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Background and Purpose Neurofilament light chain (NfL) is a blood marker for neuroaxonal damage. 
We assessed the association between serum NfL and cerebral small vessel disease (SVD), which is 
highly prevalent in elderly individuals and a major cause of stroke and vascular cognitive impairment.
Methods Using a cross-sectional design, we studied 53 and 439 patients with genetically defined SVD 
(Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy 
[CADASIL]) and sporadic SVD, respectively, as well as 93 healthy controls. Serum NfL was measured by 
an ultrasensitive single-molecule array assay. We quantified magnetic resonance imaging (MRI) 
markers of SVD, i.e., white matter hyperintensity volume, lacune volume, brain volume, microbleed 
count, and mean diffusivity obtained from diffusion tensor imaging. Clinical characterization included 
neuropsychological testing in both SVD samples. CADASIL patients were further characterized for 
focal neurological deficits (National Institutes of Health stroke scale [NIHSS]) and disability (modified 
Rankin scale [mRS]).
Results Serum NfL levels were elevated in both SVD samples (P<1e-05 compared with controls) and 
associated with all SVD MRI markers. The strongest association was found for mean diffusivity 
(CADASIL, R2=0.52, P=1.2e-09; sporadic SVD, R2=0.21, P<1e-15). Serum NfL levels were independently 
related to processing speed performance (CADASIL, R2=0.27, P=7.6e-05; sporadic SVD, R2=0.06, 
P=4.8e-08), focal neurological symptoms (CADASIL, NIHSS, P=4.2e-05) and disability (CADASIL, mRS, 
P=3.0e-06).
Conclusions We found serum NfL levels to be associated with both imaging and clinical features of 
SVD. Serum NfL might complement MRI markers in assessing SVD burden. Importantly, SVD needs to 
be considered when interpreting serum NfL levels in the context of other age-related diseases.
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Introduction

Neurofilament light chain (NfL) is an emerging blood marker 
for neuroaxonal damage. A role of serum NfL has been estab-
lished in multiple neurological diseases affecting the elderly 
population, such as motor neuron disease,1 Alzheimer’s dis-
ease,2 and frontotemporal dementia.3 However, the factors in-
fluencing serum NfL levels in the elderly population are not 
completely understood. Cerebral small vessel disease (SVD) is a 
highly prevalent condition and a major cause of stroke, vascu-
lar cognitive impairment, and eventually loss of independence.4 
Recent studies suggest that cerebrovascular pathology has an 
effect on serum NfL. Elevated serum levels were observed in 
patients with a recent small subcortical infarct5 and in patients 
with stroke caused by cervical artery dissection.6 Moreover, NfL 
levels in the cerebrospinal fluid (CSF) correlated significantly 
with white matter hyperintensity (WMH) load, one of magnetic 
resonance imaging (MRI) markers of SVD burden.7 However, a 
detailed account of the relationship between SVD burden and 
NfL in the blood is lacking.

The aim of the current study was to assess the association 
between serum NfL and SVD burden as assessed by MRI and 
clinical status. We first analyzed patients with the genetically 
defined SVD, Cerebral Autosomal-Dominant Arteriopathy with 
Subcortical Infarcts and Leukoencephalopathy (CADASIL). Be-
cause these patients already show severe SVD at a young age, 
confounding by other age-related pathologies impacting on 
serum NfL levels, such as neurodegenerative pathology, can be 
largely excluded.8 To validate our findings and assess their gen-
eralizability toward the more common, sporadic form of SVD, 
we further analyzed a large, independent sample of patients 
with sporadic SVD.

We hypothesized that serum NfL levels are associated with 
MRI markers for SVD, i.e., WMH volume, lacune volume, brain 
volume, microbleed count, and mean diffusivity from diffusion 
tensor imaging (DTI). Furthermore, we hypothesized that serum 
NfL levels are associated with clinical status in SVD, in particu-
lar cognitive performance, focal neurological deficits, and dis-
ability.

Methods

Study participants 
CADASIL patients were recruited into the ongoing, prospective 
"VASCAMY (vascular and amyloid predictors of neurodegenera-
tion and cognitive decline in non-demented subjects)" study. 
The diagnosis was confirmed by either molecular genetic test-
ing or ultrastructural analysis of skin biopsies. Exclusion criteria 

were the presence or history of (1) diabetes mellitus (because 
of its pronounced effect on brain structure), (2) other known 
neurological or psychiatric diseases, and (3) clinically apparent 
stroke within the last 3 months. Fifty-four patients gave con-
sent for the biobanking procedure and were therefore included 
in this analysis. All examinations (clinical assessment, neuro-
psychological testing, blood draw, and MRI) were performed on 
the same day or within 2 consecutive days. One subject was 
excluded because of missing MRI data (scanner malfunction). 
The final sample comprised 53 CADASIL patients.

Data of sporadic SVD patients was obtained from the Rad-
boud University Nijmegen Diffusion tensor and Magnetic reso-
nance Cohort (RUN DMC). This prospective study recruited 503 
non-demented elderly patients (aged 50 to 85 years) with SVD, 
defined as the presence of lacunes and/or WMH on neuroim-
aging. Patients were recruited in a hospital-based setting. Clin-
ical examination and blood draw were performed on the same 
day, and the majority of patients underwent an MRI scan with-
in 2 weeks. More details can be found in the previously pub-
lished study protocol.9 Sixty-four subjects were excluded be-
cause of the presence of an old, large vessel territorial infarct 
(n=55), insufficient MRI quality (n=4), or missing clinical/neu-
ropsychological data (n=5). The final sporadic SVD sample 
comprised 439 patients. 

In addition, healthy control subjects (n=93) were drawn from 
our biobank repository, where we collected samples from 
healthy subjects across multiple studies. These subjects were 
relatives of outpatient clinic patients or volunteers recruited 
through advertisements. The absence of cerebrovascular events 
or other neurological symptoms/diagnoses was established 
through a clinical interview and neurological examination by a 
board-certified neurologist.

All measurements were performed blinded from each other. 
The two SVD samples were subjected to independent statistical 
analyses. The studies were approved by the ethics committee 
of the respective institution. Written and informed consent 
was obtained from all subjects after receiving a complete de-
scription of the study.

Clinical characterization
All SVD patients were characterized according to standardized 
procedures. Clinical severity was assessed using established 
scales for activities of daily living (Barthel scale), focal neuro-
logical deficits (National Institutes of Health stroke scale [NI-
HSS]), and disability (modified Rankin scale [mRS]).10 The latter 
two were only available in the CADASIL sample. 
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Neuropsychological testing
Patients underwent comprehensive neuropsychological testing. 
In the current study, we focused on processing speed perfor-
mance, the main cognitive deficit in SVD patients.11,12 

For CADASIL patients, trail making tests (matrix A and B) were 
available. For sporadic SVD patients, the 1-letter subtask of the 
Paper-Pencil Memory Scanning Test and the Letter-Digit Substi-
tution Task were available. For each test, age- and education-
corrected z-scores were first calculated in reference to a healthy 
control population from the literature.13-15 The mean of both z-
scores was then used as compound processing speed z-score.

Serum biobanking
Blood samples were collected through a standardized proce-
dure. Blood was drawn into serum containers with clotting ac-
tivator and subsequently allowed to clot for at least 30 min-
utes at room temperature. Separation of serum was achieved 
by centrifugation at 2,000 ×g for 10 minutes. Samples were 
aliquoted in polypropylene screw cap vials and stored deep-fro-
zen until analysis.

NfL assay 
All samples were analyzed on the same single-molecule array 
instrument (Simoa HD-1, Quanterix, Lexington, MA, USA) in 
Basel. We used the capture monoclonal antibody (mAB) 47:3 
and the biotinylated detector mAB 2:1 (UmanDiagnostics, 
Umeå, Sweden),16 transferred onto the Simoa platform. Bovine 
lyophilized NfL was obtained from UmanDiagnostics. Calibra-
tors ranged from 0 to 2,000 pg/mL. Intra- and inter-assay vari-
abilities were below 20%. The analytical sensitivity was 0.32 
pg/mL. All samples produced signals above the analytical sen-
sitivity of the assay.

MRI scanning and analysis
Within the study, all SVD patients were examined on a single 
MRI scanner (CADASIL, 3 Tesla Siemens Magnetom Verio; spo-
radic SVD, 1.5 Tesla Siemens Magnetom Sonata, Siemens 
Healthcare, Erlangen, Germany) with a standardized protocol 
including 3D-T1, fluid-attenuated inversion recovery, T2, and 
DTI sequences. Sequence parameters have already been pub-
lished.17 We calculated WMH, lacune, and brain volumes and 
counted cerebral microbleeds as previously described.17,18 For 
normalization, all volumes were divided by the volume of the 
intracranial cavity. 

Mean diffusivity is an established measure for SVD burden 
calculated from DTI. It captures the microstructural integrity of 
white matter through diffusivity of water in the tissue. Diffu-
sion images were first pre-processed to correct for eddy-cur-

rent-induced distortions and motion as previously described.17 
The diffusion tensor was estimated using “dtifit,” part of the 
Functional Magnetic Resonance Imaging of the Brain (FMRIB) 
Software Library (FSL).19,20 To avoid contamination by CSF par-
tial volume, the analysis of mean diffusivity was restricted to 
the main fiber tracts. For this purpose, diffusion data were 
skeletonized as implemented in the tract-based spatial statis-
tics pipeline (TBSS) of FSL.21 In brief, all subjects’ fractional an-
isotropy data were aligned into a common space using nonlin-
ear registration and the standard fractional anisotropy tem-
plate provided within the FSL. Each subject’s fractional anisot-
ropy data were then projected onto the tract skeleton in stan-
dard space. Finally, mean diffusivity images were projected 
onto the skeleton using the fractional-anisotropy-derived pro-
jection parameters. The final mean diffusivity skeletons were 
masked with the standard skeleton threshold value of 0.3 to 
focus the analysis on main fiber tracts. Furthermore, regions of 
the skeleton directly adjacent to the ventricles were removed 
by a custom-made mask to further minimize the contamina-
tion of the skeleton by CSF partial volume. Finally, the mean 
over the entire mean diffusivity skeleton was used for subse-
quent analyses. 

Statistical analysis
Statistical analyses were performed in “R,” version 3.1.2.22 For 
group comparisons, we used the nonparametric Wilcoxon rank 
sum test (with Bonferroni correction for multiple comparisons). 
The ability of serum NfL to discriminate between SVD patients 
and healthy controls was assessed using receiver operating 
characteristic analysis as implemented in the R package 
“ROCR” (version 1.0-7).23

We applied linear regression analysis to assess associations 
with serum NfL levels as well as processing speed compound 
scores as dependent variables. All R2 values reported are “ad-
justed R2.” Variables were power transformed when necessary 
to ensure the appropriateness of linear models as indicated by 
the distribution of residuals. To ensure that regression results 
were robust and not driven by outliers, we conducted a statis-
tical regression outlier test as implemented in the “car” pack-
age of “R.”24 As a result, two CADASIL patients and two spo-
radic SVD patients had to be excluded from the regression 
analyses. In order to determine associations with clinical scores 
(NIHSS and mRS as dependent variables), we used ordinal lo-
gistic regression as implemented in the “R” package “ordinal.”25 
For all analyses, correction for multiple testing was performed 
via the Bonferroni method.

For multiple regression, we first applied the least absolute 
shrinkage and selection operator (lasso) regression for variable 
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selection as implemented in the R package “glmnet” (for linear 
response) or “glmnetcr” (for ordinal response) with standard 
parameters.26 Lasso performs both variable selection and regu-
larization in order to enhance the prediction accuracy and in-
terpretability of regression models. Serum NfL, all MRI markers, 
age, and sex were included as independent variables in lasso 
regression, and variables with nonzero coefficients after cross-
validation were carried forward to the final multiple regression 
model.

Results

The characteristics of SVD patients and healthy controls are pre-
sented in Table 1. Patients in both SVD samples, CADASIL and 
sporadic SVD, were relatively mildly affected as indicated by un-
impaired activities of daily living (Barthel scale). Healthy controls 

covered the entire age range of both SVD samples (30 to 85 
years).

In both SVD samples, a substantial number of patients had 
suffered from a prior stroke or transient ischemic attack (TIA). 
Serum NfL levels in these patients were not higher than those 
in patients without history of a cerebrovascular event (CADA-
SIL, P=0.144; sporadic SVD, P=0.190).

Serum NfL level in SVD
In comparison with healthy controls, we found increased serum 
NfL levels in both SVD samples (CADASIL, P=4.1e-06; sporadic 
SVD, P<1e-15, Wilcoxon rank sum tests with Bonferroni cor-
rection) (Figure 1A). These differences were also significant af-
ter correction for age (CADASIL, P=4.2e-12; sporadic SVD, 
P<1e-15) (Supplementary Figure 1). The ability of serum NFL to 
differentiate between diagnostic groups as assessed by receiver 

Table 1. Characteristics of the study samples

Characteristic 
CADASIL (Munich)

(n=53)
Sporadic SVD (RUN DMC)

(n=439)
Healthy controls 

(n=93)

Demographic characteristics

Age (yr), median (IQR)  56.0 (11.2) 64.3 (15.2) 59 (12.6)

Female sex, n (%)  36 (67.9) 199 (45.3) 58 (62.4)

Prior stroke/TIA, n (%)  28 (52.8) 162 (36.9) 0

Last stroke/TIA (yr), median (IQR)  2.9 (8.9) 0.7 (1.7) NA (

Vascular risk factors, n (%)

Hypertension  11 (20.8) 316 (72) 16 (17.2)

Hypercholesterolemia  24 (45.3) 193 (44) 12 (12.9)

Diabetes  0 (0) 59 (13.4) 5 (5.4)

Current or past smoking  34 (64.2) 304 (69.2) NA (

Clinical scores, median (IQR)

Barthel scale score  100 (0) 100 (0) NA (

Processing speed z-score  –0.56 (2.21) –0.31 (1.58) NA (

NIHSS score  0 (1) NA ( NA (

mRS score  0 (1) NA ( NA (

SVD markers, median (IQR)

Serum NfL (pg/mL)  41.7 (46.9) 50.8 (38.9) 26.0 (14.7)

WMH volume (%)*  7.52 (7.39) 0.59 (1.23) NA (

Lacune volume (%)*  0.024 (0.064) 0 (0) NA (

Microbleed count  0 (3) 0 (0) NA (

Brain volume (%)*  78.4 (6.82) 65.5 (7.69) NA (

Mean diffusivity (10–4 mm2/sec)  9.86 (1.83) 8.02 (0.55) NA (

Interquartile range (IQR) is defined as the difference between the 75th and 25th percentiles. 
CADASIL, Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy; SVD, small vessel disease; RUN DMC, Radboud Uni-
versity Nijmegen Diffusion tensor and Magnetic resonance Cohort; TIA, transient ischemic attack; NA, not available; NIHSS, National Institutes of Health 
stroke scale; mRS, modified Rankin scale; NfL, neurofilament light chain; WMH, white matter hyperintensity.
*Normalized to intracranial volume.
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operating characteristics is shown in Figure 1B.
In all groups, serum NfL was positively correlated with age 

(Table 2), but there was a significant interaction with the diag-

nosis: patients with sporadic SVD showed a steeper increase of 
serum NfL levels with age than healthy controls (P=0.011 for 
interaction).

Serum NfL level and MRI markers for SVD
We next assessed associations between serum NfL levels and 
established MRI markers for SVD as well as age and sex. Simple 
linear regression analyses (Table 2) showed significant associa-
tions between serum NfL and all imaging markers as well as 
age, in both the CADASIL and sporadic SVD samples. Regarding 
SVD imaging markers, the strongest effect was found for mean 
diffusivity in both samples. Most associations remained signifi-
cant after controlling for age (Table 2).

Serum NfL level and processing speed impairment
In order to investigate the association between serum NfL levels 
and cognitive deficits, we focused on processing speed perfor-
mance, the cognitive domain most affected in SVD patients.11,12 

In both samples, CADASIL and sporadic SVD, simple linear 
regression analysis showed a significant association between 
serum NfL levels and processing speed scores (Table 3 and Fig-
ure 2A and B). Significant associations were also found be-
tween all imaging markers and processing speed scores (Ta-
ble 3). In both samples, mean diffusivity showed the strongest 
effect and was the only imaging parameter explaining more 
processing speed variance than serum NfL levels. The associa-

Table 2. Linear regression models with serum NfL levels as dependent variable 

β* P P (age)† R2

CADASIL

Mean diffusivity 0.730 1.2e-09‡ 1.2e-05‡ 0.52

Age 0.629 7.8e-07‡ - 0.38

Brain volume§ –0.595 4.1e-06‡ 0.005‡ 0.34

WMH volume§ 0.575 1.0e-05‡ 0.023 0.32

Lacune volume§ 0.558 2.1e-05‡ 6.41e-04‡ 0.30

Microbleed count 0.366 0.008 0.021 0.11

Sex 0.117 0.418 0.825 0

Sporadic SVD

Age 0.558 <1e-15‡ - 0.31

Mean diffusivity 0.461 <1e-15‡ 7.31e-05‡ 0.21

WMH volume§ 0.382 <1e-15‡ 1.08e-05‡ 0.14

Brain volume§ –0.376 <1e-15‡ 0.248 0.14

Lacune volume§ 0.264 2.2e-08‡ 2.18e-06‡ 0.07

Microbleed count 0.149 0.0019‡ 0.007 0.02

Sex –0.003 0.947 0.993 0

NfL, neurofilament light chain; CADASIL, Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy; WMH, white matter 
hyperintensity; SVD, small vessel disease.
*Standardized β; †Controlled for age, P given age; ‡Significant after correction for multiple testing (Bonferroni); §Normalized to intracranial volume.

Figure 1. Increased serum neurofilament light chain (NfL) level in small 
vessel disease (SVD). (A) Compared with healthy controls (HCs), serum NfL 
levels are increased in CADASIL (CAD) and sporadic SVD (sSVD) patients. 
Please note the logarithmic scale. (B) Receiver operating characteristic 
analyses for serum NfL: CAD patients vs. HCs (top panel) and sSVD patients 
vs. HCs (bottom panel). Receiver operating characteristic curves were gen-
erated using raw serum NfL values (orange lines) and values after regress-
ing out the effect of age (gray lines). CADASIL, Cerebral Autosomal-Domi-
nant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy; 
AUC, area under the curve; AUC|age, AUC corrected for age. *P<0.001 (Wil-
coxon rank sum test with Bonferroni correction).
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tions between the other imaging markers and processing speed 
were weaker than for serum NfL.

In the CADASIL sample, the lasso regression model including 
serum NfL, all imaging markers, age, and sex as independent 
variables selected mean diffusivity, lacune volume, and micro-
bleed count for the final model. In the sporadic SVD sample, las-
so regression selected mean diffusivity and serum NfL (Table 3).

Serum NfL level and neurological severity and 
functional disability
Using the CADASIL sample, we were also able to assess the as-
sociation between serum NfL levels and clinical scores captur-
ing focal neurological deficits (NIHSS) and disability (mRS).

For NIHSS, simple ordinal logistic regression showed the 
strongest association with serum NfL levels (Table 4 and Fig-
ure 2C). Significant, albeit weaker, associations were also found 

between imaging markers (except for microbleeds) and NIHSS 
scores. After ordinal lasso regression including serum NfL lev-
els, all imaging markers, age, and sex as independent variables, 
the final model comprised mean diffusivity, brain volume, and 
serum NfL (Table 4).

For disability, simple ordinal logistic regression showed the 
most significant association between serum NfL levels and mRS 
scores (Table 4 and Figure 2D), and associations between all im-
aging markers and mRS scores were weaker. The final model af-
ter lasso regression comprised serum NfL, brain volume, and (at 
trend level) microbleed count and mean diffusivity (Table 4).

Discussion

Analyzing two independent SVD samples, we found elevated 
serum NfL levels compared with healthy controls. Serum NfL 

Table 3. Linear regression models with processing speed as dependent variable 

β* P R2

CADASIL: simple linear regression

Mean diffusivity –0.626 9.0e-07† 0.38

Serum NfL –0.526 7.6e-05† 0.27

Lacune volume‡ –0.521 9.0e-05† 0.26

Microbleed count –0.486 3.0e-04† 0.22

WMH volume‡ –0.474 4.5e-04† 0.21

Brain volume‡ 0.374  0.007 0.12

Age –0.240  0.091 0.04

Sex 0.019  0.895  0

CADASIL: multiple linear regression (lasso): P=6.6e-07, R2=0.45

Mean diffusivity –0.340  0.022  -

Lacune volume –0.283  0.029  -

Microbleed count –0.256  0.041  -

Sporadic SVD: simple linear regression

Mean diffusivity –0.267 1.5e-08† 0.07

Serum NfL –0.257 4.8e-08† 0.06

WMH volume‡ –0.207 1.3e-05† 0.04

Lacune volume‡ –0.174 2.6e-04† 0.03

Brain volume‡ 0.173 2.7e-04† 0.03

Age –0.149 0.0018† 0.02

Microbleed count –0.140 0.0035† 0.02

Sex 0.105 0.0279 0.01

Sporadic SVD: multiple linear regression (lasso): P=4.8e-10, R2=0.09

Mean diffusivity –0.188 2.92e-04 -

Serum NfL –0.171 9.97e-04 -

CADASIL, Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy; NfL, neurofilament light chain; WMH, white matter 
hyperintensity; SVD, small vessel disease.
*Standardized β; †Simple regression significant after correction for multiple testing (Bonferroni); ‡Normalized to intracranial volume.
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levels were associated with all MRI markers of SVD burden, in 
particular mean diffusivity. Regarding clinical symptoms, serum 
NfL levels were strongly associated with impaired processing 
speed performance, the cognitive domain most prominently af-
fected in SVD. These findings were consistent across young pa-
tients with genetically defined SVD (CADASIL) and patients 
with sporadic SVD. In CADASIL patients, serum NfL levels were 
also strongly and independently associated with measures of 
focal neurological deficits and disability.

Elevated serum NfL is not specific for a particular pathology, 
as it is released upon neuroaxonal damage of any cause. Re-
cent findings indicate a role of serum NfL in multiple sclero-
sis,27 motor neuron disease,1 and—particularly important in the 
elderly population—neurodegenerative disorders,28 i.e., Al-
zheimer’s disease2 and frontotemporal dementia.3 Our findings 
demonstrate that SVD burden is a relevant contributor to ele-

vated serum NfL levels. The increase of serum NfL levels in SVD 
compared with healthy controls (approximately two-fold on 
average) is equal if not higher than the increase seen for pa-
tients with Alzheimer’s disease.2,28 The association between 
SVD burden and serum NfL together with the high prevalence 
of SVD suggests that SVD needs to be considered when inter-
preting serum NfL levels in elderly patients.

Our results potentially extend the utility of serum NfL as a 
marker for SVD burden. To our knowledge, our analysis of se-
rum NfL is the first study to identify a blood-based marker as-
sociated with both imaging and clinical features of SVD. For 
processing speed performance in the sporadic SVD sample, 
there was an added value of serum NfL levels beyond MRI 
markers. Moreover, in both samples, only mean diffusivity ex-
plained more variance in processing speed than serum NfL. All 
other imaging markers of SVD—i.e., WMH, lacune, or brain vol-

Figure 2. Serum neurofilament light chain (NfL) levels were associated with clinical deficits. (A, B) Simple linear regression analysis between serum NfL levels 
and processing speed in the Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) (A) and sporadic small 
vessel disease (SVD) (B) sample. Dashed lines depict the 95% confidence interval for the linear regression. (C, D) In the CADASIL sample, logistic regression 
analysis showed an independent association between serum NfL levels and National Institutes of Health stroke scale (NIHSS) scores (C) as well as modified 
Rankin scale (mRS) scores (D). Associations are visualized using violin plots. Vertical lines depict the median serum NfL levels in each score category. For both 
scores, values of 3 and 4 were grouped together for visualization because of the low number of patients in these categories. 
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ume—showed a weaker association with processing speed, 
suggesting that serum NfL might be of equal or even greater 
utility than these conventional MRI markers. 

The strong relationship between DTI measures and vascular 
cognitive impairment is well established, both in cross-section-
al and longitudinal studies.17,29,30 DTI quantifies alterations in 
the microstructural integrity of the brain tissue, and this seems 
to be a major substrate underlying cognitive impairment in 
SVD.31 Interestingly, among imaging markers, serum NfL levels 
showed the strongest association with mean diffusivity, sug-
gesting that the two parameters capture a similar disease pro-
cess: NfL is regarded as a marker for neuroaxonal damage, and 
damage to axons is also a potential explanation for mean dif-
fusivity changes in the white matter. The high intercorrelation 

might also explain why the association between serum NfL and 
processing speed was not independent from mean diffusivity in 
the CADASIL sample.

A recent study showed that serum NfL is sensitive to active 
SVD, i.e., recent subcortical infarcts, and that serum NfL levels 
remain elevated at least 3 months after the acute infarct.5 We 
did not find a difference in serum NfL levels between patients 
with and without history of stroke or TIA. However, by design, 
all of the events in CADASIL patients occurred more than 3 
months ago. In the same study, serum NfL levels were espe-
cially high in patients with incident SVD lesions on follow-up 
scans. Adding to that study, our results suggest that serum NfL 
levels also reflect the chronic SVD burden, as, e.g., captured by 
mean diffusivity, as well as the clinical severity.

Table 4. Logistic regression models with NIHSS and mRS scores as dependent variables in the CADASIL sample

Variable OR* 95% CI† P

NIHSS score: simple ordinal logistic regression

Serum NfL 4.11 2.16–8.47 4.2e-05‡

Mean diffusivity 3.67 1.93–7.67 1.8e-04‡

Lacune volume§ 2.99 1.68–5.80 4.3e-04‡

Brain volume§ 0.26 0.11–0.53 6.6e-04‡

WMH volume§ 2.53 1.38–4.96 0.004‡

Age 1.88 0.99–4.01 0.069

Microbleed count 1.41 0.89–2.36 0.121

Sex 1.39 0.79–5.43 0.245

NIHSS score: multiple ordinal logistic regression (lasso)

Mean diffusivity 3.27 1.23–9.53 0.021

Brain volume§ 0.33 0.11–0.86 0.030

Serum NfL 2.51 1.10–6.08 0.032

mRS score: simple ordinal logistic regression

Serum NfL 5.52 2.83–12.0 3.0e-06‡

Mean diffusivity 5.97 2.84–14.4 1.2e-05‡

Brain volume§ 0.20 0.08–0.41 7.0e-05‡

WMH volume§ 3.47 1.78–7.40 5.5e-04‡

Lacune volume§ 2.71 1.57–5.10 7.7e-04‡

Microbleed count 6.12 2.17–35.9 0.008

Age 2.52 1.33–5.45 0.009

Sex 1.57 0.92–2.72 0.097

mRS score: multiple ordinal logistic regression (lasso)

Serum NfL 2.65 1.13–6.63 0.028

Brain volume§ 0.38 0.15–0.87 0.029

Microbleed count 2.35 0.99–9.29 0.103

Mean diffusivity 2.14 0.75–6.21 0.151

NIHSS, National Institutes of Health stroke scale; mRS, modified Rankin scale; CADASIL, Cerebral Autosomal-Dominant Arteriopathy with Subcortical In-
farcts and Leukoencephalopathy; OR, odds ratio; CI, confidence interval; NfL, neurofilament light chain; WMH, white matter hyperintensity.
*Cumulative OR; †95% CI for the cumulative OR; ‡Simple regression significant after correction for multiple testing (Bonferroni); §Normalized to intracranial 
volume.
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MRI will remain the gold standard for assessment of SVD bur-
den. Imaging markers have already been refined to serve as sur-
rogate treatment response markers for clinical trials in SVD.17,29,32 
However, there are relevant limitations of MRI in the context of 
clinical routine and trials. First, some patients cannot be assessed 
because of contraindications (e.g., metal implants) or claustro-
phobia. Second, data quality can be affected by disease severity, 
therefore leading to bias. For example, cognitively impaired pa-
tients are more likely to cause motion artifacts.33 Third, MRI is 
relatively expensive and time consuming. This applies to both the 
examination itself and the mandatory post-processing for as-
sessing SVD burden.34 Finally, even after protocol harmonization, 
MRI is prone to center effects in multicenter studies, introduced 
by inevitable differences in MRI scanner hardware and soft-
ware.35 In contrast to MRI, blood draws are less costly and less 
time consuming, can be readily repeated at multiple time points 
in longitudinal studies, and are less prone to bias. Furthermore, 
for multicenter studies, blood biomarkers can be centrally ana-
lyzed at a single, experienced (reference) laboratory. Serum NfL 
might therefore complement MRI measures in assessing disease 
burden in SVD patients.

Several other blood biomarkers have been studied in SVD, such 
as markers for inflammation, endothelial dysfunction, subclinical 
cardiac injury, and coagulation. Results on these markers have so 
far been ambiguous: while, in some studies, associations with 
imaging parameters, such as WMH, have been reported,36-40 this 
was not the case in others.41,42 Most importantly, in contrast to 
our present findings for NfL, no other blood marker has been re-
ported to have robust associations with both imaging and clini-
cal features of SVD. Although NfL is not specific for SVD, our re-
sults suggest that serum NfL may be used to stage disease sever-
ity. It could potentially also be used to monitor the disease pro-
gression, but this needs to be tested in longitudinal studies. Ulti-
mately, serum NfL might be used as an outcome parameter to 
assess treatment effects in clinical trials. 

Further, in our study, serum NfL levels were associated with 
age, a phenomenon already observed in some,1,28 but not all, pre-
vious studies.43,44 Given the age-independent associations be-
tween serum NfL and MRI markers as well as clinical measures, 
serum NfL levels in our patients with hereditary SVD are most 
likely reflecting disease progression with age rather than a pure 
age effect. For the sporadic SVD sample, an even stronger age 
effect was observed, which might reflect concomitant age-relat-
ed disease processes, such as neurodegenerative pathology.

A limitation of our study is its cross-sectional design, not yet 
allowing longitudinal analyses in regard to the prognostic value 
of serum NfL levels in SVD patients. The lack of neuroimaging in 
healthy controls can also be considered a limitation, as we were 

not able to exclude subclinical SVD or other covert brain diseases 
in these subjects. Presence of brain pathology leading to neu-
roaxonal damage and therefore elevated serum NfL levels in 
controls could have led to an underestimation of the difference 
between controls and SVD patients. Another limitation is the 
lack of NIHSS and mRS scores in the sporadic SVD sample. The 
main strengths of our study are the inclusion of patients with 
genetically defined SVD, thus limiting potential confounding fac-
tors, and the independent validation of a large sample of pa-
tients with sporadic SVD. All SVD subjects received comprehen-
sive and standardized image acquisition and post-processing, in-
cluding DTI and quantitative volumetric analysis, as well as se-
rum sampling according to standard operating procedures. Se-
rum NfL was quantified at a single reference laboratory using a 
state-of-the-art,45 highly sensitive Simoa assay.

Conclusions

SVD burden was reflected in serum NfL levels and needs to be 
considered when interpreting elevated NfL levels in elderly pa-
tients. Serum NfL was associated with imaging as well as clini-
cal features in hereditary and sporadic SVD and might there-
fore complement established MRI markers in assessing SVD 
burden. Since neurodegenerative pathology and SVD often co-
occur in elderly patients, serum NfL might offer the possibility 
of assessing the combined effect of these pathologies on brain 
integrity. Serum NfL might also be a promising candidate 
marker for prognostication and treatment response monitoring, 
which needs to be addressed in longitudinal studies.
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Supplementary Figure 1. Age-adjusted comparisons. (A) To account for age differences between the study samples, we calculated age-adjusted serum neu-
rofilament light chain (NfL) levels (residuals after regressing out the effect of age). Compared with healthy controls (HCs), age-adjusted serum NfL levels were 
increased in CADASIL (CAD) and sporadic small vessel disease (sSVD) patients. (B) Comparison between serum NfL levels after matching HC subgroups for age 
(using similar median and interquartile range) to either the CADASIL (young HC) or sSVD (old HC) sample. Please note the logarithmic scale in both panels. 
CADASIL, Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. *P<0.001 (Wilcoxon rank sum test with Bonferroni 
correction).
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