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27 Abstract

28 Introduction: Non-alcoholic fatty liver disease (NAFLD) has a wide spectrum, 

29 eventually leading to cirrhosis and hepatic carcinogenesis. We previously reported that 

30 a series of microRNAs (miRNAs) mapped in the 14q32.2 maternally imprinted gene 

31 region (Dlk1-Dio3 mat) are related to NAFLD development and progression in a mouse 

32 model. We examined the suitability of miR-379, a circulating Dlk1-Dio3 mat miRNA, 

33 as a human NAFLD biomarker.

34 Methods: Eighty NAFLD patients were recruited for this study. miR-379 was selected 

35 from the putative Dlk1-Dio3 mat miRNA cluster because it exhibited the greatest 

36 expression difference between NAFLD and non-alcoholic steatohepatitis in our 

37 preliminary study. Real-time PCR was used to examine the expression levels of 

38 miR-379 and miR-16 as an internal control.

39 Results: Compared to normal controls, serum miR-379 expression was significantly 

40 up-regulated in NAFLD patients. Receiver operating characteristic curve analysis 

41 suggested that miR-379 is a suitable marker for discriminating NAFLD patients from 

42 controls, with an area under the curve value of 0.72. Serum miR-379 exhibited positive 

43 correlations with alkaline phosphatase, total cholesterol, and low-density-lipoprotein 

44 cholesterol levels in patients with early stage NAFLD (Brunt fibrosis stage 0 to 1). The 

45 correlation between serum miR-379 and cholesterol levels was lost in early stage 

46 NAFLD patients treated with statins. Software-based predictions indicated that various 

47 energy metabolism–related genes, including insulin-like growth factor-1 (IGF-1) and 

48 IGF-1 receptor, are potential targets of miR-379.

49 Conclusions: Serum miR-379 exhibits high potential as a biomarker for NAFLD. 

50 miR-379 appears to increase cholesterol lipotoxicity, leading to the development and 
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51 progression of NAFLD, via interference with the expression of target genes, including 

52 those related to the IGF-1 signaling pathway. Our results could facilitate future research 

53 into the pathogenesis, diagnosis, and treatment of NAFLD.
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54 Introduction

55 Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver 

56 injury, with an increasing incidence worldwide [1]. NAFLD, regarded as a hepatic 

57 manifestation of metabolic syndrome, is defined by significant lipid deposition in 

58 hepatocytes (excessive numbers of fat-laden hepatocytes are observed by light 

59 microscopy), unrelated to excessive alcohol consumption [2]. The prevalence of 

60 NAFLD is almost 25% worldwide and expected to increase with increasing incidence of 

61 obesity and metabolic diseases such as type 2 diabetes mellitus (T2DM) and 

62 hyperlipidemia [3].

63 The mechanism underlying the development of NAFLD has not been fully 

64 elucidated. Currently, the multiple parallel hit theory is the most widely accepted 

65 mechanism for the progression of NAFLD [4]. This theory suggests that the disease 

66 process begins with the development of insulin resistance resulting from excessive 

67 energy intake [5]. Insulin resistance in turn leads to hyperinsulinemia, resulting in 

68 upregulated hepatic de novo lipogenesis and adipose tissue lipolysis. These “primary 

69 hits” increase the susceptibility of hepatocytes to multiple pathogenetic factors, such as 

70 upregulated expression of pro-inflammatory cytokines and eicosanoids, Fas ligand, and 

71 Toll-like receptor ligands; increased reactive oxygen species (ROS) generation; and 

72 altered production of adipokines [6]. Whole-body organs such as adipose tissue, the gut, 

73 and gut microbiota are also involved in the pathologic process [7, 8]. Collectively, these 

74 factors promote hepatocyte apoptosis through mitochondrial dysfunction [9] and an 

75 endoplasmic reticulum stress reaction [10]. Such continuous liver tissue injury 

76 ultimately leads to fibrosis [11].

77 The clinical status of NAFLD patients is generally classified broadly into one of 
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78 just two categories: non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis 

79 (NASH) [12]. NAFL encompasses most of the NAFLD spectrum and is a benign 

80 condition. NASH, on the other hand, is defined as the combination of steatosis with 

81 lobular inflammation and hepatocyte ballooning; it can progress to liver fibrosis and 

82 result in cirrhosis and cancerous malignancies [12]. In contrast to NAFL, NASH is a 

83 life-threatening disease. Indeed, a cohort study showed that 35% of NASH patients die 

84 during the 7.6-year average follow-up period, whereas no NAFL patients followed in 

85 that study died during the same period [13].

86 Considering the wide disease spectrum of NAFLD, which can result in 

87 significant differences in prognosis, it is likely that mechanisms that regulate one or 

88 more of these multiple-hit factors exist. Some risk factors for the development of liver 

89 fibrosis in NAFLD include age over 50 years, severe obesity, complications associated 

90 with T2DM, increased ferritin levels, and patatin-like phospholipase domain–containing 

91 3 gene polymorphisms [14, 15]. However, more-sensitive and -reliable biomarkers are 

92 urgently needed to predict outcome in NAFLD patients and enable treatment to begin in 

93 the early stage.

94 MicroRNAs (miRNAs) are a class of endogenous, noncoding, small RNAs that 

95 regulate gene expression [16]. Mature miRNAs are introduced into RNA-induced 

96 silencing complexes (RISCs) [17]. A RISC bearing a miRNA binds to a partially 

97 complementary mRNA sequence and represses the translation of that mRNA. Because 

98 miRNAs cause incomplete base-pair matching with mRNAs, a single miRNA can 

99 inhibit the translation of hundreds to thousands of target genes [18]. As such, miRNAs 

100 play an important role in many cellular processes, including metabolism, inflammation, 

101 and fibrosis [19]. Accumulating evidence from both animal model and human patients 
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102 indicates that miRNAs contribute to the pathogenesis and progression of NAFLD. For 

103 example, the expression levels of miR-29c, miR-34a, miR-155, and miR-200b in mouse 

104 model liver and miR-122 and miR-34a in human liver are thought to be involved in the 

105 development of NASH [20-22]. Our previous study showed that a series of miRNAs 

106 mapped in the 14q32.2 maternally imprinted gene cluster region delineated by the 

107 delta-like homolog 1 and type III iodothyronine deiodinase genes (Dlk1-Dio3 mat) are 

108 related to NAFLD development and progression in a NAFL/NASH mouse model (fatty 

109 liver Shionogi [FLS] and mutated leptin gene transferred FLS ob/ob) [23]. Seven 

110 miRNAs in the Dlk1-Dio3 mat (miR-127, -136, -376c, -379, -409-3p, -411, and -495) 

111 are strongly upregulated in both FLS and FLS ob/ob liver tissues. In contrast to 

112 previously reported NAFLD-related miRNAs, the expression of these seven miRNAs 

113 was higher in NAFL model mice than NASH model mice.

114 Recent studies have clearly indicated that miRNAs are secreted into circulating 

115 body fluids from various tissues [24]. A considerable amount of secreted miRNAs are 

116 protected from enzymatic and physical degradation by binding to proteins or 

117 lipoproteins that are then stored in exosomes [25]. These observations suggest that 

118 serum miRNAs are potential biomarkers for NAFLD, as they could reflect various 

119 pathologic changes in miRNA expression in the liver. Indeed, our preliminary study in 

120 human NAFLD patients indicated that serum levels of the respective human homologs 

121 of the candidate Dlk1-Dio3 mat miRNAs are related to NAFLD progression [23]. The 

122 aim of the present study was to examine the suitability of circulating 14q32.2 mat 

123 miRNA as a human NAFLD biomarker.
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124 Materials and Methods

125 Ethics statement

126 This study was approved by the committee for ethics in medical experiments on 

127 human subjects of the medical faculty of Tottori University (protocol no. 2374) and all 

128 collaborative medical institutes: Hiroshima University Hospital, JA Hiroshima General 

129 Hospital, Kawasaki University Hospital, and Shimane University Hospital. The study 

130 was conducted in accordance with the declaration of Helsinki. Written informed consent 

131 was obtained from each patient before blood was collected.

132

133 Patient population and collection of blood samples

134 Ninety patients were enrolled in this study. The patients were divided into three 

135 groups, as follows: 10 patients with asymptomatic gallbladder stones as disease 

136 controls, 9 NAFL patients, and 71 NASH patients. In another analysis, NAFLD patients 

137 were divided into early stage (n = 53) and advanced-stage (n = 26) groups. Early stage 

138 was defined as Brunt fibrosis stage 0 or 1, and the advanced stage was defined as Brunt 

139 fibrosis stage 2 to 4. Patients with asymptomatic gallbladder stones without liver 

140 function abnormalities and fatty liver changes by ultrasound imaging were selected as 

141 controls. The clinicopathologic features of each patient group are shown in Table 1. All 

142 participants were Japanese and underwent continuous clinical follow-up at the Tottori 

143 University Hospital or collaborative institutes. Exclusion criteria included chronic 

144 hepatitis B or C virus infection, habitual alcohol consumption over 20 g/day, 

145 administration of liver steatotic drugs (such as glucocorticoids, tamoxifen, amiodarone, 

146 methotrexate, or valproate), primary biliary cirrhosis, or autoimmune liver disease. All 

147 patients except controls underwent liver biopsy to confirm the diagnoses of NAFLD, 
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148 and the histologic grade and NAFLD stage was determined according to the Brunt 

149 system [26]. NAFL and NASH were defined by >5% fat-laden hepatocytes in biopsy 

150 samples and at least 6 months of continuous blood test results in which alanine 

151 aminotransferase (ALT) and aspartate aminotransferase (AST) remained at <2-fold of 

152 the normal range or in excess, respectively. Blood sample collection for serum miRNA 

153 isolation and clinical blood tests were performed at the same time and within 1 month of 

154 liver biopsy. Blood samples were collected in the fasted state. For each sample, blood 

155 serum was isolated by refrigerated centrifugation at 4°C and 1500 × g for 10 min and 

156 then stored at −80°C until use.

157

158 Table 1. Clinicopathologic features of NAFLD patients and controls.

p value  p valueContr

ol 

(CON)

NAF

L

NAS

H
NAFL 

and 

CON

NAS

H 

and 

CON

NAFL 

and 

NASH

NAFL

D 

 early 

stage

NAFLD 

advance

d stage

Early 

stage

and 

CON

Advance

d stage

and 

CON

Early 

stage 

and 

advance

d stage

Age 59.3 ± 

16.6

44 ± 

10

50 ± 

16

0.080 0.162 0.533 45.4 ± 

14.7

55.2 ± 

14.9

0.023

*

0.742 0.021*

Gender 

M/F

4 / 6 7 / 2 47 / 

24

0.170 0.161 0.710 38 / 15 16 / 11 0.071 0.460 0.261

BMI 21.9 ± 

5.2

26.4 

± 2.2

29.8 

± 6.3

0.270 0.002

*

0.259 29.8 ± 

5.5

28.4 ± 

7.2

0.003

*

0.024* 0.628

Brunt 

Stage

- 0.89 

± 

0.33

1.58 

± 

0.87

- - 0.041

*

- - - - -

Brunt 

Grade

- 1.0 ± 

0

1.58 

± 

0.67

- - 0.021

*

1.3 ± 

0.6

1.9 ± 0.6 - - 0.001*
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T-Bil. 0.8 ± 

0.3

0.9 ± 

0.3

1.0 ± 

0.4

0.927 0.479 0.805 0.9 ± 

0.4

1.2 ± 0.3 0.908 0.071 0.014

Alb 4.3 ± 

0.4

4.6 ± 

0.4

4.4 ± 

0.4

0.123 0.175 0.701 4.5 ± 

0.4

4.4 ± 0.4 0.378 0.880 0.470

PT (%) 96.7 ± 

9.5

107.

9 ± 

12.5

99.2 

± 

13.2

0.415 0.187 0.938 104.0 

± 12.6

92.4 ± 

11.7

0.578 0.837 0.001*

AST 

(U/L)

27.8 ± 

18.8

40 ± 

19

49 ± 

19

0.360 0.005

*

0.404 45.5 ± 

16.4

53.3 ± 

23.1

0.021

*

0.002* 0.198

ALT (U/L) 25.5 ± 

15.1

72 ± 

41

77 ± 

40

0.028

*

0.001

*

0.923 78.3 ± 

39.1

74.5 ± 

41.6

0.001

*

0.002* 0.910

ALP 

(U/L)

276.5 

± 91.7

259 

± 67

237 ± 

84

0.886 0.350 0.752 240.5 

± 73 .4

238.6 ± 

100.2

0.434 0.451 0.995

GGT 

(U/L)

47.3 ± 

45.6

65 ± 

45

62 ± 

45

0.667 0.598 0.980 63.7 ± 

46.1

61.4 ± 

41.6

0.542 0.676 0.976

LDH 

(U/L)

158.3 

± 45.6

215 

± 84

209 ± 

47

0.244 0.226 0.958 216.3 

± 58.4

199.5 ± 

32.6

0.144 0.391 0.362

Ch-E 

(U/L)

348.3 

± 66.2

351 

± 85

379 ± 

82

0.997 0.511 0.634 388.9 

± 79.7

352.8 ± 

84.8

0.310 0.988 0.150

BUN 

(mg/dL)

11.0 ± 

2.4

13.8 

± 2.5

13.1 

± 2.4

0.216 0.301 0.766 13.1 ± 

2.5

13.3 ± 

1.9

0.296 0.276 0.955

Cr 

(mg/dL)

0.56 ± 

0.17

0.79 

± 

0.13

0.75 

± 

0.15

0.054 0.092 0.638 0.76 ± 

0.14

0.74 ± 

0.16

0.068 0.109 0.920

UA 

(mg/dL)

5.7 ± 

1.2

6.0 ± 

1.1

6.3 ± 

1.4

0.973 0.792 0.883 6.3 ± 

1.4

6.2 ± 1.4 0.805 0.867 0.985

Ferritin 42.4 ± 

33.0

142.

1 ± 

74.0

210.6 

± 

174.5

0.723 0.338 0.477 190.6 

± 

158.6

229.1 ± 

186.6

0.439 0.287 0.614

FBS 

(mg/dL)

93.7 ± 

9.7

104.

0 ± 

11.5

117.6 

± 

45.6

0.849 0.204 0.621 117.7 

± 47.8

113.9 ± 

33.8

0.220 0.394 0.923

HgbA1c 

%

6.3 ± 

1.0

5.9 ± 

0.6

6.3 ± 

1.5

0.911 0.996 0.658 6.3 ± 

1.5

6.2 ± 1.4 0.995 0.999 0.938
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IRI 

(μU/mL)

17.1 

± 

19.6

18.3 

± 

13.5

- - 0.820 18.8 ± 

15.0

17.2 ± 

12.8

- - 0,897

HOMA-IR 4.6 ± 

5.7

5.3 ± 

6.7

- - 0.767

8

5.5 ± 

7.4

4.9 ± 4.5 - - 0.921

T-Chol 

(mg/dL)

202 ± 

44

199 

± 47

204 ± 

35

0.978 0.988 0.913 206.6 

± 36.7

197.5 ± 

36.3

0.936 0.940 0.936

LDL-C 

(mg/dL)

134.1 

± 37.4

130.

3 ± 

43.9

131.3 

± 

33.2

0.974 0.978 0.996 135.1 

± 33.9

122.5 ± 

34.9

0.997 0.709 0.288

HDL-C 

(mg/dL)

67.2 ± 

34.3

50.9 

± 6.9

49.4 

± 9.0

0.033

*

0.004

*

0.930 49.1 ± 

7.9

50.6 ± 

10.6

0.003

*

0.012* 0.853

TG 

(mg/dL)

104.3 

± 64.8

112.

1 ± 

50.9

149.9 

± 

69.0

0.967 0.139 0.255 154.5 

± 70.6

128.4 ± 

60.7

0.104 0.629 0.255

159 Early stage NAFLD was defined as Brunt fibrosis stage 0 or 1, and advanced stage was 

160 defined as Brunt fibrosis stage 2 to 4. *: p < 0.05 in analysis of variance (ANOVA). 

161 T-Bil: total bilirubin, Alb: albumin, AST: alanine aminotransferase, ALT: aspartate 

162 aminotransferase, ALP: alkaline phosphatase, GGT: gamma-glutamyl transferase, LDH: 

163 lactate dehydrogenase, Ch-E: choline esterase, BUN: blood urea nitrogen, Cr: creatinine, 

164 UA: uric acid, T-Chol: total cholesterol, LDL-C: low-density-lipoprotein cholesterol, 

165 HDL-C: high-density-lipoprotein cholesterol, TG: triacylglycerol, FBS: fasting blood 

166 sugar, HgbA1c: hemoglobin A1c, IRI: immunoreactive insulin, HOMA IR: homeostasis 

167 model assessment of insulin resistance.

168

169 miRNA expression analysis with human serum

170 miR-379 was selected from the putative Dlk1-Dio3 mat miRNA cluster because 

171 it exhibited the greatest difference in expression between NAFL and NASH in our 

172 preliminary study [23]. We selected miR-16 as an endogenous control. miR-16 is one of 
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173 the most commonly used reference miRNAs in serum miRNA expression analyses [27, 

174 28] . To the best of our knowledge, no previous reports have indicated a relationship 

175 between liver disease and miR-16. A miRNeasy serum/plasma kit (Qiagen, Venlo, 

176 Nederland) was used to extract miRNAs from each 200-μL serum sample according to 

177 the manufacturer’s instructions. Real-time polymerase chain reaction (PCR) was used to 

178 examine the expression levels of miR-379 and miR-16, and data were analyzed using 

179 the ΔΔCT method of relative quantification. Applied Biosystems TaqMan® MicroRNA 

180 Assays (Applied Biosystems, Waltham, MA, USA) and an ABI7900HT system 

181 (Applied Biosystems) were used for quantitative RT-PCR amplification of serum 

182 miRNAs. The hsa-miR-379 and hsa-miR-16 primer sequences were 

183 UGGUAGACUAUGGAACGUA and UAGCAGCACGUAAAUAUUGGCG, 

184 respectively.

185

186 Predicting miRNA targets

187 Putative miR-379 targets were predicted using the web-driven software DIANA 

188 microT-CDS 5.0 (http://diana.cslab.ece.ntua.gr/). The threshold for the target prediction 

189 score in DIANA microT-CDS was set to 0.7. Database for Annotation, Visualization, 

190 and Integrated Discovery (DAVID) 6.8 (http://david.abcc.ncifcrf.gov/) was used for 

191 gene ontology (GO) annotation, and the Kyoto Encyclopedia of Genes and Genomes 

192 (KEGG) was used for pathway enrichment analysis.

193

194 Statistical analysis

195 Statistical analysis was performed using JMP 11.2.1 software (SAS Institute 

196 Inc., Cary, NC, USA). Value data are expressed as the mean ± standard deviation. The 
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197 statistical significance of differences between groups was determined using the 

198 Student's t test or ANOVA, followed by Dunnett's test for multiple comparisons. 

199 Receiver operating characteristic (ROC) curve analysis was performed to assess 

200 NAFLD, NAFL, and NASH diagnostic accuracy. Linear regression analysis was used to 

201 examine correlations between miRNA levels and clinicopathologic parameters. Fisher’s 

202 exact test and the chi-square test were selected depending on the sample size and used 

203 to determine distribution differences of categorical variable. Differences were 

204 considered statistically significant at a p value < 0.05.

205
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206

207 Results

208 Serum miR-379 expression was up-regulated in NAFLD patients 

209 One NASH patient was excluded from this study due to low RT-PCR signal, 

210 even after 60 PCR cycles. Compared to controls, serum miR-379 expression was 

211 significantly up-regulated in NAFLD patients (Fig. 1). In a subgroup analysis of NAFL 

212 and NASH patients, serum miR-379 expression was significantly higher in NAFL 

213 patients than normal controls (Fig. 1). We also compared early stage NAFLD (Brunt 

214 fibrosis stage 0 to 1) and advanced-stage NAFLD (Brunt fibrosis stage 2 to 4) patients 

215 with controls. Patients with early stage NAFLD exhibited significantly higher miR-379 

216 expression than controls (Fig. 1). Expression of miR-379 in NASH patients was also 

217 higher than in controls, but the difference was not significant (p = 0.061) (Fig. 1). There 

218 was no significant difference in miR-379 expression between NAFL and NASH 

219 patients or between those with early or advanced-stage NAFLD.

220

221 Fig. 1. Relative expression of serum miR-379 in NAFLD patients. 

222 Quantitative real-time PCR (qRT-PCR) was used to examine miRNA levels. All 

223 qRT-PCR data were normalized to that for serum miR-16, and fold-change was 

224 calculated relative to data from normal controls. *p < 0.05.

225

226 Serum miR-379 is a potential NAFLD diagnostic marker 

227 ROC curve analysis revealed that miR-379 is a potential marker for 

228 discriminating NAFLD patients from controls (area under the ROC curve [AUROC]: 

229 0.72) (Fig. 2). AUROC values for discriminating NAFL, NASH, and early and 
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230 advanced-stage NAFLD patients from controls were 0.76, 0.72, 0.74, and 0.67, 

231 respectively (Fig. 2).

232

233 Fig. 2. Receiver operating characteristic (ROC) curve analysis.

234

235 Positive correlations were observed between serum miR-379 and alkaline 

236 phosphatase (ALP) or cholesterol levels in patients with NAFL or early stage 

237 NAFLD 

238 We analyzed the correlations between clinicopathologic parameters and serum 

239 miR-379 levels in NAFLD patients. No significant correlation was identified between 

240 serum miR-379 expression in NAFLD patients and any of the parameters examined 

241 (Supplemental Fig. 1). However, positive correlations were observed between serum 

242 miR-379 expression and ALP, total cholesterol, and low-density-lipoprotein cholesterol 

243 (LDL-C) levels in patients with early stage NAFLD (Fig. 3). In contrast, there was no 

244 correlation between these parameters and serum miR-379 levels in controls or patients 

245 with advanced-stage NAFLD (Fig. 3, Supplemental Fig. 3). 

246

247 Fig. 3. Correlation between miR-379 and ALP, T-Chol, and LDL-C levels. 

248 Left, middle, and right columns present the results for the normal, early stage NAFLD, 

249 and advanced-stage NAFLD groups, respectively. *p < 0.05.

250

251 Statin treatment weakened the correlation between miR-379 and cholesterol level

252 Nine of 51 patients with early stage NAFLD were undergoing treatment for 

253 hypercholesterolemia with hydroxymethyl glutaryl coenzyme A reductase (HMG 
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254 CoA-reductase) inhibitors; commonly called statins. Among statin-treated and 

255 non-treated patients with early stage NAFLD, serum levels of total cholesterol, LDL-C, 

256 and triglycerides were similar (Fig. 4). miR-379 expression levels were higher in the 

257 statin-treated group than the non-treated group, but the difference was not significant 

258 (5.1 ± 4.4 and 3.2 ± 4.8 log2 folds, respectively. p = 0.29). Linear regression analysis 

259 showed the non-treated group exhibited a significant positive correlation between total 

260 cholesterol and serum miR-379 expression. This trend was also observed in the 

261 statin-treated group, but the correlation was not significant (p = 0.10) (Fig. 4). 

262

263 Fig. 4. Statin treatment and serum miR-379 expression, and correlation with cholesterol 

264 levels. 

265 *p < 0.05.

266

267 Software-based predictions of miR-379 target genes

268 We predicted potential target genes of miR-379 using web-based software. 

269 Based on the selection criteria, 1423 human genes were identified as candidates. The 

270 candidate genes were classified according to GO annotation in Homo sapiens (Fig. 5), 

271 and 12 GO terms were significantly enriched (Table 2). 

272

273 Fig. 5. Simple aggregation of Gene Ontology (GO) terms among putative miR-379 

274 target genes. 

275 The predicted miR-379 target gene dataset were fed into DAVID, version 6.8. Pie chart 

276 slices represent the number of genes associated with each GO term.

277
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278 Table 2. GO-term enrichment analysis of predicted miR-379 target genes.

Go Term

Gen

e

Cou

nt

%

Fold

enrichmen

t

p 

value

Positive regulation of macromolecule 

biosynthetic process
176 12.4 1.5 > 0.001*

Positive regulation of RNA metabolic process 156 11.0 1.5 > 0.001*

Positive regulation of gene expression 178 12.5 1.4 0.001*

Positive regulation of nucleobase-containing 

compound metabolic process
175 12.3 1.4 0.001*

Positive regulation of cellular biosynthetic 

process
181 12.7 1.4 0.002*

Positive regulation of transcription, 

DNA-templated
148 10.4 1.5 0.002*

Regulation of cellular macromolecule 

biosynthetic process
365 25.7 1.3 0.002*

Positive regulation of RNA biosynthetic 

process
149 10.5 1.5 0.002*

Regulation of macromolecule biosynthetic 

process 
370 26.0 1.2 0.006*

Regulation of gene expression 387 27.2 1.2 0.010*
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Cellular protein modification process 342 24.0 1.2 0.034*

Protein modification process 342 24.0 1.2 0.034*

279 Percentages indicate the number of predicted target genes associated with a GO term 

280 category compared to all predicted genes examined in the GO-term analysis. 

281 Fold-enrichment shows the abundance ratios of predicted miR-379 target genes and 

282 DAVID pre-built human genome backgrounds among GO terms. Only statistically 

283 significant results (p < 0.05) are displayed.

284

285 Next, we explored the KEGG pathway database to determine specific gene 

286 functions. Ontology annotation via KEGG pathway mapping showed that biological 

287 functions have been identified for 32.8% of the candidate genes (467 of 1423 genes). 

288 Function-labeled miR-379 candidate target genes were primarily enriched in clusters 

289 associated with nutrition and energy regulation (FOXO and mTOR signaling pathways), 

290 cancer (melanoma, prostate cancer, p53 signaling, Hippo signaling, and transcriptional 

291 misregulation in cancer), and multi-functional cellular mechanisms or signaling 

292 pathways (cGMP-PKG signaling, focal adhesion, Hippo signaling pathway, 

293 pluripotency regulation in stem cells, TGF-beta signaling, and ubiquitin-mediated 

294 proteolysis) (Table 3).

295

296 Table 3. Enriched KEGG pathways among putative miR-379 target genes.

KEGG pathway
Gene 

count
%

Fold 

enrichment
p value

FOXO signaling pathway 21 1.5 2.3 > 0.001*
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TGF-beta signaling pathway 15 1.1 2.6 0.001*

Ubiquitin mediated proteolysis 20 1.4 2.2 0.002*

Hippo signaling pathway 19 1.3 1.8 0.013*

Prostate cancer 13 0.9 2.2 0.015*

Transcriptional misregulation in cancer 20 1.4 1.9 0.018*

Signaling pathways regulating 

pluripotency of stem cells
17 1.2 2.3 0.027*

p53 signaling pathway 10 0.7 1.8 0.036*

cGMP-PKG signaling pathway 18 1.3 1.6 0.038*

Focal adhesion 21 1.5 2.1 0.038*

mTOR signaling pathway 9 0.6 1.7 0.040*

Melanoma 10 0.7 2.2 0.048*

297 Percentages indicate the number of predicted miR-379 target genes associated with a 

298 KEGG pathway compared to all predicted genes explored in the KEGG pathway 

299 analysis. Fold-enrichment shows the abundance ratios of predicted miR-379 target 

300 genes and DAVID pre-built human genome backgrounds among GO terms. Only 

301 statistically significant results (p < 0.05) are displayed.

302

303 Finally, to identify probable miR-379 target genes related to the pathology of 

304 NAFLD, we conducted a keyword search of the U.S. National Library of Medicine 

305 database PubMed (https://www.ncbi.nlm.nih.gov/pubmed) using the terms “KEGG 

306 annotated putative target gene” and “NAFLD” or “NASH”. A total of 27 predicted 

307 genes were associated with NAFLD development or progression, including 
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308 multi-functional cellular mechanisms or signaling pathways (HDAC2), fibrosis and 

309 inflammation (CAT, CTGF, IL10, PDGFA, PDGFRA, SMAD4, TGFBR1, and THBS1), 

310 cell survival and proliferation (Bcl2, CCNB1, HGF, PMAIP1, PTEN, and YAP1), and 

311 energy management, including gluconeogenesis and lipogenesis (CREB1, EIF4E, 

312 FOXO1, INSR, IGF1, IGF1R, ITPR2, PRKAA1 and 2, RICTOR, SOCS1, and TCF7L2) 

313 (Table 4) [29-54]. 

314

315 Table 4. Keyword search of the U.S. National Library of Medicine database PubMed to 

316 identify KEGG annotated miR-379 putative target genes associated with NAFLD or 

317 NASH.

Gene 

Code
Protein name Reference

Bcl2 B-cell lymphoma 2 Panasiuk et al. 2006

CAT Catalase Kumar et al. 2013

CCNB1 Cyclin B1 Gentric et al. 2015

CREB1 cAMP responsive element binding protein 1 Oh et al. 2013

CTGF Connective tissue growth factor Colak et al. 2012

EIF4E Eukaryotic translation initiation factor 4E Wang et al. 2014

FOXO1 Forkhead box o1 Pan et al. 2017

HDAC2 Histone deacetylase 2
Kolodziejczyk et al. 

2019

HGF Hepatocyte growth factor Kosone et al. 2007
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INSR Insulin receptor Wu et al. 2017

IGF1 Insulin like growth factor 1 Adamek et al. 2018

IGF1R Insulin like growth factor 1 receptor Go et al. 2014

IL10 Interleukin 10 Cintra et al. 2008

ITPR2 Inositol 1, 4, 5-trisphosphate receptor type 2
Khamphaya et al. 

2018

PDGFA Platelet derived growth factor subunit A Hardy et al. 2017

PDGFRA Platelet derived growth factor receptor A Abderrahmani et al.

PMAIP1 Phorbol 12-myristate 13-acetate induced protein 1 Kung et al. 2016

PRKAA1 5’ AMP-activated protein kinase catalytic subunit alpha 1 Garcia et al. 2019

PRKAA2 5’ AMP-activated protein kinase catalytic subunit alpha 2 Garcia et al. 2019

PTEN Phosphatase and tensin homolog Matsuda et al. 2013

RICTOR
Rapamycin-insensitive companion of mammalian target 

of rapamycin
Sydor et al. 2017

SMAD4
Small worm phenotype and mothers against 

decapentaplegic 4
Qin et al. 2018

SOCS1 Suppressor of cytokine signaling 1 Wang et al. 2017

TCF7L2 Transcription factor 7-like 2 Musso et al. 2009

TGFBR1 Transforming growth factor beta receptor 1
Matsubara et al. 

2012

THBS1 Thrombospondin 1 Li et al. 2017

YAP1 yes-associated protein 1 Chen et al. 2018
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318

319
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320

321 Discussion

322 The present study revealed significantly higher serum levels of miR-379 in 

323 NAFLD patients compared to controls. Our previous study indicated that miR-379 

324 expression in liver tissues of an NAFLD mouse model is strongly upregulated (>4 log2 

325 compared to the normal control group) [23]. miR-379 secretion from liver tissue, 

326 probably via exosome particles rich in miR-379, appears to be related, at least in part, to 

327 the high circulating level observed in NAFLD patients.

328 Relatively little is known regarding the mechanism regulating miR-379 

329 expression. miR-379 has been mapped to the miRNA cluster in the Dlk1-Dio3 mat 

330 region. Major regulators of Dlk1-Dio3 locus expression include methylated regulatory 

331 regions such as the germline-derived intergenic differentially methylated region and 

332 somatic MEG3-differentially methylated region [55, 56]. Moreover, CpG islands that 

333 are embedded in or near miRNA-coding regions also regulate the expression of 

334 Dlk1-Dio3 mat miRNA [57]. Dai et al. reported that miR-379 expression is directly 

335 regulated by DNA methylation [58]. In addition, histone acetylation functions 

336 synergistically with DNA methylation to regulate the Dlk1-Dio3 locus [57].

337 With respect to non–DNA methylation regulation, Guia and colleagues reported 

338 that the miRNA cluster miR-379/410 is a direct transcriptional target of the 

339 glucocorticoid receptor, which promotes insulin resistance and systemic dyslipidemia 

340 [59]. Guia et al. also showed that miR-379 is upregulated in liver tissue of obese 

341 subjects and that hepatic miR-379 expression in patients with obesity is correlated with 

342 both serum cortisol and triacylglycerol (TG) levels [59]. However, in our present study, 

343 TG levels in NAFLD patients did not differ significantly from those of controls (Table 
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344 1), and serum miR-379 expression was not correlated with TG level (p = 0.738, 

345 Supplemental Fig. 1). This discrepancy may be related to differences between obese 

346 patients and NAFLD patients whose diagnosis was confirmed by liver biopsy. The 

347 mechanism of serum miRNA expression may also be related to this discrepancy. For 

348 example, sorting and selection occur during incorporation of cytosolic miRNAs into 

349 exosomes [60]. Because the level of circulating miRNAs is the sum total of miRNAs 

350 secreted from tissues/organs throughout the body, other metabolism-related organs may 

351 affect the level of circulating miRNA. Chartoumpekis et al. reported that miR-379 is 

352 overexpressed in white adipose tissue in an obese mouse model [61].

353 ROC curve analyses showed that miR-379 provides fair diagnostic accuracy for 

354 NAFLD. The AUROC of serum miR-379 for NAFLD diagnosis was >0.7 and similar to 

355 other single serologic markers for non-invasive detection of NAFLD, such as tumor 

356 necrosis factor–alpha, interleukin-6, and ferritin [62]. Most non-invasive NAFLD 

357 markers exhibit higher values and diagnostic accuracy in patients with liver fibrosis and 

358 cirrhosis [63]. In contrast to the majority of NAFLD diagnostic markers, the serum 

359 miR-379 level was significantly increased relative to NAFL, but there was no difference 

360 between NAFL and NASH. This distinctive feature of serum miR-379 may confer an 

361 advantage for detecting NAFLD in the early stage. For instance, serum miR-379 is a 

362 candidate factor for use in NAFLD diagnosis algorithms combining multiple 

363 biomarkers as a means of increasing sensitivity for early stage diagnosis [64].

364 Our present study showed that the serum miR-379 level is positively correlated 

365 with ALP in early stage NAFLD. Serum ALP is the traditional marker of cholestasis. 

366 However, the other cholestasis markers, such as bilirubin and gamma-glutamyl 

367 transferase, were not significantly correlated with miR-379 (Supplemental Fig. 2). ALP 
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368 is a plasma membrane–bound enzyme that catalyzes the hydrolysis of phosphate esters 

369 [65]. Though found in most body tissues, ALP is particularly abundant in the liver, 

370 bone, kidneys, and intestinal mucosa, with liver and bone serving as the predominate 

371 organs supplying ALP to circulating body fluids [65]. Chronic liver diseases, including 

372 NAFLD, increase serum ALP levels [66, 67]. Moreover, previous reports indicated that 

373 the serum ALP level is an independent marker of NAFLD development and 

374 progression. Pantsari et al. showed that a subset of NAFLD patients (elderly females) 

375 exhibit isolated elevation in ALP rather than aminotransferases [68]. Kocabay et al. 

376 reported that serum levels of ALP, but not gamma-glutamyl transferase, are increased in 

377 NAFLD patients with early fibrosis stage (stage 1 to 2) [69]. ALP is richly expressed in 

378 the canalicular membrane side of hepatocytes, and previous studies suggested that ALP 

379 relates the transport of bile acid, which plays a major role in cholesterol metabolism and 

380 excretion [70]. However, details regarding the physiologic functions of ALP are 

381 unclear. miR-379 may be related to NAFLD development and progression by directly or 

382 indirectly modulating ALP expression.

383 Our present study also showed that the serum miR-379 level is positively 

384 correlated with serum cholesterol in early stage NAFLD. The contribution of 

385 hypercholesterolemia to the development of NAFLD has not been fully elucidated; 

386 however, previous studies showed that hepatic cholesterol synthesis and circulating total 

387 cholesterol and LDL are increased in NAFLD [71]. Disruption of hepatic cholesterol 

388 homeostasis and free cholesterol (FC) accumulation in liver tissue is related to the 

389 pathogenesis of NAFLD [72, 73]. Some studies have shown that hepatic cholesterol 

390 synthesis is up-regulated in NAFL and NASH patients due to increased activity of a 

391 major regulator of cholesterol synthesis, sterol regulatory element–binding protein 2 and 
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392 its downstream effector HMG CoA-reductase, which catalyzes a rate-limiting step in 

393 cholesterol synthesis [74-76]. Interestingly, Min et al. also reported that up-regulation of 

394 cholesterol synthesis was not observed in control obese subjects [74].

395 Regarding other cholesterol-related metabolic functions in the liver of NAFLD 

396 patients, cholesterol de-esterification is increased, and cholesterol catabolism to bile 

397 acid and cholesterol efflux via the bile duct are attenuated [74]. These NAFLD-specific 

398 changes in cholesterol metabolism are believed to increase FC levels in liver tissues. FC 

399 accumulation in hepatocytes induces mitochondrial dysfunction, which results in 

400 increased production of ROS and leads to the unfolded protein response in the 

401 endoplasmic reticulum, leading to localized stress and apoptosis [73]. Mari et al. also 

402 reported that FC loading (but not that of fatty acids or triglycerides) into hepatocyte 

403 mitochondria membranes sensitizes the hepatocyte to pro-inflammatory cytokines (e.g., 

404 tumor necrosis factor–alpha and Fas) in mouse models, resulting in steatohepatitis [77]. 

405 Moreover, FC accumulation in non-parenchymal cells in liver tissues such as Kupffer 

406 cells and stellate cells promotes activation of these cells [78, 79]. The activated Kupffer 

407 cells secrete pro-inflammatory cytokines such as interleukin-1β and tumor necrosis 

408 factor–alpha, and activated stellate cells differentiate into myofibroblasts, which exhibit 

409 a high ability to produce extracellular matrix and fibrogenic cytokines, such as 

410 transforming growth factor–β [78, 79]. It has been hypothesized that miR-379 promotes 

411 the development and progression of NAFLD as a result of continuous 

412 over-nutrition—manifested primarily as obesity—by increasing the lipotoxicity of 

413 cholesterol. Cirrhosis and hepatocellular carcinoma are the most common liver-related 

414 causes of morbidity associated with NAFLD [80]. However, cardiovascular disease is 

415 the most common cause of death in NAFLD patients without cirrhosis [13]. Therefore, 
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416 some reviewers have recommended giving priority to the prevention of cardiovascular 

417 or renal diseases over liver-specific treatments in patients with non-aggressive NAFLD 

418 [81].

419 miR-379 has also been associated with the risk of cardiovascular disease in early 

420 stage NAFLD via up-regulation of the serum cholesterol level, which plays an 

421 important role in atherosclerosis development. In the present study, however, no 

422 significant correlation between serum miR-379 and cholesterol levels was observed in 

423 control subjects and NAFLD patients with advanced fibrosis (Brunt stage 2 to 4). This 

424 suggests that such a correlation is pertinent only under limited conditions, such as early 

425 stage NAFLD–specific pathophysiologic and nutritional states. The serum miR-379 

426 level in controls was significantly lower than that in patients with early stage NAFLD. 

427 Normal levels of miR-379 may be insufficient to affect cholesterol metabolism. With 

428 respect to advanced-stage NAFLD, it is known that serum cholesterol levels decline 

429 with progression of liver fibrosis, independent of the etiology of chronic liver disease 

430 [82]. The effect of miR-379 on cholesterol metabolism may be attenuated by decreased 

431 hepatic parenchymal function.

432 The present study also demonstrated that the use of statins to treat 

433 hypercholesterolemia in NAFLD patients weakens the relationship between serum 

434 miR-379 and cholesterol levels. Statins target hepatocytes and inhibit HMG-CoA 

435 reductase, which catalyzes the rate-limiting step in the cholesterol biosynthesis 

436 pathway, known as the mevalonate pathway [83]. HMG-CoA reductase converts 

437 HMG-CoA into mevalonic acid, a cholesterol precursor. Stains have a higher binding 

438 affinity for HMG-CoA reductase than HMG-CoA and thus block access to the active 

439 site by the substrate [83]. Previous studies indicated that statins improve hepatic 
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440 steatosis and reduce hepatic inflammation and fibrosis in NAFLD patients [84, 85]. 

441 Moreover, long-term observations of NAFLD patients indicated that continuous statin 

442 treatment reduces rates of liver-related death and liver transplantation [86]. Statins may 

443 attenuate the effect of miR-379 on cholesterol biosynthesis, resulting in reduced 

444 cholesterol lipotoxicity in NAFLD.

445 GO term annotation analyses showed enrichment of cellular biosynthesis and 

446 metabolism–related genes among predicted miR-379 targets. Aberrations in 

447 biosynthesis and metabolism play important roles in metabolic disorders such as 

448 NAFLD. miR-379 appears to affect the development and progression of NAFLD by 

449 interfering with these target genes.

450 KEGG pathway mapping of prospective miR-379 target genes extracted 

451 biological functions such as nutrition and energy regulation, the down-regulation of 

452 which leads to the development of NAFLD. Searches of PubMed combining keywords 

453 with the selected putative target genes identified in the KEGG pathway analysis and 

454 NAFLD identified a number of metabolism-, inflammation-, and fibrosis-related genes. 

455 Among the selected putative target genes, IGF1 and IGF1R were identified as targets of 

456 miR-379 interference in previous studies [87, 88]. IGF-1 is an insulin-like anabolic 

457 hormone primarily secreted by hepatocytes, and circulating IGF-1 levels reflect hepatic 

458 IGF-1 expression [89]. Previous studies reported that adults with growth hormone 

459 deficiency in which hepatic IGF-1 production is impaired exhibit an increased 

460 prevalence of NASH; IGF-1 substitution ameliorated NAFLD in a mouse model [90, 

461 91]. In NAFLD patients without growth hormone deficiency, serum IGF-1 levels are 

462 also significantly reduced [89, 92].

463 The mechanism by which IGF-1 and its signaling pathways protect against 
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464 NAFLD have been found to involve a variety of biological functions, such as improving 

465 insulin sensitivity, decreasing ROS production, and inducing senescence of hepatic 

466 stellate cells [93-95]. With respect to lipid metabolism, it has been reported that IGF-1 

467 accelerates lipid oxidation and lipolysis [93]. Moreover, several previous studies 

468 revealed that serum IGF-1 is inversely correlated with serum levels of total cholesterol 

469 and LDL-C [96]. IGF1 appears to be one of the most significant miR-379 target genes 

470 with regard to promoting the development and progression of NAFLD via the 

471 enhancement of cholesterol lipotoxicity. Among other keyword-selected putative target 

472 genes, B-cell lymphoma 2 (BCL2), catalase (CAT), and cAMP responsive element 

473 binding protein 1 (CREB1) are reportedly down-regulated in the liver in NAFLD [30, 

474 97, 98]. BCL2 and CAT are major anti-apoptosis genes that function by protecting 

475 against mitochondrial outer membrane permeabilization and detoxifying ROS, 

476 respectively [30, 97]. Down-regulation of BCL2 and CAT expression in liver tissue 

477 drives hepatocyte apoptosis, which is an important pathologic event in the development 

478 and progression of NAFLD. CREB1 is a transcription factor that regulates energy 

479 balance by suppressing hepatic fatty acid generation and accumulation via 

480 downregulation of hepatic-specific peroxisome proliferator activated receptor–𝛾 and 

481 fatty acid transporter CD36 expression [98]. miR-379 may affect the development and 

482 progression of NAFLD by interfering with the expression of these target genes, which is 

483 reportedly down-regulated in NAFLD.

484 A relationship with NAFLD has also been reported for other miR-379 target 

485 genes. For example, 5’-AMP–activated protein kinase catalytic subunit alpha 2 

486 (PRKAA2) is the catalytic subunit alpha 2 of AMPK, a key sensor of energy status in 

487 mammalian cells. In the liver, AMPK phosphorylates and inactivates both 
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488 acetyl-coenzyme A carboxylase and HMG-CoA reductase [99]. Acetyl-coenzyme A 

489 carboxylase regulates the biosynthesis of malonyl-CoA, which is the initial committed 

490 intermediate in fatty acid biosynthesis. Malonyl-CoA can inhibit carnitine palmitoyl 

491 transferase 1, which controls mitochondrial fatty acid oxidation [100]. Therefore, 

492 AMPK downregulation increases fatty acid and cholesterol biosynthesis and inhibits 

493 fatty acid oxidation, resulting in hepatic lipid accumulation. Although AMPK appears 

494 to be related to NAFLD development, details regarding levels of AMPK in hepatocytes 

495 are controversial [101].

496 Previous studies reported the relationship between miR-379 and various 

497 diseases. The majority of these studies suggest that miR-379 plays tumor suppressive 

498 role in many types of carcinomas, including nasopharyngeal carcinoma, cervical cancer, 

499 lung cancer, gastric cancer, hepatocellular carcinoma, bladder cancer, and osteosarcoma 

500 [102-107]. With regard to metabolic disorders as described above, de Guia et al. 

501 revealed a relationship between miR-379 and lipid homeostasis dysregulation [59]. 

502 Additionally, patients with a congenital disease known as maternal uniparental disomy 

503 for chromosome 14, which causes overexpression of miR-379 of the Dlk1-Dio3 mat 

504 miRNA cluster, exhibit characteristic weight gain in early childhood that results in 

505 truncal obesity [108].

506 Our study had some limitations associated with sample size and study design. 

507 We used software programs to predict target genes of the candidate miRNAs. Although 

508 this method is commonly used, it carries a risk of missing some real targets because the 

509 software is designed to assess the relative strength of partial sequence complementarity 

510 between mRNA and miRNA. Ontology selection was used to select putative targets that 

511 might be relevant to cellular functions. However, ontology selection can only identify 
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512 proteins for which the function has been identified. Notably, our understanding of the 

513 detailed mechanisms that promote the development and progression of NAFLD to 

514 NASH is still developing, but new insights are being obtained regularly.

515 Moreover, we did not confirm whether any NAFLD candidate miRNA actually 

516 interfered with any of the predicted target genes in vivo (mouse model liver) or in vitro, 

517 such as direct binding experiments. Complex intracellular regulatory networks influence 

518 the tissue-specific function of miRNAs [109]. Therefore, further studies are needed to 

519 assess whether the predicted targets are actual targets of these miRNAs.

520 Concerning the correlation between serum ALP and miR-379, we could not 

521 definitively conclude that the correlation reflects only liver tissue pathologic changes. 

522 Bone is another major ALP-secreting organ, and the serum level of the bone isozyme of 

523 ALP is elevated in children, adolescents, and elderly people due to bone tissue turnover 

524 [110, 111].

525 Regarding our study participants, all NAFLD patients and control subjects were 

526 adults (age ranging from 20 to 76 years), and there was no significant relationship 

527 between serum ALP level and age (R2 = 0.0286; p = 0.115). Additionally, no pregnant 

528 subjects were included. The number of patients in this study was small, at less than 100. 

529 Consequently, the statistical power of the human serum data was relatively limited.

530 Our findings from NAFLD mouse models could not be confirmed by miRNA 

531 expression profiling in human liver tissue. A parallel examination of microarray 

532 analyses of human liver samples would have enhanced the confidence of NAFLD 

533 candidate miRNAs. However, we could not conduct miRNA expression profiling in 

534 human liver tissues, primarily because we could not obtain liver tissue specimens from 

535 controls due to ethical considerations. Larger human population-based studies are 
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536 needed to confirm and extend our findings.

537 In conclusion, the serum level of miR-379, a member of Dlk1-Dio3 mat miRNA 

538 cluster, exhibits high potential as a biomarker for NAFLD. miR-379 also appears to 

539 increase cholesterol lipotoxicity, which promotes the development and progression of 

540 NAFLD by interfering with the expression of target genes, including those of the IGF-1 

541 signaling pathway. To confidently identify more associations between highly complex 

542 and interactive miRNAs with NAFLD, future longitudinal studies with greater sample 

543 sizes will be necessary.

544

545
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546 Supporting Information

547 Supplemental Fig. 1. Linear regression analysis of relationships between serum 

548 miR-379 and clinical features of NAFLD patients. Normalized relative to serum 

549 miR-16; miR-379 values represent fold-difference relative to the normal control.

550 Supplemental Fig. 2. Linear regression analysis of the relationships between serum 

551 miR-379 and clinical features of early stage NAFLD patients (Brunt fibrosis stage 0 to 

552 1). Normalized relative to serum miR-16; miR-379 values represent fold-difference 

553 relative to the normal control.

554 Supplemental Fig. 3. Linear regression analysis of the relationships between serum 

555 miR-379 and clinical features of advanced-stage NAFLD patients (Brunt fibrosis stage 

556 2 to 4). Normalized relative to serum miR-16; miR-379 values represent fold-difference 

557 relative to the normal control.
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