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Abstract

Purpose: Detecting signals of micrometastatic disease in
patients with early breast cancer (EBC) could improve risk strat-
ification and allow better tailoring of adjuvant therapies. We
previously showed that postoperative serum metabolomic pro-
files were predictive of relapse in a single-center cohort of estrogen
receptor (ER)–negative EBC patients. Here, we investigated this
further using preoperative serum samples from ER-positive, pre-
menopausal women with EBC who were enrolled in an interna-
tional phase III trial.

Experimental Design: Proton nuclear magnetic resonance
(NMR) spectroscopy of 590 EBC samples (319 with relapse
or�6 years clinical follow-up) and 109 metastatic breast cancer
(MBC) samples was performed. A Random Forest (RF) classi-
fication model was built using a training set of 85 EBC and all
MBC samples. The model was then applied to a test set of 234

EBC samples, and a risk of recurrence score was generated on
the basis of the likelihood of the sample being misclassified as
metastatic.

Results: In the training set, the RF model separated EBC from
MBC with a discrimination accuracy of 84.9%. In the test set, the
RF recurrence risk score correlated with relapse, with an AUC of
0.747 in ROC analysis. Accuracy was maximized at 71.3% (sen-
sitivity, 70.8%; specificity, 71.4%). The model performed inde-
pendently of age, tumor size, grade, HER2 status and nodal status,
and also of Adjuvant! Online risk of relapse score.

Conclusions: In a multicenter group of EBC patients,
we developed a model based on preoperative serum meta-
bolomic profiles that was prognostic for disease recurrence,
independent of traditional clinicopathologic risk factors.
Clin Cancer Res; 23(6); 1422–31. �2017 AACR.

Introduction
In the treatment of early breast cancer (EBC), risk stratification

based on prognostic features is critical to decisions about the
appropriate adjuvant strategy, in particular whether or not che-
motherapy iswarranted.Molecular profiling of the primary tumor
has improved on traditional clinicopathologic risk stratification,
yet still a significant proportion of "high risk" patients do not
relapse and may receive chemotherapy unnecessarily (1–3). In

addition to focusing on the characteristics of the primary cancer,
an improved method to detect the actual presence of micrometa-
static diseasewould help to identify thosewhomight benefit from
adjuvant therapies and those who may not.

Metabolomics is the study of metabolites (small molecules)
in blood, tissue, or other biological samples, where the pres-
ence and relative concentrations of these molecules can be used
as evidence of cellular processes and functions. Given that
cancer cells can have significantly altered metabolism, the
pattern of metabolites produced can yield a "signature" that
may indicate the cancer's presence or behavior (4). Important-
ly, and in contrast to gene expression profiling as a risk stratifier,
this is a signal that originates directly or indirectly from micro-
metastatic disease, rather than one derived from features of the
primary tumor. Furthermore, the surrounding stroma and
immune response may also contribute to an altered metabo-
lomic profile, thus offering combined information on residual
tumor and host response. A major challenge in metabolomics is
detecting this signature against the dynamic sea of metabolic
data from normal cellular function.

Several groups including our own have identified a metastatic
"signature" in patients with advanced breast cancer, using nuclear
magnetic resonance (NMR) spectra or mass spectrometry to
analyze the metabolites in biological samples, primarily serum
(5–7). We compared the NMR spectra of serum from a group of
EBC patients and a group of metastatic breast cancer (MBC)
patients and identified a metastatic signature that could differ-
entiate the two groups (5).
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From there, we hypothesized that EBC patients with micro-
metastatic disease may also have features of the metastatic sig-
nature in their metabolomic profile, whereas those with no
micrometastatic disease would not, and that this signature would
predict for relapse. This hypothesis was tested in a follow-up study
using serum from a biobank of estrogen receptor–negative (ER�)
patients from the Memorial Sloan Kettering Cancer Center (New
York, NY), for whom clinical outcome (relapse at 5 years) was
known (8). A model was built in which EBC patients were
assigned a metabolomic risk score [Random Forest (RF) risk
score], which was a function of the likelihood that they would
be misclassified as metastatic based on their serum NMR spectra.
Again, we were able to demonstrate that EBC and MBC profiles
differed, but importantly, we also demonstrated that the RF risk
score could predict relapse, independent of traditional clinico-
pathologic risk factors, in this single-center group of ER� EBC
women.

In this current study, we aimed to test the RF risk score again as a
predictor of relapse in a large group of premenopausal EBC
patients with ER-positive (ERþ) disease taking part in a multi-
center adjuvant trial.

Patients and Methods
This retrospective study was a collaborative project among

the International Breast Cancer Research Foundation, the Uni-
versity of Florence Magnetic Resonance Centre (Florence,
Italy), and the Sandro Pitigliani Medical Oncology Depart-
ment, Hospital of Prato (Prato, Italy). The study protocol
received ethics approval from the ethics committee of the
Hospital of Prato.

Patient selection
Serumsamples for analysiswere obtained fromabankof blood

samples that had been collected during a phase III adjuvant breast
cancer clinical trial (NCT00201851; ref. 9) and a parallel phase III
MBC clinical trial (NCT00293540; ref. 10) conducted at centers
across South East Asia. Both the trials were run by the Interna-
tional Breast Cancer Research Foundation.

In the adjuvant trial, 740 premenopausal women with stage
II–IIIB hormone receptor (HR)–positive breast cancer received
surgical oophorectomy at the time of breast cancer surgery (mas-
tectomy), followed by tamoxifen for 5 years, to investigate the
hypothesis that surgery performed during the luteal phase of the
menstrual cycle would be associated with better outcomes. At the
time of enrollment, 231 patients were estimated to be in the luteal
phase and were scheduled for immediate surgery; 509 patients
were estimated not to be in the luteal phase andwere randomized
to receive either immediate surgery or surgery scheduled to occur
in the predicted mid-luteal phase (9). Blood samples were col-
lected preoperatively in fasted patients on the day of surgery.
Frozen sera were initially stored at local sites and then shipped
frozen to theUnited States. Subsequently specimenswere shipped
still frozen to Italy. No patients were recorded as diabetic. The trial
was designed to follow patients for recurrence for at least 6 years,
and deidentified clinical outcome data were made available for
the purposes of this study. The study was approved at individual
participating institutions in the Philippines, Vietnam, andMoroc-
co and/or by supervising Institutional Review Boards for these
institutions and at lead investigator's American institutions. The
consent processes addressed the use of samples for future research
studies.

In the metastatic trial, premenopausal patients with ERþ MBC
were randomized to undergo oophorectomy surgery as palliative
endocrine therapy in either the follicular or the luteal phase of the
menstrual cycle, followed by tamoxifen (10). Blood samples were
collected preoperatively from fasted patients on the day of sur-
gery. Frozen sera were initially stored at local sites and then
shipped frozen to the United States. Subsequently specimens
were shipped still frozen to Italy. Diabetic status of patients was
not recorded.

NMR sample preparation
Frozen serum samples were thawed at room temperature and

shaken before use and then were prepared according to standard
operating procedures (11).

A total of 300 mL of sodium phosphate buffer (70 mmol/L
Na2HPO4; 20% (v/v) 2H2O; 0.025% (v/v) NaN3; 0.8% (w/v)
sodium trimethylsilyl [2,2,3,3-2H4]propionate pH 7.4) was
added to 300 mL of each serum sample, and the mixture was
homogenized by vortexing for 30 seconds. A total of 450 mL
of this mixture was transferred into a 4.25-mm NMR tube
(Bruker BioSpin srl) for the analysis.

NMR analysis
Monodimensional 1H NMR spectra for all samples were

acquired using a Bruker 600 MHz spectrometer (Bruker
BioSpin) operating at 600.13 MHz proton Larmor frequency
and equipped with a 5-mm CPTCI 1H-13C-31P and 2H-decou-
pling cryoprobe, including a z-axis gradient coil, an automatic
tuning-matching, and an automatic sample changer. A BTO
2000 thermocouple served for temperature stabilization at the
level of approximately 0.1 K at the sample. Before measure-
ment, samples were kept for at least 3 minutes inside the NMR
probehead for temperature equilibration (310 K for serum
samples).

According to standard practice (12, 13), three monodimen-
sional 1H NMR spectra with different pulse sequences were
acquired for each serum sample, allowing the selective detection
of different molecular components:

Translational Relevance
Adjuvant chemotherapy in early breast cancer improves

survival by targeting micrometastatic disease. Because of dif-
ficulties in detecting such a disease in patients, there is a
tendency to overtreat, meaning that many patients receive
chemotherapy unnecessarily, with substantial morbidity.
We hypothesize that the combined altered cellular behavior
of micrometastatic disease, supporting stroma and host
response, results in a unique, detectable pattern ofmetabolites
(metabolomic profile) similar to that seen in advanced disease
and that it correlates with relapse. Here, using serum taken
from premenopausal women enrolled in two phase III trials,
and using nuclear magnetic resonance spectroscopy, we show
that patients with metabolomic profiles more resembling the
metastatic profile have a higher rate of relapse. Metabolomics
thus has thepotential to identify patientswithmicrometastatic
disease, improve risk stratification, and reduce overprescrip-
tion of chemotherapy.

Metabolomic Profiles Predictive of Breast Cancer Recurrence
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(i) a standard nuclear Overhauser effect spectroscopy pulse
sequence NOESY 1Dpresat (noesygppr1d.comp; Bruker
BioSpin) using 64 scans, 98,304 data points, a spectral
width of 18,028 Hz, an acquisition time of 2.7 seconds, a
relaxation delay of 4 seconds, and a mixing time of 0.1
second was applied to obtain a spectrum in which both
signals of metabolites and high molecular weight macro-
molecules (lipids and lipoproteins) are visible.

(ii) a standard spin echo Carr–Purcell–Meiboom–Gill
(CPMG; ref. 14; cpmgpr1d.comp; Bruker BioSpin) pulse
sequence with 64 scans, 73,728 data points, a spectral
width of 12,019 Hz, and a relaxation delay of 4 seconds
was used for the selective observation of low molecular
weight metabolites, suppressing signals arising from
macromolecules.

(iii) a standard diffusion-edited (ledbgppr2s1d.comp; Bruker
BioSpin; ref. 15) pulse sequence, using 64 scans, 98,304data
points, a spectral width of 18,028Hz, and a relaxation delay
of 4 seconds was applied to suppress metabolite signals.

Spectral processing
Free induction decays were multiplied by an exponential func-

tion equivalent to a1.0-Hz line-broadening factor before applying
Fourier transformation. Transformed spectra were automatically
corrected for phase and baseline distortions and calibrated
(anomeric glucose doublet at 5.24 ppm) using TopSpin 3.2
(Bruker Biospin srl). Each 1D spectrum in the range 0.2 to
10.00 ppm was segmented into 0.02-ppm chemical shift bins,
and the corresponding spectral areas were integrated using AMIX
software (version 3.8.4, Bruker BioSpin). Binning is a means to
reduce the number of total variables and to compensate for small
shifts in the signals, making the analysis more robust and repro-
ducible (16, 17). Regions between 4.5 and 6.5 ppm containing
residual water signal were removed, and the dimension of the
system was reduced to 391 bins. The total spectral area was
calculated on the remaining bins, and total area normalization
was carried out on the data prior to pattern recognition.

Statistical analysis
Statistical analyses were planned prior to specimen retrieval,

based on those performed in the previous study, including min-
imum number of samples required (8). All data analyses were
performed using R (18). Principal component analysis (PCA)was
used first as an unsupervised exploratory analysis to assess the
presence of any clusters or outliers.

To confirm that serum metabolomic profiles can be used to
distinguish patients with MBC from those with early disease, an
RF classifier (19) was built to separate early and metastatic
patients. For the initial model, the group of EBC patients who
had relapsed or had minimum 5 years clinical follow-up was
randomly split into two groups, to form a training set and a
validation set, as in the previous study (8). Briefly, the RF classifier
uses data from the metastatic and training set to build an ensem-
ble of decision trees, where each tree contains a random sample of
the original data, with only a small number of variables (bins) at
each decision node, used to predict whether a sample is early or
metastatic. For early patients, a scorewas created that expresses the
extent to which the serum metabolomic profile appears to be
metastatic, designated as the "RF risk score." For each patient,
three "RF risk scores" were derived using the three types of spectra
(NOESY1D, CPMG, and diffusion-edited spectra). For all calcula-

tions, the R package "Random Forest" (20) was used to grow a
forest of 1,000 trees, using the default settings.

The next step was to test the hypothesis that a metastatic
metabolomic signature in early disease would be predictive of
relapse and that higher RF relapse scores would correlate with
higher risk of developing a relapse. Using ROC analysis, the
performance of the RF risk score was compared with actual breast
cancer outcome. A prognosticmodel was created using the CPMG
RF risk score, which had the best performance in the training set.
To delineate high risk of relapse, a cutoff for the RF risk score was
calculated in the training set that optimized accuracy, sensitivity,
and specificity, and the performance of the model was subse-
quently tested in the validation set.

Multivariate analysis of the impact of provenance of the sample
was achieved using unsupervised PCA of the spectra. When this
impact was found to be significant, the model for relapse predic-
tion was redesigned:
(i) We hypothesized that samples from different clinical sites

had been collected or stored following different operating
procedures (e.g., longer periods from collection to sera
separation and freezing, or different freezing tempera-
tures), and that this may be reflected in the metabolomic
spectra. As reported in the literature (11), lactate (coupled
with pyruvate and glucose) is the most sensitive marker for
sample degradation. To overcome this influence, we
removed the bins related to lactate from the data matrix.

(ii) The nonrelapsing patients included in the analysis were
restricted to those with aminimum follow-up of 6 years, as
HRþ breast cancer has a relatively steady relapse rate for at
least 10 years.

(iii) Finally, we chose to include in the training set only women
who had not developed a recurrence, to reduce the likeli-
hoodof confounding factors due to thepresence of patients
with micrometastases in the model. Thus, ROC analysis
could only be carried out on the subsequent test set of
relapsed and nonrelapsed patients.

Assessment of confounding factors (e.g., age, tumor size, nodal
status, etc.) within the spectra was performed by using the
multivariate RF classifier analysis to determine whether spectra
could be predictive of each factor. The independent prognostic
capacity of the redesigned RF risk score model was evaluated in a
multivariate analysis controlling for standard prognostic features,
which also included an Adjuvant! Online (AoL) risk of relapse
score. The AoL score was calculated for 10-year risk of relapse
assuming no adjuvant therapy and was used as a surrogate
combined clinicopathologic risk.

For the analysis of individual metabolites, the spectral regions
related to 22 metabolites were assigned in the 1H CPMG
NMR profiles by using matching routines of AMIX 3.8.4 (Bruker
BioSpin) in combination with the BBIOREFCODE (Bruker BioS-
pin) and the Human Metabolome Database (21). The spectral
regions were fitted and integrated to obtain the concentration in
arbitrary units, and these data were used to compare metabolite
concentrations between EBC and MBC patients. Wilcoxon signed-
rank test (22) was chosen to perform the analysis on the biological
asymptotic assumption that the metabolite concentrations are not
normally distributed, and FDR correction was applied using the
Benjamini–Hochberg method (23). P < 0.05 was deemed signif-
icant. Because of themethodused to generate spectra,NMRprofiles
could not be used to measure individual lipid concentrations, nor
metabolites in very small concentrations, such as acylcarnitines.

Hart et al.
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Results
Patients

Serum samples from 675 women with EBC and 125 with MBC
were received. Of these, 101 samples were deemed nonevaluable
for technical reasons (plasma instead of serum, inadequate
amount of serum, hemolysis, and insufficient clinical informa-
tion), leaving 590 EBC and 109 MBC samples suitable for NMR
spectroscopy to build metabolomic profiles. Baseline character-
istics are reported in Table 1.

Provenance of samples
EBC samples came from 5 centers in the Philippines and 2

centers in Vietnam; MBC samples came from 5 centers in the
Philippines, 3 centers in Bangladesh, and one inNigeria (Table 2).
Notably, noMBC samples came from Vietnam, and only 24 came
from Philippine General Hospital in Manila, yet these centers
contributed the majority of EBC samples, representing significant
imbalance.

Discrimination between EBC and MBC patients
Using the RF classifier for supervised analysis, themetabolomic

profiles of 590 EBC and 109 MBC patients were classified, and
show significant differential clustering, with near-complete sep-
aration of the two groups (Fig. 1). Clustering was achieved by the
CPMG, NOESY1D, and diffusion spectra.

As in the previous studies (5, 8), the clustering provided by the
CPMG spectra shows the highest accuracy for predicting early or
metastatic status, with accuracy of 90.3% [95% confidence inter-
val (CI), 90.2%–90.4%], compared with 86.8% (95%CI, 86.7%–

86.8%) for NOESY1D, and 84.4% (95% CI, 84.3%–84.5%) for
diffusion edited. Only results for CPMG spectra will be reported
from here on.

Relapse prediction by RF score
A metabolomic RF risk score for each EBC sample was

generated on the basis of the probability that the NMR spectrum
would be classified as metastatic. The initial model was built
using the same parameters as in the previous study, using CPMG
spectra and only including EBC samples from patients who
either relapsed or were relapse free with a minimum of 5 years
clinical follow-up data (total 443). The training set consisted of
68 relapsed and 41 nonrelapsed EBC patients chosen at random
and all 109 metastatic patients. The validation set consisted of
the remaining 124 relapsed and 210 nonrelapsed EBC patients.
The AUC obtained for the training set was 0.644, and the
accuracy of the RF risk score was maximized using a threshold
of 0.18, which yielded sensitivity of 61.3% (95% CI, 60.3%–

62.2%), specificity of 61.0% (95% CI, 60.6%–61.3%), and
overall accuracy for predicting likelihood of relapse of 61.1%
(95% CI, 60.6%–61.6%; Supplementary Fig. S1A). The model
was then applied to the validation set, using the RF risk score
threshold of 0.18, achieving a sensitivity, specificity, and pre-
dictive accuracy of 71.7%, 46.7%, and 62.4%, respectively, and
an AUC of 0.631 (Supplementary Fig. S1B).

In view of the low AUC results, investigation of the effect of
provenance (collection center) and length of follow-up was
carried out.

Exploratory unsupervised PCA of the CMPG spectra showed
marked differentiation among the different centers of collection
(Supplementary Fig. S2A), with the spectral region of lactate
resulting in the most relevant discrimination in the first two

principal components. Lactate concentrations, calculated in arbi-
trary units from the spectra, differed significantly between EBC
andMBC patients (Table 3), demonstrating the key role of lactate
in both discrimination of EBC and MBC and in the identification
of treatment centers. This finding was consistent with our hypoth-
esis regarding differences in storage and handling between treat-
ment centers in our samples.

Relapse prediction by RF score—optimized model
To overcome the influence of lactate, we removed the bins

related to this metabolite from the data matrix. The PCA score
plot (Supplementary Fig. S2B) calculated using this reduced
data matrix shows greatly reduced dispersion of the data points.
This observation is confirmed by calculating the generalized
variance (24) of the first three PCA components. This value
(calculated as the determinant of the covariance matrix) repre-
sents the volume of the ellipsoid containing the data. Using the
complete data matrix, we obtain a generalized variance of 16.8,
whereas for the reduced data matrix, the generalized variance is
11.8, illustrating that removal of the bins corresponding to
lactate indeed reduced spreading of the data, thus reducing the
location effect.

The EBC cohort was restricted to those with relapse or mini-
mum 6 years follow-up, which reduced the sample size to 319. In
this new model, the training set consisted of 85 early patients
without relapse (randomly selected) and all 109 metastatic
patients. The test set contained 192 early patients that suffered
relapse and the remaining 42 relapse-free early patients.

Using the CPMG NMR spectra, the RF classifier discriminated
EBC from MBC patients in the training set with sensitivity,
specificity, and predictive accuracy of 90.0% (95% CI 89.7%–

90.3%), 84.9% (95% CI 84.7%–85.1%), and 87.1% (95% CI
86.9%–87.3%), respectively (Fig. 2A). This new model was then
applied to the test set to assess ability to predict relapse, attaining
an AUCof 0.747. The accuracy of the RF risk score wasmaximized
using a threshold of 0.235, which yielded sensitivity of 70.8%,
specificity of 71.4%, andoverall accuracy for predicting likelihood
of relapse of 71.3% (Fig. 2B). AUC scores for NOESY1D and
diffusion-editing spectra were inferior, at AUC 0.706 and 0.617,
respectively.

The AUC score calculated on the RF score was assessed for
significance against the null hypothesis of no prediction accuracy
in the data, by means of 10,000 randomized class permutation
tests. The estimate AUC score obtained after randomization is
0.531 (95% CI, 0.53–0.531), demonstrating the significance of
our result (AUC, 0.747; P ¼ 1.63 � 10�20) despite the problems
encountered.

Comparison with known prognostic factors
The known prognostic factors age, tumor size (0–2 cm, 2.1–5

cm, >5 cm), nodal status (0, 1–3, >3), histologic grade, andHER2
overexpression were compared with the CPMG RF risk score,
calculated on the optimized set, in univariate and multivariate
regression analyses (Table 4). We also compared the RF risk score
with the 10-year risk of recurrence as calculated by AoL in a
separate multivariate analysis. In all cases, the RF risk score
maintained independent prognostic value.

Similarly, using RF classification to predict individual prog-
nostic features based on the CPMG NMR spectra, none of these
features could be meaningfully discriminated (Supplementary
Fig. S3).Only the tumor size showed aweak concordancewith the

Metabolomic Profiles Predictive of Breast Cancer Recurrence
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CPMG RF risk score (coefficient of correlation ¼ 0.18; P value
corrected with Bonferroni ¼ 0.02).

Metabolite analysis
NMR spectra were analyzed to identify which metabolites

were contributing to discrimination of MBC and EBC profiles.
In the combined multicenter populations (Table 3), compared

with EBC patients, patients with MBC are characterized by
higher serum levels (adjusted P < 0.05) of citrate, choline,
acetate, formate, lactate, glutamate, 3-hydroxybutyrate, phenyl-
alanine, glycine, leucine, alanine, proline, tyrosine, isoleucine,
creatine, creatinine, and methionine and lower serum
levels (adjusted P < 0.05) of glucose and glutamine. In sin-
gle-center analysis (Supplementary Table S1), citrate, formate,

Table 1. Patients and tumor characteristics for EBC and MBC cohorts, including populations restricted to include only relapsed patients or those with clinical follow-
up greater than 5 or 6 years

Characteristic EBC all
EBC – relapsed or
follow-up �5 years

EBC – relapsed or
follow-up �6 years MBC

Number 590 443 319 109
Age, mean (range) 42 (29–50) 42 (29–50) 42 (29–50) 39 (22–53)
Tumor size, n (%)
<2 cm 35 (5.9) 23 (5.2) 11 (3.5%) —

2–5 cm 396 (67.1) 285 (64.3) 203 (63.6%)
>5 cm 159 (27) 135 (30.5) 105 (32.9%)

Grade, n (%)
I 74 (13) 63 (14) 46 (14) —

II 300 (51) 224 (51) 162 (51)
III 115 (19) 89 (20) 73 (23)
Unknown 101 (17) 67 (15) 38 (12)

Lymph node status, n (%)
0 248 (42) 166 (37.5) 106 (33) —

1–3 157 (27) 121 (27.5) 83 (26)
>3 185 (31) 156 (35) 130 (41)

HER2, n (%)
Positive 108 (18) 90 (20.5) 76 (24) —

Negative 388 (66) 298 (67) 210 (66)
Unknown 94 (16) 55 (12.5) 33 (10)

ER, n (%)
Positive 552 (93.6) 410 (92.6) 297 (93) —

Negative 37 (6.3) 32 (7.2) 22 (7)
Unknown 1 (0.2) 1 (0.2) 0 (0)

PR, n (%)
Positive 545 (92.4) 405 (91.4) 291 (91) —

Negative 44 (7.4) 37 (8.4) 28 (9)
Unknown 1 (0.2) 1 (0.2) 0 (0)

Treatment arm, n (%)
A 186 (31.5) 142 (32.0) 106 (33.2) —

B 216 (36.6) 158 (35.7) 111 (34.8)
C 188 (31.9) 143 (32.3) 102 (32.0)

Dominant metastatic site, n (%)
Soft tissue — — — 79 (72.5)
Bone 17 (15.6)
Viscera 13 (11.9)

Prior systemic treatment, n (%)
No — — — 69 (63.3)
Yes 40 (36.7)

NOTE: Treatment armA: not in luteal phase at the time of trial entry, randomized to luteal phase surgery; treatment armB: not in luteal phase at the time of trial entry,
randomized to immediate, non-luteal phase surgery; and treatment arm C: in luteal phase at the time of trial entry, immediate surgery in luteal phase.
Abbreviation: PR, progesterone receptor.

Table 2. Distribution of EBC and MBC samples by treatment center

Country Samples, n EBC samples, n MBC samples, n

Vietnam, Hanoi - Hospital K 228 228 —

Vietnam, Danang - Danang General 14 14 —

Philippines, Manila - PGH 302 278 24
Philippines, Cebu - Vicente Sotto Hospital 39 26 13
Philippines, Manila - Santo Tomas Hospital 9 3 6
Philippines, Manila - Rizal 20 15 5
Philippines, Manila - East Avenue 29 26 3
Nigeria, Ibadan - University College Hospital 8 — 8
Bangladesh, Dhaka - Dhaka Medical College 15 — 15
Bangladesh, Khulna - Khulna Medical College 28 — 28
Bangladesh, Dhaka - BSMMU 7 — 7
Total 699 590 109

Abbreviations: BSMMU, Bangabandhu Sheikh Mujib Medical University; PGH, Philippine General Hospital.
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methionine, and phenylalanine were significantly higher in
MBC patients. Others were numerically higher, consistent with
the multicenter populations, but low patient numbers limit
statistical significance.

In the cohort of EBC patients with relapse or follow-up of at
least of 6 years (those included in the RF models), the patients
who developed a recurrence were characterized by higher serum
levels (adjusted P < 0.05) of choline, phenylalanine, leucine,
histidine, glutamate, glycine, tyrosine, valine, lactate, and isoleu-
cine but lower levels of glutamate (Supplementary Table S2). In
the RF risk score algorithm, bins corresponding to phenylalanine,
histidine, a lipid fraction (undifferentiated), methionine, gluta-
mate, acetone, and formate carried themost weight in descending
order of rank.

Discussion
Risk stratification in EBC for the purpose of decidingwhether to

recommend adjuvant therapies is of great importance, not least
because of the significant toxicity associated with such treatment.
For those at low risk of relapse, the risk of harmmay outweigh the
absolute risk of benefit.

The purpose of adjuvant therapy is to treat suspected residual
micrometastatic disease. Yet, current prognostic factors and algo-
rithms, including modern genomic signatures, are extrapolated
from features of the primary tumor, surrogate markers for the
likelihood of micrometastatic disease being present and progres-
sing to an incurable state. Importantly, however, even among
high-risk populations, a substantial proportion of patients is

Table 3. Comparison of individual metabolite concentrations in arbitrary units in the serum NMR spectra of EBC and MBC patients, for all patients included in the
study

All hospitals
EBC MBC

Median MAD Median MAD P

Choline 329.82 533.53 1,607.25 1,953.73 2.88E�16
Acetate 272.09 177.43 512.38 220.30 6.11E�14
Formate 10.37 3.00 18.83 8.21 3.63E�20
Lactate 1,240.10 334.19 2,117.70 659.71 1.57E�24
Glutamate 269.60 121.22 431.99 154.55 1.59E�13
3-Hydroxybutyrate 88.30 58.74 134.81 81.05 8.53E�03
Phenylalanine 253.18 71.80 374.63 106.38 1.17E�16
Glycine Higher 817.54 224.84 1,148.41 314.98 2.69E�14
Leucine levels in 585.41 178.33 770.75 288.17 4.59E�06
Alanine MBC 1,920.95 376.40 2,384.07 511.61 1.19E�07
Proline 97.38 30.84 114.99 43.44 5.59E�03
Tyrosine 156.48 36.38 182.26 42.73 4.59E�06
Isoleucine 168.84 35.37 193.65 45.08 9.24E�04
Histidine 162.96 39.65 186.24 47.26 1.60E�03
Creatine 147.90 46.12 167.65 51.09 2.12E�02
Creatinine 194.25 38.19 216.27 48.55 5.59E�03
Methionine 118.72 27.45 127.43 32.47 3.65E�02
Citrate 111.84 22.22 118.77 42.60 >0.05
Valine 1,138.91 171.58 1,169.77 211.08 >0.05
Mannose Higher 68.19 13.57 64.38 14.09 >0.05
Glucose levels in 3,275.44 292.23 2,843.51 584.25 3.93E�08
Glutamine EBC 105.32 40.11 80.67 45.68 3.59E�02

NOTE: Adjusted P values are for the significance of any difference between EBC and MBC.
Abbreviation: MAD, median absolute deviation.

Figure 1.

Clustering of serum metabolomic profiles. Discrimination between EBC (black circles, n ¼ 590) and MBC (gray squares, n ¼ 109) patients using the RF classifier.
A–C, CPMG (A), NOESY1D (B), and diffusion (C).
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cured by surgery alone. In the seminal trial of adjuvantCMFversus
no further treatment in women with node-positive EBC after
primary cancer resection, 22% of untreated patients remained
alive and disease free after a median of 28.5 years (1). In another
study of ERþ, node positive, EBC patients stratified by Oncotype
DX, 60%of thosewith ahighOncotype recurrence score remained
disease free after 6 years, with only tamoxifen as adjuvant therapy
(3). These nonrelapsing high-risk patients either had no micro-
metastatic disease to begin with or were able to control it without
the use of chemotherapy. The ability to detect the presence of
micrometastatic disease could greatly refine the selection of high-
risk patients.

A theoretical advantage of metabolomics as a residual disease
detector is its potential to capture not only signals from the
micrometastatic disease, but also the surrounding stroma and
any inflammatory/immune response. Other liquid biopsies, such
as circulating tumor cells or plasma tumor DNA, will miss these
host factors, potentially reducing sensitivity.

In this study,wewere once again able to identify ametabolomic
signal in the sera of EBC patients associated with increased risk of
disease recurrence that is independent of standard risk factors, this
time in a large, multicenter population. Our previous study was
limited to a set of ER� patients from the MSKCC biobank, with
blooddraws taken after resection of the primary cancer, but before
commencement of adjuvant therapy (8). In the current study, all
patients wereHRþ, blood samples had been taken preoperatively,
and patients came frommultiple clinical sites in several countries,
making this a new exploratory study rather than a confirmatory
one. These differences introduced new challenges.

The effect of serum sample provenance was found to be the
most discriminating feature of spectra. Causes for this may be

multiple and include differences in the populations, such as diet
or ethnicity, butmay also reflect non-patient–related factors, such
as specimen handling. Delays in centrifugation, insufficient or
variable cooling, and unintentional thaw refreeze can affect the
metabolic composition dramatically.

As noted in Table 2, only 5 centers collected samples both from
EBC and MBC patients, and these samples are very few with
respect to the total population of this study, while Vietnam
provided a large proportionof EBC samples andnoMBC samples.
This large discrepancy, and resultant effect on spectra, would
therefore be expected to induce an error in the building of the
models (i.e., we are discriminating collection centers rather than
EBC and MBC). Limiting the model to samples from a single site
to control for location gave too few samples for meaningful
analysis.

Controlling for lactate, a metabolite associated with subopti-
mal handling, removedmuch of the bias associated with location
and thus may explain the cause. Lactate may also be affected by
other metabolic factors. In this study, all patients were fasted as
per preoperative protocol, reducing a dietary effect. Similarly,
diabetes can have an effect if uncontrolled; to the best of our
knowledge, there were no patients with diabetes in the EBC trial,
but these datawere lacking from theMBC trial. However, lactate is
known to be altered inmetastatic disease (7, 8), and indeed in this
study, it differed between EBC and MBC patients and relapsing
and nonrelapsing patients.

Examination of individual metabolites was performed to com-
pare with results from other studies, but data must be interpreted
with caution in light of the strong observed effect of provenance. A
comparison of metabolites between EBC and MBC patients from
a single center was also included, but small numbers of MBC
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patients affect statistical significance. Large numbers of metabo-
lites were at significantly higher concentrations inMBC (Table 3),
of which nine also correlated with relapse in the refined EBC
cohort (Supplementary Table S2). Higher levels of phenylalanine
were seen inMBC, in line with other studies (5, 6), and correlated
with relapse in EBC. Similarly, higher glutamate in MBC is
consistent with Jobard and colleagues' work (6) and correlated
positively with relapse in EBC here. Histidine was higher in MBC
compared with EBC, but in this case, it is at odds with three other
studies (6–8) in which it was lower.

The fact that geographical differences impacted significantly
on the construction of a discriminating model is reflective of a
broader issue for this approach, related to the need to establish
a specific metastatic profile for each new study population. For
example, applying the RF risk model created on the MSKCC
dataset (8) to the current study population yielded very poor
accuracy, due to the fact that differences between samples were
far greater than the differences between the respective EBC and
MBC cohorts (Supplementary Fig. S4). This greatly limits the
transferability of the current approach between populations,
until common standard procedures for metabolomics are
adopted and a more universal metastatic profile can be estab-
lished. In this regard, further studies are warranted.

A limitation of the dataset used is the fact that a follow-up time
of 5 or 6 years is insufficient to capture all relapses in anHRþ EBC

cohort, where relapse rates remain fairly constant for at least 10
years. Thus, there will be a proportion of EBC patients labeled as
nonrelapsed who are in fact destined to relapse. Limiting the EBC
cohort to patients with longer follow-up would be expected to
improve on this but comes at the expense of a reduced sample size
and was not possible here.

All patients in this study received systemic adjuvant endocrine
therapy, making it impossible to know whether the therapy was
directly responsible for the lack of relapse. An ideal series would
have an arm with no intervention, although this is unlikely to be
feasible for high-risk patients.

In this study, we were able to detect a signal correlated with
recurrence despite the fact that the primary tumor was in situ at
the time of blood draw. The presence and stage of the primary
tumor might be expected to alter the metabolomic profile, and
yet, the model predicted poorly for tumor size and nodal status,
with little or no correlation. Whether the small correlation with
size was as a direct result of the primary tumor or related to the
fact that larger tumors are associated with higher risk of relapse,
and thus may be a surrogate for presence of micrometastatic
disease, is unknown. Part of our hypothesis is that the meta-
bolomic signal correlating with residual disease, and thus
relapse, is as much a reflection of the host state as it is of the
presence of the tumor cells themselves, and our results support
this.

Table 4. ORs for prognostic features and RF risk score in the optimized set of EBC patients, using univariate and multivariate analysis

Characteristics OR (univariate) P OR (multivariate) P OR (multivariate) P

Age
<43 1.0 1.0 — —

�43 0.5205 5.06E�03 0.5429 0.0536
Tumor size
<2 cm 1.0 1.0 — —

2–5 cm 2.1115 0.2447 3.5484 0.1458
>5 cm 4.8124 0.0181 6.1417 0.0450

Grade
I 1.0 1.0 — —

II 2.2533 0.0165 2.4557 0.0472
III 2.2858 0.0319 2.0559 0.1512

Lymph node status
0 1.0 1.0 — —

1–3 4.2742 3.40E�06 3.0661 0.0048
>3 11.8770 5.57E�15 7.6775 1.38E�07

HER2
Negative 1.0 1.0 — —

Positive 2.3243 5.52E�03 2.4567 0.0170
ER
Positive 1.0 1.0 — —

Negative 0.9522 0.9130 1.3370 0.6822
PR
Positive 1.0 1.0 — —

Negative 2.6099 0.0437 4.3288 0.0320
Treatment arm
A 1.0 1.0 — —

B 0.8449 0.5522 0.7493 0.4606
C 0.5563 0.0397 0.5666 0.1558

AoL score
�52.7 1.0 — — 1.0
52.7–73.7 3.9519 2.04E�06 3.8740 7.13E�06
>73.7 12.9138 1.84E�13 15.308 1.18E�13

RF risk score
<0.235 1.0 1.0 1.0
>0.235 2.7991 1.59E�05 3.1224 0.0004 3.4768 7.84E�06

NOTE: AoL score split into tertiles. A multivariate analysis using only RF risk score and AoL score is also reported in the last two columns.
Abbreviation: PR, progesterone receptor.
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Given the challenges of this study, in particular, the diversity of
thepopulations and the fact that thebulk of theMBCandEBCsera
came from different clinical sites, respectively, it is all the more
compelling that a signal could be identified that discriminated
between early and late breast cancer patients and that the RF risk
score, essentially a measure of the "metastatic-ness" of the sera,
correlated with relapse. Indeed, we see this study as complemen-
tary to the previous one because it suggests that the metabolomic
score is relevant in predicting relapse in both ER� and ERþ

patients, in both a single-center and in a multicenter setting.
What remains to be determined is whether the signal that

correlates with relapse is truly a marker of micrometastatic
disease or in fact reflective of the biological state of the primary
tumor. Tumor-based genomic profiling assays, such as the 21-
gene assay or MammaPrint, assess the expression of a number
of genes to arrive at a risk of recurrence score, with those genes
relating to proliferation playing a significant role. It is possible
that differences in tumor gene expression state are also reflected
in the metabolome, contributing to the metabolomic profile, in
which case the metabolomic signals correlating with relapse
may be dependent on the gene expression profile. It is vital then
that future studies address this question, to examine whether
metabolomics may provide independent, relevant prognostic
information in the setting of genomic risk stratification, and we
are investigating this currently. Given that a substantial pro-
portion of patients designated as high-risk by genomic assays
will not relapse, it would be invaluable to have a biomarker
that might identify and restratify these patients. Ideally, this
would be performed in prospective trials in which there is
prespecified stratification by genomic risk score, where the
metabolomic risk score could be tested for prognostic power
within each risk group.
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