP regarding 

the association with either CV death or all-cause mortality 

(Supplementary Fig. 3).

Interaction between PICP and Gal-3 with regard to 

MACE tended to be significant (p = 0.055), and only patients 

with elevated Gal-3 and PICP had significantly increased 

from the risk of MACE [HR = 1.36 (1.00–1.84), Supple-

mentary Fig. 4].

There was no significant interaction between rosuvastatin 

therapy and PICP and Gal-3 concentration (data not shown).

Added value of PICP, Gal‑3 and hs‑CRP to predict CV 
mortality and all‑cause mortality

PICP per 1 SD increase significantly improved the predic-

tion [NRI = 0.072 (0.012–0.115)] of all-cause mortality on 

top of the routine clinical and biological model based on 

the variables used for adjustment (i.e., age, history of CV 

Table 2  Baseline characteristics 

according to Gal-3 tertiles

BMI body mass index, ESRD end-stage renal disease

Results with p value less than 5% were emphasized using bold letters

Gal-3

(ng/mL)

1st tertile

(11.2–56.3)

2nd tertile

(> 56.3–78)

3rd tertile

(> 78–228)

p value

N 782 780 781

Female gender (%) 284 (36.3) 291 (37.3) 313 (40.1) 0.283

Age (years) 65 [57–73] 65 [57–72] 63 [56–71] 0.008

Dialysis vintage (years) 1.89 [0.83–4.02] 2.87 [1.24–5.34] 3.82 [1.78–7.01]  < 0.001

Measured  (Kt/V) 1.34 [1.20–1.56] 1.38 [1.19–1.60] 1.36 [1.20–1.56] 0.508

Albumin (g/L) 39.73 (3.44) 39.95 (3.46) 39.26 (3.53)  < 0.001

Hemoglobin (g/dL) 11.76 (1.49) 11.68 (1.63) 11.57 (1.66) 0.067

hs-CRP (mg/L) 0.88 (1.07) 0.95 (1.12) 1.22 (1.27)  < 0.001

BMI (kg/m2) 25.16 (4.82) 25.40 (4.64) 25.31 (5.30) 0.618

Systolic blood pressure (mmHg) 138 (21.69) 138 (25.01) 136 (26.32) 0.342

Diastolic blood pressure (mmHg) 76 (12.12) 76 (12.36) 76 (13.51) 0.867

Pulse pressure (mmHg) 60 [50–72] 60 [49–74] 60 [48–70] 0.100

Current smoker (%) 128 (16.4) 117 (15.0) 117 (15.0) 0.685

Diabetes (%) 220 (28.1) 197 (25.3) 187 (23.9) 0.153

Peripheral artery disease (%) 113 (14.5) 124 (15.9) 108 (13.8) 0.496

History of coronary heart disease (%) 102 (13.0) 103 (13.2) 93 (11.9) 0.704

History of cardiovascular disease (%) 262 (33.5) 256 (32.8) 241 (30.9) 0.522

Cause of ESRD, n (%) 0.119

 Diabetes 155 (19.8) 141 (18.1) 136 (17.4)

 Genetic conditions 101 (12.9) 111 (14.2) 89 (11.4)

 Glomerulonephritis or vasculitis 126 (16.1) 133 (17.1) 163 (20.9)

 Nephropathy or nephrosclerosis 161 (20.6) 156 (20.0) 151 (19.3)

 Pyelonephritis or interstitial 131 (16.8) 115 (14.7) 115 (14.7)

 Unknown/unspecified 67 (8.6) 94 (12.1) 91 (11.7)

 Other 41 (5.2) 30 (3.8) 36 (4.6)
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disease, diabetes mellitus, sex, dialysis vintage, body mass 

index, systolic blood pressure, albumin and log hs-CRP at 

baseline). Gal-3 significantly improved the prediction of 

both CV death and all-cause mortality on top of the clini-

cal and biological model [NRI = 0.101 (0.024–0.146) and 

NRI = 0.080 (0.015–0.113), respectively].

Table 3  Association of PICP, 

Gal-3 and hs-CRP with 

cardiovascular death and all-

cause mortality

Model 1: adjusted for age, diabetes, history of cardiovascular disease, sex, dialysis vintage, body mass 

index, and systolic blood pressure (at baseline)

Model 2: model 1 + albumin and log hs-CRP (at baseline)
a Model 2: model 1 + albumin (at baseline)

Results with p value less than 5% were emphasized using bold letters

Variables Univariable

HR (95% CI)

p value Multivariable

Model 1

HR (95% CI)

p value Model 2

HR (95% CI)

p value

Cardiovascular death (n = 648)

PICP

 Per 1SD 1.06 (0.98–1.15) 0.13 1.12 (1.03–1.21) 0.01 1.11 (1.02–1.20) 0.017

 Tertiles

  1st tertile 1 – 1 – 1 –

  2nd tertile 1.00 (0.82–1.23) 0.98 1.01 (0.82–1.25) 0.89 1.01 (0.82–1.24) 0.96

  3rd tertile 1.14 (0.93–1.39) 0.20 1.22 (0.99–1.50) 0.061 1.22 (0.99–1.50) 0.068

Gal-3

 Per 1SD 1.15 (1.06–1.24) 0.0006 1.23 (1.15–1.31)  < 0.0001 1.20 (1.10–1.31)  < 0.0001

 Tertiles

  1st tertile 1 – 1 – 1 –

  2nd tertile 1.11 (0.91–1.36) 0.31 1.16 (0.94–1.42) 0.16 1.14 (0.93–1.40) 0.21

  3rd tertile 1.29 (1.06–1.57) 0.012 1.46 (1.19–1.79) 0.0003 1.36 (1.11–1.67) 0.003

hs-CRPa

 Log hs-CRP 1.24 (1.16–1.32)  < 0.0001 1.22 (1.15–1.30)  < 0.0001 1.17 (1.10–1.26)  < 0.0001

 Tertiles

  1st tertile 1 – 1 – 1 –

  2nd tertile 1.14 (0.94–1.40) 0.19 1.14 (0.93–1.40) 0.20 1.09 (0.89–1.34) 0.39

  3rd tertile 1.66 (1.38–2.01)  < 0.0001 1.62 (1.33–1.97)  < 0.0001 1.42 (1.16–1.73) 0.0008

All-cause mortality (n = 1296)

PICP

 Per 1SD 1.07 (1.01–1.13) 0.021 1.12 (1.06–1.19) 0.0002 1.12 (1.05–1.19) 0.0002

 Tertiles

  1st tertile 1 – 1 – 1 –

  2nd tertile 1.09 (0.94–1.26) 0.24 1.09 (0.94–1.26) 0.25 1.09 (0.94–1.26) 0.28

  3rd tertile 1.18 (1.02–1.36) 0.027 1.26 (1.08–1.46) 0.003 1.26 (1.08–1.46) 0.003

Gal-3

 Per 1SD 1.14 (1.08–1.21)  < 0.0001 1.21 (1.14–1.29)  < 0.0001 1.18 (1.10–1.25)  < 0.0001

 Tertiles

  1st tertile 1 – 1 – 1 –

  2nd tertile 1.05 (0.91–1.22) 0.50 1.10 (0.95–1.28) 0.22 1.08 (0.93–1.26) 0.30

  3rd tertile 1.23 (1.06–1.42) 0.006 1.38 (1.19–1.61)  < 0.0001 1.26 (1.08–1.46) 0.003

hs-CRPa

 Log hs-CRP 1.28 (1.22–1.33)  < 0.0001 1.28 (1.22–1.34)  < 0.0001 1.22 (1.17–1.28)  < 0.0001

 Tertiles

  1st tertile 1 – 1 – 1 –

  2nd tertile 1.31 (1.14–1.51) 0.0002 1.34 (1.16–1.56)  < 0.0001 1.29 (1.11–1.49) 0.0007

  3rd tertile 1.90 (1.66–2.18)  < 0.0001 1.91 (1.66–2.20)  < 0.0001 1.68 (1.45–1.94)  < 0.0001
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Adding PICP, Gal-3 and their interaction on top of the 

clinical and biological model (i.e., age, history of CV dis-

ease, diabetes mellitus, sex, dialysis vintage, body mass 

index, systolic blood pressure, albumin and log hs-CRP 

at baseline) resulted in significant NRI for CV death and 

all-cause mortality [NRI = 0.080 (0.019–0.143) and 0.085 

(0.029–0.129), respectively]. Of note, this prediction 

improvement was of similar magnitude to the one derived 

from hs-CRP on top of usual clinical/biological variables 

(i.e., age, history of CV disease, diabetes mellitus, sex, dialy-

sis vintage, body mass index, systolic blood pressure, and 

albumin but obviously excluding log hs-CRP at baseline) 

[NRI for CV death = 0.108 (0.050–0.167) and NRI for all-

cause mortality = 0.132 (0.088–0.171), respectively].

Discussion

To the best of our knowledge, the current study is the first to 

assess the combined and synergistic association of PICP and 

Gal-3 with CV death and all-cause mortality in hemodialy-

sis patients. Our main findings are as follows: (1) increased 

concentrations of PICP or Gal-3 are significantly associated 

with CV death and all-cause mortality even after adjusting 

on a previously validated clinical and biological score in the 

AURORA trial [23], and the correlated variables; (2) the 

increment of association with CV death provided by PICP 

and Gal-3 was of similar magnitude of the one provided by 

hs-CRP [HR per 1 SD 1.11 (1.02–1.20) = 1.20 (1.10–1.31) 

and 1.17 (1.10–1.26) for PICP, Gal-3, and hs-CRP; respec-

tively]; (3) there is a positive interaction between Gal-3 

and PICP regarding the association with CV death and all-

cause mortality whereas no significant interaction is found 

between PICP and hs-CRP.

The pathophysiology of CV complications is very com-

plex in patients on dialysis, but chronic inflammation cer-

tainly plays a major role [3, 27, 28]. Moreover, cardiac and 

vascular fibrosis are likely to be the main histological path-

ways involved in the generation of CV complications related 

to uremic cardiomyopathy and vascular stiffness [7].

Uremic cardiomyopathy refers to histological modifi-

cations of the heart, generated by chronic fluid overload, 

chronic mineral bone disorder, as well of chronic inflamma-

tion, all of them ultimately leading to cardiac fibrosis [4]. 

Arterial stiffness is associated with an increased mortality 

in ESRD [29], and it is now well-established that fibrosis 

Fig. 1  Association between PICP and cardiovascular death or all-cause mortality in subgroups of patients (non-adjusted analysis). CVD cardio-

vascular diseases, CHD coronary heart diseases, Yrs RRT  years on renal replacement therapy (dialysis vintage)
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also is the main histological finding of this vascular pathol-

ogy [6].

Outside the field of CKD, PICP has been shown to be 

raised in HF, hypertensive or ischemic heart disease with 

or without HF, and arterial stiffness [9, 14]. Moreover, in 

HF, serum concentrations of PICP are associated with worse 

prognosis [30–32], but little is known concerning its clinical 

risk prediction in dialysis.

The catabolism of high molecular weight PICP is mainly 

hepatic [33]. Thus, PICP does not accumulate as a conse-

quence of impaired kidney function. Moreover, among prev-

alent dialysis patients, the concentration of PICP unlikely 

reflects active renal fibrosis, as patients have established 

ESRD for long periods. Finally, patients with liver cirrhosis 

were excluded from the AURORA trial [24]. Consequently, 

we hypothesized in this study that the concentration of PICP 

may partly reflect cardiac and vascular fibrosis. Indeed, 

increased PICP concentrations indicate diastolic dysfunc-

tion in ESRD patients undergoing chronic dialysis [34].

Gal-3, a 29–35 kDa protein, is a member of the β-galectin 

binding lectin family, which is mainly secreted by mac-

rophages, fibroblasts, mast cells and neutrophils [35]. Gal-3 

plays a major role in the pathophysiology of HF, as a marker 

and a mechanism of inflammation potentially leading to 

fibrosis [36], but little is known about the implication of 

Gal-3 in the CV complications among patients on dialysis. 

Gal-3 appears to be related to chronic systemic inflamma-

tion [22, 37].

Of note, the interplay between Gal-3 and collagen bio-

markers has not been evaluated in the setting of dialysis. 

The association of Gal-3 and CV outcome in patients with 

chronic kidney disease (CKD) and ESRD, was previously 

reported in a pooled analysis of the LURIC (Ludwigshafen 

risk and cardiovascular health) and the 4D (die deutsche 

diabetes dialyse studie) trial. The authors reported that ele-

vated Gal-3 was significantly associated with CV death and 

all-cause mortality among patients with CKD and ESRD 

[19]. Gal-3 plays a pivotal role in the inflammatory response 

by binding to the extracellular matrix (ECM) proteins and 

modulating adhesions of the immune cells, including T cells, 

neutrophils, monocytes, and mast cells [38, 39]. In preclini-

cal models, the overexpression of Gal-3 in rats enhanced 

collagen type I synthesis leading to aldosterone-induced 

vascular inflammation, remodeling, and fibrosis [40]. Ver-

garo et al. supported the role of Gal-3 in the development 

of myocardial inflammation and fibrogenesis. In their study, 

Fig. 2  Association between Gal-3 and cardiovascular death or all-cause mortality in subgroups of patients (non-adjusted analysis). CVD cardio-

vascular diseases, CHD coronary heart diseases, Yrs RRT  years on renal replacement therapy (dialysis vintage)
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they showed that inhibition of Gal-3 in mice could reverse 

drug-induced left ventricular dysfunction by reducing myo-

cardial inflammation and fibrosis [41]. Martinez-Martinez 

et al. reported in a preclinical study that Gal-3 expression 

is upregulated by cardiotrophin-1 (CT-1) which mediates 

the proinflammatory and profibrotic myocardial effects [35, 

40, 42–45].

In the general population, the mean Gal-3 concentrations 

fluctuate between 11 and 14 ng/mL [16, 46–48], whereas 

they have been reported to be as high as 54 ng/mL in the 

4D patients undergoing hemodialysis [19]. Similar to the 

latter study, the mean Gal-3 concentration in our study 

was 69 ng/mL. Moreover, Gal-3 concentrations reach up 

to 26 ng/mL in congestive heart failure (CHF) [49–51]. 

This association between Gal-3 and kidney function may 

explain the increased oxidative stress partially explaining 

chronic inflammation. PICP, Gal-3, and hs-CRP concentra-

tions in the current dialysis population were compared to 

CV death

PICP

T1

Nevent/N (%)

T2

Nevent/N (%)

T3

Nevent/N (%)

Gal-3

T1 57/245 (23) 55/221 (25) 51/206 (25)

T2 59/234 (25) 56/215 (26) 57/215 (27)

T3 48/196 (25) 56/226 (25) 83/247 (34)

All-cause

mortality

PICP

T1

Nevent/N (%)

T2

Nevent/N (%)

T3

Nevent/N (%)

Gal-3

T1 108/245 (44) 109/221 (49) 92/206 (45)

T2 95/234 (41) 96/215 (45) 107/215 (50)

T3 91/196 (46) 108/226 (48) 137/247 (56)

Fig. 3  Interaction between PICP and Gal-3 (in tertiles) for the association with CV death and all-cause mortality

Table 4  CRP, PICP, and Gal-3 concentrations in the AURORA population in comparison to other populations of high CV risk patients

HFrEF heart failure with reduced ejection fraction, HFpEF heart failure with preserved ejection fraction, CKD chronic kidney disease, N/A not 

applicable

Reference Studied conditions CRP (mg/L) PICP (ng/mL) Gal-3 (ng/mL)

Eschalier et al. [52]

Tarjus et al. [48]

Abdominal obesity 4.0 ± 6.2 87.0 ± 52.0 12.2 (10.9–15.0)

Barasch et al. [53]

Gopal et al. [54]

HFrEF 3.3 (1.5–7.7) 406 (353–477) 23.0 ± 12.0

Barasch et al. [53]

Gopal et al. [54]

HFpEF 4.1 (1.4–9.1) 395 (329–503) 22.0 ± 10.0

Drechsler et al. [19] CKD 6.5 (2.5–14.9) N/A 23.1 ± 9.9

Drechsler et al. [19]

Sawamura et al. [55]

Hemodialysis 10.6 ± 17.2 162.0 ± 66.0 54.1 ± 19.6

Current study (AURORA) Hemodialysis 1.0048 ± 1.16 (hs-CRP) 175.9 ± 91.2 69.3 ± 25.1
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other categories of high CV risk patients [19, 48, 52–55], as 

presented in Table 4.

Excessive collagen production, fibroblasts and accumu-

lation of ECM are stimulated by the high concentrations of 

Gal-3 within the myocardium [14, 21, 56]. This explains 

the significant interaction between PICP and Gal-3 with 

regard to CV death and all-cause mortality. The synergistic 

association of PICP and Gal-3 on mortality, in AURORA 

study, suggests that in dialysis patients, the process of active 

fibrosis was driven by Gal-3 overexpression and oxidative 

stress, more specifically than by chronic inflammation [57]. 

Indeed, the association between PICP and mortality was 

found only in dialysis patients without history of CV disease 

and coronary heart disease, and, importantly, no interaction 

was found between PICP and hs-CRP.

Importantly, PICP was more associated with CV death 

than morbid events, as there was no significant association 

between PICP and MACE. In addition, Gal-3 was less asso-

ciated with MACE than with CV death, further strengthen-

ing the relevance of these biomarkers to predict mortality 

rather than morbidity.

Patients with ESRD suffer from uncontrolled second-

ary hyperparathyroidism where PICP concentrations may 

reflect bone degradation [58]. Although this mechanism may 

account for some of the rise in PICP in our dialysis patients, 

it is unlikely to be prominent since it would not explain the 

significant interaction found between Gal-3 and PICP. This 

interaction may reflect an active process of fibrosis, which 

is probably more often observed among younger patients in 

dialysis, without history of coronary heart disease.

Clinical implications

The combined use of PICP and Gal-3, as a non-invasive 

assessment of fibrosis, could improve CV risk prediction on 

top of validated clinical and biological risk scores in patients 

undergoing chronic hemodialysis. Hence, the identification 

of patients with active fibrosis may be a promising approach 

as they probably have the highest probability to benefit from 

anti-fibrotic interventions, similarly to what is performed 

among non-dialyzed patient at risk of heart failure [59]. Yet, 

the application of this strategy will depend on the prospec-

tive validation of a panel of circulating markers in a large-

scale population, and the stratification of the latter accord-

ing to their fibrosis’ profiles and response to a personalized 

therapy.

In addition, we tested the hypothesis of possible interac-

tion between rosuvastatin therapy on PICP and Gal-3 con-

centrations [60, 61], and we did not identify any significant 

interaction in this post hoc setting. However, this does not 

necessarily mean that other therapeutic intervention directly 

targeting fibrosis could not be proposed, based on these bio-

markers in the future.

Of note, the anti-fibrotic drug class prototype of the 

mineralocorticoid receptors antagonists is currently tested 

in two multicenter randomized study CV prevention stud-

ies in hemodialysis achieve (aldosterone blockade for 

health improvement evaluation in end-stage renal disease 

trial; NCT03020303), and alchemist (aldosterone antago-

nist  chronic  hemodialysis interventional survival  trial; 

NCT01848639) [62].

Our work suggests that Gal-3 may be a key mechanistic 

pathway underlying fibrosis in dialysis patients, anti-Gal3 

therapy for CV prevention, such as with modified citrus pec-

tin (MCP) may be worth investigating in this setting. As a 

competitive inhibitor of Gal-3, MCP binds to intracellular 

and extracellular Gal-3, reduces level of Gal-3 and prevents 

cardiac fibrosis, inflammation and functional alterations 

associated in a number of experimental animal models [35, 

40, 43].

Limitations

As in most blood biomarkers studies, it is not possible to 

firmly validate the fact that the amount of circulating PICP 

only reflects cardiac and vascular fibrosis. The measure-

ment of parathyroid hormone (PTH) was not carried out 

among the patients of AURORA study. It would have been 

insightful in excluding the possibility that high concentra-

tions of PICP were not reflecting bone turnover. We did not 

adjust our analysis on NT-proBNP, which is an important 

prognostic factor [63]. In this multicenter prospective rand-

omized trial with more than 2000 patients and adjudicated 

outcomes, it was not possible to assess other potentially rel-

evant fibrosis biomarkers [8, 64]. Finally, dedicated trials are 

still needed to test as well as to validate more powerful treat-

ment strategies based on PICP and Gal-3 concentrations.

Conclusion

Increased concentrations PICP and Gal-3 were synergisti-

cally associated with both CV death and all-cause mortality 

in patients undergoing chronic hemodialysis. Their signifi-

cant synergistic interaction with regard to CV death and all-

cause mortality may reflect Gal-3 driven active CV fibrosis. 

The measurement of these biomarkers could be useful in 

stratifying patients in dialysis according to their CV risk. 

The use of these biomarkers to target patients with high 

probability to benefit from anti-fibrotic, anti-Gal-3 therapy 

should be further studied.
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