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Abstract

Background: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of tumors, with aggressive clinical

course that renders prognostication and choice of treatment strategy difficult. Chemo-immunotherapy with rituximab,

cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP) is the current first-line treatment.

MicroRNAs (miRNAs) are under investigation as novel diagnostic and prognostic biomarkers in several malignancies,

including malignant lymphomas. While tissue miRNAs in DLBCL patients have been extensively studied as biomarkers,

only few reports to date have evaluated the role of circulating/serum miRNAs as potential prognostic factors.

Here circulating/serum miRNAs, including miR-22, were investigated as potential non-invasive biomarkers, with the aim

of a better prognostic stratification of DLBCL patients.

Methods: MiRNAs were selected by global expression profile of serum miRNAs of DLBCL patients, The Cancer Genome

Atlas (TCGA) analysis and literature research.

Serum and tissues miRNA expression profile in de novo DLBCL patients, consecutively enrolled for this study, were

detected by quantitative real-time polymerase chain reaction. Relative expression was calculated using the comparative

Ct method. Statistical significance was determined using the Mann-Whitney rank sum and Fisher’s exact test. Survival

analysis was conducted through the use of Kaplan-Meier method. Spearman’s Rho was applied to study the correlation

between miRNA distributions and days to first relapse.

Experimentally validated miRNA-target interactions were assessed by miRTarBase database. Negative miRNA-mRNA

correlation was evaluated in TCGA DLBCL dataset. Pathway analysis was performed by the functional annotation

clustering DAVID tool.
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Results: We showed a significant modulation of serum miR-22 after R-CHOP treatment compared with basal values

but no difference between baseline serum miRNAs values of DLBCL patients and healthy controls. High expression

level of serum miR-22 in DLBCL at diagnosis (n = 36) is associated with a worse PFS and is independent of the currently

used clinical prognostic index. Integrative and pathways analysis of miR-22 identified target genes involved in different

important pathways such as p53 signaling.

Conclusions: Our data suggest that miR-22 is of potential interest as non-invasive biomarker to predict clinical

outcome in DLBCL patients. Characterization of miR-22 pathways can pave the way to the development of targeted

therapy approaches for specific subgroups of DLBCL patients.
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Background

Diffuse large B-cell lymphoma (DLBCL), the most com-

mon high-grade non-Hodgkin lymphoma, is a heteroge-

neous group of tumors with aggressive clinical course [1].

Their heterogeneity makes prognostication and choice of

treatment strategy difficult [2]. Immunochemotherapy

with rituximab, cyclophosphamide, doxorubicin, vincris-

tine, prednisone (R-CHOP) is the current first-line treat-

ment [3]. However, with this therapeutic approach up to

40% of patients experience early treatment failure or re-

lapse after initial response [4]. Baseline prognostic stratifi-

cation is widely based on clinical indexes, such as the

International Prognostic Index IPI; [5].

To date, some biological factors have been evaluated

for their potential prognostic relevance in DLBCL [6]. In

particular, different DLBCL subtypes, associated with

distinct cells of origin and clinical outcomes, have been

determined through gene expression profiling [7, 8] or

immunohistochemistry (IHC) based algorithms, the

most widely used of which is the Hans algorithm [9],

that permits to identify two different subtypes of DLBCL

despite some limitations in reproducibility. Moreover,

Bcl-2, Bcl-6 and c-Myc aberrations have a potential role

as prognostic markers of poor clinical outcome [10, 11],

but they are applicable to a limited number of patients

and not yet routinely used in clinical practice. Thus,

DLBCL heterogeneity and the current lack of reliable

predictors have prompted investigations for new bio-

markers that can accurately predict survival [12].

Recently, body fluids have emerged as an important

source of information in several pathologies, thus represent-

ing minimally invasive methods for precision diagnostics,

prognostic stratification and treatment assessment. Despite

some data have been recently published about cell-free

DNA (cfDNA) monitoring in peripheral blood of DLBCL

patients [13–15], so far few studies have highlighted the role

of circulating microRNAs (miRNAs) in this setting. MiR-

NAs are under investigation as novel diagnostic and

prognostic biomarkers in several malignancies [16, 17], in-

cluding malignant lymphomas [18–22]. However, while tis-

sue miRNAs in DLBCL patients have been extensively

studied as novel diagnostic and prognostic biomarkers [18,

23–27], only few reports to date have evaluated the role of

circulating/serum miRNAs as potential prognostic factors.

In particular, high expression of miR-21 in malignant tissue

and in blood has been associated with DLBCL diagnosis.

[28–30], while other studies report an association with spe-

cific miRNA signatures and response to therapy [31–33].

Methods
Study design, patients and control subjects

This was a prospective, observational, non-interventional

study on a cohort of newly-diagnosed de novo DLBCL adult

patients consecutively enrolled at our department of

Hematology and Stem Cell Transplant Unit (Regina Elena

National Cancer Institute, IRE) and uniformly treated with

six courses of R-CHOP every 21 days (rituximab 375 mg/

m2 day 1, cyclophosphamide 750 mg/m2 day 1, vincristine

1.4 mg/m2 day 1, doxorubicin 50 mg/m2 day 1, prednisone

100 mg days 1–5), followed by two adjunctive doses of

rituximab. The study was approved by the Institutional

Ethical Committee of IRE (protocol number: RS 831/16); all

patients and healthy subjects signed an informed consent

before inclusion and were treated according to ethical and

legal standards adopted by the Declaration of Helsinki.

Histological criteria for diagnosis and classification of

DLBCL are those of the World Health Organization

(WHO) classification [34].

Patients were excluded if they presented a DLBCL trans-

formed by a previous indolent lymphoma, concomitant ac-

tive cancers, others life-threatening conditions that could

compromise clinical outcome or HIV seropositivity. Serum

samples of patients were collected after informed consent at

diagnosis and then after 30–45 days from the end of the last

treatment course at the moment of response assessment.

All patients were evaluated for clinical and biological prog-

nostic factors. Clinical assessment was performed by Ann

Arbor stage and IPI evaluation. Cell of origin was evaluated

by IHC using Hans algorithm, dividing immunophenotype

pattern of patients in Germinal-Center (GC) vs non Germi-

nal Center (non-GC) [9]. Formalin-fixed and paraffin-

embedded (FFPE) tumor sections at diagnosis were
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analyzed for Bcl2, Bcl6 and c-Myc rearrangements by Fluor-

escent In Situ Hybridization (FISH), in cases of very high (>

80%) ki67 expression. Cases with concomitant c-Myc and

Blc2 or Bcl6 rearrangements were defined as “double hit”

lymphomas. Baseline disease staging and treatment re-

sponse assessment were determined according to the Lu-

gano recommendations for initial evaluation staging and

response assessment of non-Hodgkin lymphoma [35].

Healthy controls were recruited at the same Institute

from individuals seeking a routine health checkup and

with no evidence of disease and with age-, gender- and

ethnicity-matched to the patients.

Study objectives

The objectives of the study were: i) to evaluate the dif-

ference in miRNAs expression at diagnosis and after R-

CHOP therapy in serum of DLBCL patients; ii) to evalu-

ate the correlation between circulating miRNA and re-

sponse to treatment; iii) to find a specific miRNA

signature significantly related to clinical outcome of pa-

tients in terms of PFS; iv) to investigate the correlation

between circulating miRNAs and other baseline clinical-

biological factors [gender, median age, Ann Arbor stage,

IPI, lactate dehydrogenase (LDH) value, cell of origin,

presence of Bcl2, Bcl6 and Myc rearrangements].

Microarray

RNA from serum of DLBCL patients at diagnosis and

post-treatment was extracted using the miRNeasy Mini kit

(Qiagen, Hilden, Germany) following the manufacturer’s

instructions. Concentration and purity of total RNA were

assessed using a Nanodrop TM 1000 spectrophotometer

(Nanodrop Technologies, Wilmington, DE, USA).

Total RNA (200 ng) was labeled and hybridized to Hu-

man miRNA Microarrays V19 (Agilent) for 2006 human

miRNAs, using the miRNA Complete Labeling and Hyb

kit to generate fluorescently labeled miRNAs.

Sample processing and RNA extraction

Sampling method was consistent throughout the study

to minimize any pre-analytical variables. Blood samples

of DLBCL patients were collected at diagnosis and after

R-CHOP treatment in BD Vacutainer serum tubes using

a 21-gauge needle. The samples were kept at room

temperature (RT) for 30–60 min and then centrifuged at

RT for 20 min at 1100×g, the supernatant was further

centrifuged for 5 min at 1300×g. The serum transferred

into sterile cryovials was aliquoted and stored at − 80 °C

until further analysis.

RNA was extracted from 200 μl of serum and purified

using miRCURY RNA Isolation Kit – Biofluids (Exiqon

#300112 Vedbaek- Denmark) in accordance with manufac-

turer’s instructions. For a precise and sensitive quantitation

of total microRNAs concentration Qubit microRNA Assay

Kits (Life Technologies #Q32880) was used on a Quibit 3.0

Fluorometer (Life Technologies-ThermoFisher, Waltham,

MA U.S.A). There is considerable sample-to-sample vari-

ability in both protein and lipid content of plasma and

serum samples, which could affect efficiency of RNA ex-

traction, and could introduce potential inhibitors of PCR

[36]. In order to minimize the technical variation between

replicates in down-stream PCR analysis we added, for all

isolations, spike-in non-human synthetic miRNAs (RNA

spike-in mix: UniSp2, UniSp4 and UniSp5; Exiqon

#203203) to the respective lysis/denaturant buffer before

combining with serum. To avoid DNA contamination, all

samples were subjected to on-column rDNase treatment in

accordance with manufacturer’s instructions. After extrac-

tion RNA was eluted in 50 μl RNase-free water. Further-

more, determination of RNA yield is usually not possible by

spectrophotometric reading; therefore, we used RNA

amounts based on starting volume in the PCR reaction as a

measure, combined with subsequent quantification of

spike-ins. RNA from FFPE samples (n = 10) were extracted

using AllPrepDNA/RNA FFPE Kit (Qiagen, Venlo,

Netherlands) in accordance with manufacturer’s instruc-

tions. Total tissue RNA, eluted in RNase-free water, was

quantified with the NanoDrop ND-1000 spectrophotom-

eter (ThermoFisher Scientific, Wilmington, DE U.S.A.).

Reverse transcription and quantitative real-time -PCR

(qRT-PCR)

Quantification of the mature circulating and tissue miRNAs

were performed by a miRNA-specific LNA™-based system

using SYBR® Green (miRCURY LNA™ Universal RT micro-

RNA PCR; Exiqon # 203301, Vedbaek- Denmark) as de-

scribed [17].

First-strand cDNA was synthesized from 4 μl of each

serum RNA sample or 20 ng of tissue RNA, using the

Universal cDNA Synthesis kit II according to the Exiqon

manufacturer’s protocols with any modifications (Exi-

qon, Vedbaek- Denmark). To control the potential pres-

ence of inhibitors and the quality of the cDNA synthesis

reaction UniSp6 RNA Spike-in template was added to

the Reverse Transcription mixture.

The cDNA template was diluted 40× in nuclease-free

water and then amplified using microRNA-specific LNA™-

enhanced forward and reverse primers. QRT-PCR was

performed employing an ABI 7900 Real Time PCR System

and SDS 2.2.2 software (Applied Biosystems, Foster City,

CA). All reactions were performed in triplicate and for the

background level a No Template Control was included in

the study every time a new experiment was set-up. ROX

passive reference dye was added in the diluted cDNA

samples to obtain a robust read over the entire array of

wells (ROX solution, Thermo Fisher Scientific, Waltham,

MA USA). Expression data for miRNAs were analyzed

calculating cycle threshold (Ct) values as well as standard
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deviations by means of comparative ΔCt method. The

quantity of serum and tissue miRNAs was normalized as

described below.

Established consensus house-keeping miRNAs for data

normalization are lacking for serum miRNAs. Exiqon man-

ufacturer’s protocols suggest miR-103-3p as a candidate en-

dogenous reference gene but it showed high variation in

our samples. Thus, in order to minimize variation in

circulating miRNA recovery, retro-transcription and ampli-

fication efficiency, we normalized serum miRNA levels

measuring the expression of the synthetic spiked-inUniSP2

(UniSP2 LNA control primer set UniRT, Exiqon#203950).

The expression levels of mature tissue miRNAs were

normalized to the U6 snRNA (U6 snRNA LNA primer

set UniRT Exiqon #203907).

As the major source of variation in plasma and serum

miRNA expression patterns is potential cellular derived

miRNA contamination including hemolysis [37] we

screened selected samples for hemolysis analyzing the

expression levels of miR-451, abundant in red cells, and

miR-23a, unaffected by hemolysis, as suggested by Exi-

qon manufacturer’s protocols (samples with Ct miR-23a

– Ct miR-451 ≥ 5 are considered hemolyzed).

Data and the Cancer genome atlas (TCGA) analysis,

bioinformatics

Scanning and image analysis were performed using the

Agilent DNA Microarray Scanner (P/N G2565BA)

equipped with extended dynamic range (XDR) software

according to the Agilent miRNA Microarray System.

Signals from miRNA’s arrays were verified for quality

control and extracted by Agilent Feature Extraction 10.7.

3.1 software. All values lower than 1 were considered

below detection and thresholded to 1. The signal of each

sample was z-score transformed. Bioinformatic analyses

were performed by MATLAB (The MathWorks Inc.).

Deregulation of miRNAs was assessed using a permuta-

tion test and a false discovery procedure was included

for multiple comparisons [38]. Statistical significance

was set to 5%. Unsupervised hierarchical clustering was

performed to identify specific pattern of expression

using the Euclidean distance metric.

A survival analysis was performed on a list of selected

miRNAs.

The experimentally validated miRNA-target interac-

tions database miRTarBase, release 7.0 [39] was used to

select validated targets of specific miRNAs. A Negative

miRNA-mRNA correlation was then evaluated in TCGA

DLBCL dataset for each validated target.

The list of validated targets was filtered by considering

those genes with a negative correlation coefficient

(Spearman’s R < − 0.2, p < 0.05). A pathway analysis was

conducted with the functional annotation clustering tool

DAVID [40].

Statistical analysis

Descriptive statistics were calculated for all the variable

of interest to summarize patient’s characteristics. Due

to the small sample size, the most suitable non para-

metric test was applied to evaluate the associations be-

tween variables. Spearman’s Rho was applied to study

the correlation between miRNA distributions and days

to first relapse. Survival analysis was conducted through

the use of Kaplan-Meier method. Log-rank test was

used to individuate potential differences between sub-

groups. PFS was defined as the time interval between

the date of initial diagnosis and the date of disease pro-

gression or death from any cause, whichever occurred

first. OS was defined as the time interval between the

date of initial diagnosis and the date of death from any

cause. In order to identify independent predictors of

progression, Cox proportional hazard models were

built. The related estimates were reported as Hazard

Ratios (HR) and 95% Confidence Intervals (CI). A p-

value ≤0.05 was considered statistically significant. All

analyses were carried out with SPSS (version 21.0) stat-

istical program (SPSS Inc., Chicago, IL, USA). Principal

Component Analysis (PCA) was performed using

MATLAB software (The MathWorks Inc.)

Results

Patients characteristics

From September 2015 to February 2017, a total of 36

newly diagnosed DLBCL patients were enrolled into the

study. We were able to collect serum samples at diagno-

sis and after the end of treatment in 32 patients, whereas

the remaining 4 cases did not result evaluable for post-

treatment analysis (toxic deaths during treatment in

three cases, loss of follow-up in one case). Baseline clin-

ical and biological features and treatment response as-

sessment of these 36 patients are shown in Table 1.

Out of 32 patients evaluable for treatment response,

27 (84%) achieved a response to first-line treatment

(responders); 24 of them achieved a complete remis-

sion (CR). Five patients (15%) were primary refractory

(non responders). In responder patients, a further

program of standard follow-up according to current

guidelines [5] was started and three of them experi-

enced a disease relapse. Refractory/relapsed patients

underwent a salvage treatment according to published

guidelines [5] and to local policy.

Selection of miRNAs as potential prognostic biomarkers

for DLBCL patients

In order to select a panel of miRNAs whose expression

level in serum might be related to the risk of disease re-

currence and survival of the DLBCL patients, we per-

formed (i) a global expression profile of serum miRNAs

of a small cohort of DLBCL patients; (ii) a study based
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on data available on TCGA data portal [41] of DLBCL;

(iii) an analysis of expression profiles of miRNAs se-

lected from (i) and (ii) or described as associated with

lymphoid malignancies by us (unpublished observation)

or by previously published studies [18, 32, 42] in serum

samples of patients enrolled into the study.

Our microarray analysis was performed in pre- and

post-treatment serum samples derived from three

DLBCL patients responding to therapy and one non-

responding patient (samples #1, #3, #4 collected at diag-

nosis and #1, #2, #3, #4 after the end of R-CHOP treat-

ment). Results showed that 153 serum miRNAs were

expressed above background in at least 3 out of 7 sam-

ples analyzed. Interestingly, we found a striking differ-

ence in miRNA modulation upon treatment between

responder and non responder patients. Due to the lim-

ited number of samples, in this analysis we did not focus

on miRNA signature discriminating the group of

responders versus the non responders but rather on

miRNAs significantly modulated in DLBCL samples

upon R-CHOP treatment. As shown in Fig. 1a, we found

31 miRNAs, including miR-22 (p < 0.05; permutation

test), significantly modulated after R-CHOP in the group

of responsive patients. In contrast, this miRNA subset

did not show remarkable expression changes to first-line

treatment in non responder patient #1. Moreover, for a

comparison of levels of expression of serum miRNAs of

our DLBCL patients with regard to tumor tissues we

performed a study interrogating the TCGA database

where we found available data relative to the miRNA ex-

pression levels in tumor tissue samples of 47 DLBCL pa-

tients. Kaplan Meier curves and log-rank test revealed a

signature of 13 miRNAs with potential prognostic value.

In particular, 3 miRNAs (miR-22-3p, miR-30c-2-3p,

miR-155-5p) were linked to disease recurrence (Fig. 1b),

whereas 10 others (miR-29c-3p, miR-132-3p, miR-140-

5p, miR-142-5p, miR-146a-3p, miR-215-5p, miR-330-3p,

miR-338-3p, miR-582-3p, miR-582-5p) were significantly

related to OS (Additional file 1 Fig. S1). Since these are

observational data, we could speculate that the disparity

between the number of miRNAs associated to PFS and

OS could be due to the relative small size of the sample

available on TCGA for this pathology (47 patients).

However, we cannot exclude that in a wider cohort of

patients other miRNAs could be found associated with

these variables.

Using RT-qPCR we profiled, in a small cohort (n = 16)

of DLBCL patients, the expression of miR-22 found in

both our previous analysis (Fig. 1a,b) as modulated in

DLBCL patients as well as selected circulating miRNAs

described as associated with lymphoid malignancies by us

(the cluster of let-7c/miR-99a/−125b, unpublished results)

[32] or by published studies (mir-18a, −20a) [18, 42] in

serum samples collected before/after treatment. As shown

in Fig. 1c, we found that in de novo DLBCL patients only

serum miR-22 was significantly up-regulated (2.9 folds;

p ≤ 0.001) in post-treatment samples compared with

matched patients before treatment.

These data suggest that the serum miR-22 is of poten-

tial interest as non–invasive biomarker to predict thera-

peutic response in DLBCL patients.

Expression level of serum miR-22 and let-7c/miR-99/

−125b cluster in a cohort of DLBCL patients

Expression profile of miR-22 and let-7c cluster were evalu-

ated by qRT-PCR, as potential non-invasive prognostic bio-

markers in the serum of 32 out of 36 DLBCL patients at

diagnosis and after R-CHOP treatment (Table 1). According

to first objective (i) our data showed a significant modula-

tion of serum miR-22, let-7c and miR-99a after R-CHOP

treatment compared with basal values (Fig. 2a). Since most

patients of this cohort are responders to R-CHOP, the sig-

nificance of these first data seems controversial. For this

reason we evaluated if there was a general modulation of

miRNAs expression upon treatment. To this end, we

Table 1 General characteristics and baseline clinicopathological

features of DLBCL patients

Variables DLBCL n = 36 (%)

Age median (range) 62 (23–83)

Gender males/females 20/16

Ann-Arbore stage I-II 9 (25)

III-IV 27 (75)

IPI Low (0–1) 8 (22)

Medium (2–3) 15 (42)

High (4–5) 13 (36)

LDH Normal 18 (50)

High 18 (50)

Ki-67 < 70% 15 (42)

≥ 70% 21 (58)

Cell of origin GC 22 (61)

Non-GC 10 (28)

NE 4 (11)

Translocations (§) None 10 (28)

Single 10 (28)

Double hit 4 (11)

NE 12 (33)

Response to treatment (^) ORR 27 (84)

CRR 24 (75)

Primary refractory 5 (15)

NE: not evaluable; ORR: overall response rate, CRR: complete remission rate;

GC: germinal-center;

(§) Translocations evaluated on BCL2, BCL6, and MYC loci

(^) Response to first-line treatment was assessed in 32 patients. Four patients

were not evaluable for

treatment response assessment (early deaths n = 3, lost n = 1)
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measured the total miRNAs concentration in a representa-

tive group of pre- and post-treatment RNA samples ex-

tracted from our cohort of DLBCL patient. We observed

no significant difference in global miRNAs concentration

between pre- and post-treatment samples (data not shown)

thus suggesting that the modulation observed for miR-22,

let-7c and miR-99a is specific for these miRNAs.

We have subsequently analyzed our data performing a

Principal Component Analysis (PCA) (Fig. 2b) on pre-

and post-treatment samples considering the combination

of miR-22, let7c and miR-99a that are the miRNAs modu-

lated upon treatment. As shown in Fig. 2, pre- and post-

treatment populations are clearly separated based on miR-

NAs expression. Moreover, we observed that pre-

treatment samples show more variability in miRNAs ex-

pression, while miRNA levels in post-treatment samples

appear to be more homogeneous.

In addition, a comparison between baseline serum

miRNAs values of DLBCL patients and healthy controls

matched for age and gender was performed and we did

a

c

b

Fig. 1 Selection of miRNAs to evaluate as prognostic biomarkers for DLBCL patients. a Heat-map of hierarchical clustering of 31 selected

miRNAs on serum of DLBCL patients at diagnosis (untreated) and after R-CHOP treatment (treated). MiRNA expression levels are shown as

colour variations. Higher and lower values are represented by red and green points, respectively. Pairwise distances between rows and

between columns were computed by Euclide distance metric. b Kaplan-Meier PFS curves. Correlation between the indicated miRNAs and

the rate of recurrence of DLBCL patients from TCGA data analysis. c Box-plot diagrams of relative miRNA expression levels, before/after

treatment, in serum samples from DLBCL patients (n = 16), assessed by qRT–PCR. Box-plot diagrams of selected miRNA expression levels

in pre-treatment and post-treatment serum samples from a small cohort of DLBCL patients (n = 16). Boxes define the 25th and 75th

percentiles; the horizontal line into the boxes indicates the median, and bars define the minimum and maximum values. The expression

levels of mature miRNAs were normalized to volume and UniSp2 spike-in RNA. Relative expression was calculated using the comparative

ΔCt method. p-values (*** = p ≤ 0.001) were determined using the Mann–Whitney rank sum test
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not find any significant difference between the two

groups suggesting no diagnostic value for the analyzed

miRNAs in DLBCL (data not shown). Even if modula-

tion of miR-22, let-7c and miR-99a before and after

treatment could suggest a role of these serum miRNAs

in response to treatment, according to objective (ii), our

data did not show a statistically significant correlation

between circulating miR-22, let-7c, miR-125b and miR-

99a and response to first-line R-CHOP.

Values of miR-22 at diagnosis significantly affect clinical

outcome

According to objective (iii), we found a significant cor-

relation between values of serum miR-22 at diagnosis

and days of PFS (Rho di Spearman: − 0.696, p < 0.001;

Fig. 3a); in other words, patients expressing higher

values of serum miR-22 at diagnosis showed a worse

clinical outcome in terms of PFS and had a higher risk

of disease resistance or recurrence. Moreover, as shown

a

b

Fig. 2 Expression levels and PCA analysis of serum miR-22 and let-7c/miR-99a/−125b cluster in a cohort of DLBCL patients. a Box-plot diagrams

of relative miRNA expression levels in pre-treatment and post-treatment serum samples from DLBCL patients. Boxes define the 25th and 75th

percentiles; the horizontal line into the boxes indicates the median, and bars define the minimum and maximum values. The expression levels of

mature miRNAs were normalized to volume and UniSp2 spike-in RNA. p-values were determined using the Mann–Whitney rank sum test. b

Principal Component Analysis plots for pre- and post-treatment samples considering the combination of miR-22, let7c and miR-99a serum levels
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in Fig. 3b, the expression of miR-22, analyzed as a di-

chotomous variable (above and below median serum

level), was significantly correlated with PFS (median PFS

of patients with miR-22 serum level above vs below the

median: 12 months vs not reached; p = 0.007). On the

contrary, expression of all members of let-7c cluster was

not associated with PFS. Moreover, we examined

whether miR-22 serum levels could be considered an in-

dependent prognostic factor. With Cox regression ana-

lysis, a median value of miR-22 above the median at

diagnosis was found to be the only factor able to inde-

pendently affect the probability of PFS in our cohort of

patients (hazard ratio: 5.19, 95% CI: 1.38–19.56; p = 0.

015, Table 2).

With respect to objective (iv), we did not find any sig-

nificant correlation between circulating miRNAs expres-

sion and other clinical and biological factors (age, stage,

a

b

Fig. 3 Expression of serum miR-22 is predictive of PFS in DLBCL patients. a Linear and logarithmic correlation between serum miR-22 values at

diagnosis and days of PFS (Rho di Spearman = − 0.696; p < 0.001). b Kaplan–Meier curves for PFS in DLBCL patients with low (below median; solid

line) and high (above median; dashed line) expression of miR-22. [p-value (log-rank test) = 0.007]

Table 2 Progression Free Survival (PFS) analysis by Cox

regression results

Factor HR 95% CI p-value

miRNA-22 (above vs. below median value) 5.19 1.38–19.56 0.015

IPI

Intermediate vs. low 1.03 0.19–5.62 0.977

High vs. intermediate-low 2.07 0.67–6.48 0.209

Cell of origin (non-GC vs. GC) 0.42 0.13–1.38 0.153

Double hit (yes vs. no) (^) 2.88 0.78–10.72 0.113

HR: hazard ratio; CI: confidence intervals; IPI: International Prognostic Index;

GC: germinal-center; non-GC: non germinal center

(^) Datum not available for all patients (see methods)
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performance status, LDH, Ki67, cell of origin, cytogenet-

ics and extranodal involvement), with the only exception

of let-7c (data not shown). In particular, no significant

correlations between miR-22 values and other parame-

ters were observed, whereas we found that patients ex-

pressing low levels of serum let-7c presented more

frequently a high-risk IPI score (p = 0.032) and a Ki67

expression < 70% (p = 0.048).

TCGA/DLBCL dataset: Integrative and pathways analysis

of miR-22\mRNA

Since we found that only miR-22 at diagnosis significantly

affects clinical outcome we performed a Spearman correl-

ation on matched 47 miRNA\mRNA samples (miRNA-

seq\RNA-seq) in TCGA DLBCL dataset for this miRNA.

MiR-22 expression was correlated to specific targets, ex-

perimentally validated, selected by miRTarBase [39]. As

shown in Table 3, a total of five validated target genes of

miR-22 showing a negative correlation (Spearman’s R < −

0.2, p < 0.05) such as cyclin-dependent kinase 6 (CDK6)

and cyclin-dependent kinase inhibitor 1A (CDKN1A, also

referred to as p21) were obtained. The resulting gene list

was also used for a pathway analysis with the functional

annotation clustering tool DAVID. We found several in-

teresting pathways significantly enriched in miR-22 targets

(Table 4). Interestingly above all the key genes CDK6 and

CDKN1A were involved in different important pathways

including p53 pathways [43].

Discussion

DLBCL heterogeneity has prompted investigations for

new biomarkers that can accurately predict survival. Sev-

eral pivotal studies suggested the existence of potential

prognostic biomarkers, specific pathogenetic pathways,

and different mechanisms of therapy resistance among

the subtypes [7, 8, 44]. Robust prognostic tools may

allow stratification of treatment modalities avoiding ex-

posure to unnecessary treatment toxicity or suboptimal

therapy. Circulating miRNAs are very attractive candi-

dates as non-invasive biomarkers for their high stability

in serum/plasma, specificity, sensitivity and predictive

power on disease stage and treatment response [45–48].

Moreover, miRNAs may be detected at low quantities,

even at picogram concentrations [20] thus, their

expression is likely to be more robust in the determin-

ation of cellular origin of multiple cancers [49].

On these bases, the main aim of this study was to find

a specific miRNA signature significantly correlated with

clinical outcome, in terms of PFS or response to treat-

ment, and to other clinicopathological characteristics in

a cohort of DLBCL patients treated with the current

gold standard therapy R-CHOP. To this end, we ana-

lyzed the expression profile of some miRNAs, selected

from our experimental data (miR-22 and the cluster of

let-7c/miR-99a/−125b) or described as associated with

lymphoid malignancies by previously published studies

(miR-18a and miR-20a) [18, 42]. We found that miR-22

could have a potential role as new and non-invasive

prognostic biomarker of clinical outcome in DLBCL pa-

tients uniformly treated con R-CHOP, since patients

with higher serum miR-22 expression at diagnosis

showed a strongly worse clinical outcome in terms of

PFS; moreover, as far as correlation to treatment re-

sponse is concerned, we observed a trend (even if not

statistically significant) toward high serum miR-22 levels

at diagnosis and a lower probability to achieve a re-

sponse to R-CHOP (data not shown).

As far as miRNAs modulation upon treatment is con-

cerned, from PCA analysis results we can hypothesize that

miRNA variability before treatment is due to differences be-

tween patients (possibly discriminating their prognosis)

while miRNA increase after treatment, more homogeneous

among different patients, is a more generalized event that

could be due to the therapy itself (a variable that is common

to all patients) maybe reflecting the massive immune cells

depletion that is a consequence of R-CHOP [50].

Our data seem to be promising given that the role of

circulating miR-22 as independent prognostic marker of

poor clinical outcome was confirmed by Cox regression

analysis to be not influenced by other well-established

prognostic factors, such as IPI, cell of origin and cyto-

genetics. However, we are aware that the present study

has some limits due to the small number of patients en-

rolled so far, thus our multivariate analysis should be

further confirmed in a larger cohort of DLBCL patients.

Moreover, the median follow-up of enrolled patients was

Table 3 miR-22 validated targets from TCGA data set

anti-correlation analysis

MicroRNA Gene R-Spearman p-value PUBMED ID

hsa-miR-22-3p CDK6 −0.351 0.016 20,371,350

hsa-miR-22-3p CDKN1A −0.433 0.003 23,582,783\21,572,407

hsa-miR-22-3p LONP2 −0.312 0.033 23,824,327\27,418,678

hsa-miR-22-3p TFRC −0.303 0.039 19,135,902

hsa-miR-22-3p ZNF460 −0.424 0.003 23,592,263

Table 4 Pathways significantly enriched in miR-22 targets

Term Genes p-value

hsa05214:Glioma CDKN1A, CDK6 0.018

hsa04115:p53 signaling pathway CDKN1A, CDK6 0.019

hsa05218:Melanoma CDKN1A, CDK6 0.02

hsa05220:Chronic myeloid leukemia CDKN1A, CDK6 0.02

hsa04066:HIF-1 signaling pathway CDKN1A, TFRC 0.028

hsa04110:Cell cycle CDKN1A, CDK6 0.035

hsa05161:Hepatitis B CDKN1A, CDK6 0.041
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relatively short (18 months); and the evaluation of cell of

origin in our patients cohort has been performed by

using IHC and not by GEP, negatively affecting the real

prognostic role of this biological parameter.

Our analysis of data available on TCGA database

about miR-22 levels in tumor tissues from DLBCL pa-

tients displayed that lower miR-22 levels were associated

with a worse prognosis.

In our study we attempted to perform a comparison of

the miRNA expression patterns between serum and tis-

sues to provide additional evidence supporting the use of

serum miRNAs as reliable prognostic biomarkers. How-

ever, due to very low number of available specimens we

did not find any significant correlation between tissue and

serum values of selected miRNAs (data not shown). Al-

though several studies demonstrate a direct correlation

between serum and tumor tissue miRNA expression

levels, suggesting that circulating miRNAs are a mirror of

tissue miRNA levels, an inverse relationship between cell-

free and cellular miRNAs has been already reported for

different kind of tumor tissues and cell lines [51–53].

Thus, these observations might reflect a yet undefined

molecular mechanism of selective secretion of miRNAs

into the extracellular environment by tumor cells [52].

Furthermore, a complete knowledge of the molecular

mechanisms governing miRNAs release from normal and

tumor tissues is still lacking, and the debate about the

relative contribution of organs and/or tissues to miRNAs

in blood serum is still open [47, 54, 55]. Moreover, several

suggested miRNA predictors obtained from tumor tissue

specimens are not detected in serum by studies on the

same kind of tumor, thus suggesting that the predictive

role of serum miRNAs could be independent from tissue

specimens [56] and references therein.

Moreover, we found that CDKN1A and CDK6, vali-

dated target genes of miR-22, are inversely correlated

with miR-22 levels from TCGA data analysis. The gene

encoding miR-22 resides on the short arm of chromo-

some 17, is ubiquitously expressed in various tissues [43,

57], and is highly conserved across many vertebrate spe-

cies [57]. This level of conservation suggests that miR-22

plays a functional important role in life processes. Re-

cently, miR-22 was found down-regulated in many can-

cers [43, 57] and has been assigned a role of tumor

suppressor miRNA in advanced disease and metastasis in

several cancers including lymphoma [57–60]. However,

the role of miR-22 in lymphomagenesis still remains

largely unknown. It has been also demonstrated that the

normal function of this tumor suppressor miRNA is to

down-regulate a number of putative oncogenes including

validated miR-22 targets MAX, MYCBP, HDAC4,

HDAC6, CDK6, CDKN1A and NCoA1 [58]. In our study,

we identified ten pathways significantly enriched with the

miR-22 anticorrelated genes related to cell cycle, CDK6

and CDKN1A. CDK6 is a member of the CDK family,

which comprises heteromeric serine/threonine kinases

that control progression and regulate mammalian cell

division through the cell cycle in collaboration with their

regulatory subunits, the cyclins [61, 62]. CDKN1A is a

CDK inhibitor which physically interacts with, and in-

hibits, the activity of cyclin-CDK2, -CDK1, and -CDK4/6

complexes, preventing phosphorylation of critical cyclin-

dependent kinase substrates thus functioning as a regula-

tor of cell cycle progression during the G1 and S phases

[63]. Interestingly, both CDK6 and CDKN1A are involved

in p53 signaling pathway, suggesting that the p53–miR-

22–CDK6 and/or CDKN1A axis could play a major

regulatory role in the determination of p53-dependent

apoptosis [61, 64, 65]. In particular, CDKN1A regulation

by miR-22 has been shown to selectively determine the

induction of p53-dependent apoptosis over cell cycle ar-

rest acting as a molecular switch for the determination of

p53-dependent cellular fate in response to various onco-

genic stresses characterized by different damage intensity

[65]. Furthermore, it has been demonstrated that miR-22

constitutes a feedback loop with c-myc and MYCBP and

forms a regulatory loop in the phosphatase and tensin

homolog–AKT pathway [66–68] another pathway that

we found significantly enriched in miR-22 CDKN1A and

CDK6 targets. Thus, our integrative and pathways ana-

lysis of miR-22 suggest that this miRNA may play a crit-

ical role in DLBCL through regulating important

pathways such as p53 signaling. TP53 mutations analysis

is essential to exclude that the worse clinical outcome of

patients expressing higher values of serum miR-22 is due

to these already know prognosticators in DLBCL [13]. To

this regard, our unpublished observations on a limited

cohort of DLBCL patients suggest that no correlation ex-

ists between TP53 mutations and miR-22 expression

levels in serum. Anyway this topic deserves to be further

investigated in a larger number of samples.

Conclusions

The identification of patient-specific miRNA expres-

sion profiles could be a useful tool to predict the

response to standard chemo-immunotherapeutic treat-

ment that would allow a “personalized medicine” ap-

proach for these patients, with potential clinical

advantages deriving from the best possible therapy for

that specific biological subset of patients. In addition,

the hierarchical clustering of miRNAs and pathways,

based on the levels of their interactions, can pave the

way to the development of targeted therapy ap-

proaches for specific subgroups of DLBCL. Here, we

show - for the first time to our knowledge - that the

expression level of serum miR-22 in DLBCL is associ-

ated with survival and is independent of the currently

used clinical prognostic index IPI. However, we are
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aware that prospective, large-scale, multicentre studies

are necessary to confirm our results and the tumori-

genic mechanisms of this miRNA in DLBCL warrants

further investigations.

Additional file

Additional file 1: Fig. S1. Kaplan-Meier Overall Survival curves. Correl-

ation between the indicated miRNAs and the Overall Survival of 47

DLBCL patients from TCGA data analysis. (PDF 204 kb)
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