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Abstract.

BACKGROUND: Recent computed tomography (CT) screening trials showed that it is effective for early detection of lung

cancer, but were plagued by high false positive rates. Additional blood biomarker tests designed to complement CT screening

and reduce false positive rates are highly desirable.

OBJECTIVE: Identify blood-based metabolite biomarkers for diagnosing lung cancer.

MEHTODS: Serum samples from subjects participating in a CT screening trial were analyzed using untargeted GC-TOFMS and

HILIC-qTOFMS-based metabolomics. Samples were acquired prior to diagnosis (pre-diagnostic, n = 17), at-diagnosis (n = 25)

and post-diagnosis (n = 19) of lung cancer and from subjects with benign nodules (n = 29).

RESULTS: Univariate analysis identified 40, 102 and 30 features which were significantly different between subjects with

malignant (pre-, at- and post-diagnosis) solitary pulmonary nodules (SPNs) and benign SPNs, respectively. Ten metabolites

were consistently different between subjects presenting malignant (pre- and at-diagnosis) or benign SPNs. Three of these 10

metabolites were phosphatidylethanolamines (PE) suggesting alterations in lipid metabolism. Accuracies of 77%, 83% and 78%

in the pre-diagnosis group and 69%, 71% and 67% in the at-diagnosis group were determined for PE(34:2), PE(36:2) and

PE(38:4), respectively.

CONCLUSIONS: This study demonstrates evidence of early metabolic alterations that can possibly distinguish malignant from

benign SPNs. Further studies in larger pools of samples are warranted.
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1. Introduction

Lung cancer continues to be a leading cause of can-
cer mortality in both men and women in the United
States with 221,200 new cases and 158,040 deaths es-
timated in 2015 [1]. Since the relative 5-year survival
rate is considerably better when lung cancer is diag-

nosed in the early stage (16%–49% survival) compared
with metastatic late stage disease (∼2% survival) [2],
early diagnosis is extremely important to pursue. To-
date, the most successful effort for early detection of
lung cancer is the National Lung Cancer Screening
Trial (NLST) study that demonstrated value of low-
dose computed tomography (LDCT) scan screening in
reducing mortality by 20% compared with chest radio-
graph screening [3]. An NYU-conducted LDCT scan
screening study found that increased age and emphy-

sema are risk factors for the presence of non-calcified
nodules (NCNs) on CT-scans. Having additional risk
factors of decreased FEV1 and FVC, smoking history,
and the presence of multiple sub-solid nodules were
the strongest predictors that an individual with NCNs
could be diagnosed with lung cancer [4]. Despite the
success of LDCT screening in the early diagnosis of
lung cancer, a major concern was the high prevalence
(96%) of false positives [3]. Contributing to the prob-

lem is that there is no consensus on how to manage
these solitary pulmonary nodules (SPNs). The concern
with screening, then, is over-treatment, anxiety induc-
tion and excessive use of invasive procedures. There is
a critical need for additional tests that can better stratify
the SPNs found with LDCT into malignant and non-
malignant. Such a complementary test should prefer-
ably be non-invasive and exhibit high sensitivity and
specificity.

The use of analytical methods targeting blood anal-

ysis has generated considerable interest in biomarker
discover for lung and other cancers, especially compre-
hensive molecular analyses (RNAseq, proteomic, gly-
comic, metabolomic) because of their precise, quanti-
tative measurements [5]. Metabolomic analysis mea-
sures the end products of all cellular, tissue and organ
activities in the body [6]. Metabolomics has been ap-
plied to gain new insights into the pathology of cancer,
develop methods predictive of disease onset and reveal
new biomarkers associated with diagnosis and prog-

nosis [6–8]. Using a metabolomics approach, we pre-
viously demonstrated the value of metabolite-derived
classifiers for the early detection of non-small cell lung
adenocarcinoma [9,10].

In the current study, we expand upon our ini-
tial experimental findings as part of the discovery

phase by evaluating metabolites in serum from sub-

jects with benign or malignant SPNs using a com-

bined approach of gas chromatography time-of-flight

mass spectrometry (GC-TOFMS) and hydrophilic liq-

uid chromatography accurate mass quadrupole time-

of-flight mass spectrometry (HILIC-qTOFMS). Fur-

thermore, we evaluated serum collected pre-diagnosis

and at-diagnosis of lung cancer in addition to sam-

ples obtained post-surgical intervention from subjects

with malignant SPNs (post-diagnosis). We hypothesize

that our systems biology approach to identify candi-

date metabolomics biomarkers will ultimately lead to

improved early detection of lung cancer and can be

used in as a companion blood test to LDCT screening.

2. Methods

2.1. Patient population and collection of patient

samples

The study subjects were recruited from the NYU

Lung Cancer Biomarker Center and all gave informed

consent for the IRB approved NYU Lung Cancer

Biomarker Center Protocol #8896. The NYU Lung

Cancer Biomarker Center performs low-dose CT-scan

screening for high-risk smokers as part of the Na-

tional Cancer Institute’s Early Detection Research Net-

work Program (EDRN). Lung cancer cases for this

study were confirmed by pathology (Table 1). Patients

with benign nodules were those with stable nodules or

ground glass opacity (GGO) over at least two year pe-

riod with annual CT scans performed. Blood samples

were collected from all patients enrolled in the proto-

col before diagnosis (>6 months prior to surgery, pre-

diagnostic). Additional blood samples were collected

from some of the lung cancer patients, at-diagnosis (at-

diagnosis) and post-treatment (after surgery). All but

one patient had their “at-diagnosis” sample collected

before surgery, usually within days prior to surgery,

likely on their pre-operation visit. Surgery was usually

performed within 1–3 months of diagnosis. Diagnosis

was made by biopsy and/or surgery with all tissue diag-

noses confirmed by pathology. Post-diagnosis samples

were collected at least one month post-surgery. Selec-

tion of cases was performed by NYU and the blinded

serum samples were sent to University of California,

Davis Medical Center (UCDMC) for analysis. None of

the study subjects had previous cancer or chemother-

apy. All subjects had blood drawn by EDRN proto-

col, performed spirometry according to ATS guide-
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Table 1

Patient characteristics

Benign Cancer Cancer Cancer

(Pre-diagnosis) (At-diagnosis) (Post-diagnosis)

Subjects, N 29 17 25 19

By histology type
Adenocarcinoma, N (%) – 14* (82) 21* (84) 17 (89)

By Stage, N (%)

Stage I – 12 (86) 19 (90) 16 (94)

Stage II – 1 (7) 1 (5) 1 (6)

Stage IV – 1 (7) 1 (5) 0 (0)

Squamous Cell Carcinoma, N (%) – 1 (6) 2 (8) 2 (11)

By Stage, N (%)
Stage I – 1 (100) 1 (50) 2 (100)

Stage III 0 (0) 1 (50) 0 (0)

Small Cell, N (%) – 3* (18) 3* (12) 0 (0)

By Stage, N (%)

Stage I – 2 (67) 2 (67) 0 (0)

Stage IV – 1 (33) 1 (33) 0 (0)

Gender, N (Males/Females) 10/19 7/10 8/17 6/13

Age, Mean ± SD 67 ± 6 68 ± 7 67 ± 7 64 ± 5
BMI, Mean ± SD 28 ± 5 25 ± 3∗∗ 28 ± 5 28 ± 6

Packs per year, Mean ± SD 53 ± 20 57 ± 18 54 ± 17 56 ± 23

Emphysema/COPD, N (%) 21 (72) 11 (65) 14 (56) 13 (68)

∗One subject has both non-small cell adenocarcinoma and small cell lung cancer; ∗∗Significantly different (p: < 0.05) from subjects with benign

solitary pulmonary nodules.

lines, and answered questionnaires with smoking and
occupational history. Blood samples were processed
within two hours and then stored at −80◦C. Match-
ing of subjects with malignant SPNs with those hav-
ing benign SPNs was based on age, gender, smoking
in pack-years, and date of sample collection. Samples
were thawed twice for aliquoting (once at the NYU and
once at UCDMC) prior to metabolomic analysis.

2.2. Metabolomic profiling

The MiniX database [11] was used as a Laboratory
Information Management System (LIMS) and for sam-
ple randomization prior to all analytical procedures.
Sample identifications were kept blinded during the en-
tire metabolomics analysis to minimize potential bias.

Detailed information on sample preparation, instru-
ment parameters and data acquisition are provided in
Supplemental Methods.

2.2.1. GC-TOFMS analysis

Serum samples (30 µL) were thawed, extracted and
derivatized as previously described [9]. Mass spec-
trometry analysis and data acquisition was performed
using an Agilent 7890A gas chromatograph coupled to
a Leco Pegasus IV time-of-flight (TOF) spectrometer.
This method is specifically useful for primary metabo-
lites including sugars, amino acids, and hydroxyl acids.
Acquired spectra were further processed using the Bin-
Base database [11,12].

2.2.2. Hydrophilic interaction (HILIC)-qTOFMSMS

analysis

Serum samples (30 µL) were thawed on ice and

metabolites extracted using ice cold 3:1 methanol:

water. Supernatant containing extracted metabolites

were dried to completeness using a Labconco Cen-

trivap, resuspended in 30 µL of 4:1 acetonitrile:water

and submitted to analysis by Hydrophilic Interaction

Liquid Chromatography Accurate Mass Quadrupole

Time-Of-Flight Mass Spectrometry (HILIC-qTOFMS)

which is specifically useful for detecting biogenic

amines but will also detect and separate complex

lipids.

Liquid chromatography-mass spectrometry (LC-

MS) was performed using an Agilent 6530 Accurate

Mass Quadrupole Time-of-Flight (QTOF) with a Jet-

Stream ion source in positive ionization mode was cou-

pled with an Agilent 1290 Series UHPLC. Data were

collected at a rate of 2 spectra per second. Chromato-

graphic separation was performed using a Waters Ac-

quity BEH HILIC 2.1 × 150 mm column, particle size

1.7 µm. Mobile phase A was composed of water with

added modifiers; 4 mM acetic acid and 6 mM ammo-

nium acetate; mobile phase B was 9:1 acetonitrile: wa-

ter using the same modifiers as mobile phase A. The

mobile phase gradient started from 0 min 100% with a

flow-rate of 0.4 mL/min (B), 0–14 min 70% (B), 14–

14.2 min 45% (B), and 14.2–17.1 min 45% (B) with

the flow-rate adjusted to 0.45 mL/min, 17.1–20 min
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100% (B) and 20–25 min 100% (B) with the flow-

rate returned to 0.4 mL/min. The injection volume was

5 µL with column temperature held constant at 45◦C.

Instrument data was converted to MZdata format us-

ing Agilent’s MassHunter software and processed us-

ing MZmine 2 [13]. Identification of features were con-

ducted using NISTMS.exe comparing acquired MSMS

spectra collected from pooled serum samples against

MSMS spectral libraries including Lipidblast [14],

Metlin, Massbank, HMDB and Lipidmaps.

2.3. Data analysis

2.3.1. Statistical analyses

Statistical analyses were carried out on gender+ age

+ BMI + (smoking) packs per year covariate-adjusted

metabolite values. A linear model was used to de-

scribe differences in serum metabolite abundances due

to gender + age + BMI + packs per year; the resid-

uals from which were tested for differences between

benign and malignant (pre-diagnosis, at-diagnosis and

post-diagnosis) SNPs. Covariate-adjustment was con-

ducted in R [15]. Covariate-adjusted data was log10

transformed and significance was determined using a

Mann-Whitney U test. The significance levels (i.e. p-

values) were adjusted for multiple hypothesis testing

according to Benjamini and Hochberg [16] at a false

discovery rate (FDR) of < 0.05. All statistical analyses

were conducted using DeviumWeb [17].

Classical Receiver Operating Characteristic (ROC)

Curves were generated using Metaboanalyst v3.0 [18].

pROC::roc was used to calculate the ROC curve [19].

Subsequently, the optimal threshold and statistics were

extracted based on the Younden method pROC::

cords [19].

Figures and metabolic trajectories were generated in

GraphPad Prism v5.0.

3. Results

3.1. Subject characteristics

Patient characteristics for the respective cohorts are

provided in Table 1. The cohorts consisted of serum

samples collected from 29 subjects who presented

SPNs but were found to be benign upon follow-up

for 2 years; serum samples acquired from 17 sub-

jects prior to diagnosis of lung cancer (>6 months,

pre-diagnosis), serum samples acquired from 25 sub-

jects when they were diagnosed with lung cancer

(at-diagnosis) and serum samples from 19 subjects

with lung cancer following surgical removal of malig-

nant nodules (>1 month, post-diagnosis). For 10 pa-

tients, samples were collected at three time-points (pre-

diagnostic, at-diagnosis and post-diagnosis), while for

13 patients, samples were only available at two time-

points and for 8 subjects, only one time-point serum

was collected. Although these samples were collected

within a larger prospective cohort study, data could

not be analyzed in a paired- or longitudinal-manner

because not all cases had all three samples collected

(pre-diagnosic, at-diagnosis and post-diagnosis). In-

stead, we used these samples for cross-sectional com-

parisons. Non-small cell lung adenocarcinoma was the

most common histological type (82%, 84%, and 89%

for pre-diagnosis, at-diagnosis and post-diagnosis, re-

spectively) in our study (Table 1). The cancer popu-

lation was predominately composed of those subjects

with early stage (Stage IA/1B) cancer (Table 1). There

were no significant differences in the matching vari-

ables of age, gender, and smoking packs per year be-

tween the respective groups; however BMI was signif-

icantly lower in the pre-diagnosis group relative to the

benign cohort (Table 1).

3.2. Identification of metabolites: Distinguishing

malignant SNPs from benign SNPs in serum

Untargeted GC-TOFMS and UPHLC-qTOFMS

based-metabolomics was conducted on each sample.

A total of 1332 features were detected between the

two platform-types of which 186 had known anno-

tated structures. Univariate analysis identified 40, 102

and 30 serum metabolites which were significantly

(raw p-value < 0.05) different between subjects with

benign SPNs and the pre-diagnosis, at-diagnosis or

post-diagnosis cohort, respectively (Supplemental Ta-

ble S1 and Supplemental Fig. S2). No metabolites were

found to be significantly different following FDR-

adjustment. Of the significantly (raw p-value < 0.05)

different metabolites, 10 were found to be consistently

increased or decreased in the pre-diagnosis and at-

diagnosis group relative to the benign cohort (Fig. 1).

Three of these 10 features were identified as phos-

phatidylethanolamines (PE34:2, PE36:2 and PE38:4).

All three PEs were elevated in the cancer group rela-

tive to patients with benign tissue diagnoses (Fig. 1).

In general, measured PEs tended to be elevated in sub-

jects with cancer relative to subjects with benign SPNs

(Supplemental Table S1). The other 7 peaks (repre-
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Fig. 1. Distribution of the 10 Serum Metabolites Significantly Different between Subjects with Malignant (Pre- and At-Diagnosis) or Benign Soli-

tary Pulmonary Nodules. Relative Intensities ± StDev for the 10 circulating metabolites that were significantly increased or decreased between

subjects with malignant (pre- and at-diagnosis) or benign solitary pulmonary nodules are shown for benign, pre-diagnosis, at-diagnosis and post–

diagnosis. ∗: p-value < 0.05; ∗∗: p-value < 0.01. (Colours are visible in the online version of the article; http://dx.doi. org/10.3233/CBM-160602)

senting different compounds) were composed of one

unknown compound from the GC-TOFMS analysis

and 6 unknown compounds from the HILIC-qTOFMS

analysis. The mass spectrum for Bin#199203 is pro-

vided in Supplemental Fig. S3. Based on characteristic

masses and its retention time, this compound belongs

to the group of carbohydrate derivatives. It matches

a spectrum in the NIST14 mass spectral library, 1-

methylgalactose, as well as its predicted retention time.

Many of these metabolites were no longer significantly

different in the post-diagnosis group compared to the

benign group (Fig. 1). Individual metabolite trajecto-

ries for those subjects that had all three time periods

collected (n = 9) are shown in Supplemental Fig. S1.
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Table 2

Classification performances of serum metabolites significantly different between subjects with malignant (pre-diagnosis and at-diagnosis) or

benign solitary pulmonary nodules

Pre-diagnosis At-diagnosis

Variable AUC Specificity Sensitivity Accuracy AUC Specificity Sensitivity Accuracy

PE(34:2) 0.80 66 88 77 0.67 83 56 69

PE(36:2) 0.77 83 82 83 0.67 83 60 71
PE(38:4) 0.79 62 94 78 0.71 83 52 67

Bin_199203 0.72 76 71 73 0.67 45 92 68

Unknown_RT: 1.73_m/z: 102.1276 0.71 86 53 70 0.75 52 96 74

Unknown_RT: 2.02_m/z: 1008.7388 0.69 48 88 68 0.64 66 68 67

Unknown_RT: 2.2_m/z: 368.4247 0.70 66 77 71 0.74 66 88 77

Unknown_RT: 2.23_m/z: 181.0628 0.77 66 82 74 0.66 62 72 67

Unknown_RT: 2.27_m/z: 203.0533 0.68 45 88 67 0.71 86 52 69

Unknown_RT: 2.3_m/z: 340.3934 0.69 55 88 72 0.73 66 84 75

Fig. 2. ROC Curves for PE(34:2), PE(36:2) and PE(38:4) in the Pre- and At-Diagnosis Cohorts. Receiver Operating Characteristic Curves (ROC)
plus the 95% Confidence Intervals are shown for PE(34:2), PE(36:2) and PE(38:4) in the pre-diagnosis and at-diagnosis cohorts, respectively.

(Colours are visible in the online version of the article; http://dx.doi.org/10.3233/CBM-160602)

3.3. Evaluation of diagnostic capacity of conserved

metabolic alterations

To explore the diagnostic capacity of the 10 con-

served metabolites that distinguished subjects with ma-

lignant SNPs (pre-diagnosis and at-diagnosis) from

subjects with benign SNPs, we evaluated their classifi-

cation performance as single-metabolite classifiers. We

acknowledge the small population in this study and,

as such, we evaluated the entire set of subjects (i.e.

training set) per cancer group (pre-diagnosis and at-

diagnosis) relative to the benign group. Performance

metrics for the individual metabolite-classifiers are

provided in Table 2. Individually, PE(34:2), PE(36:2)

and PE(38:4) had the best accuracies in the pre-

diagnostic group (77%, 83% and 78%, respectively);

however, these lipid species showed modest perfor-

mance in the at-diagnosis group (accuracy = 69%,

71% and 67%, respectively) (Table 2). The accuracy

of the unknown compounds in the pre-diagnostic sam-

ples ranged from 67% to 74% (Table 2). For the at-

diagnosis samples, the unknown compounds had accu-
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racies that ranged from 67 to 75% (Table 2).

Individual ROC curves with 95% C.I. for the three

known compounds, PE(34:2), PE(36:2) and PE(38:4),

which are the top performing candidates in this study,

are provided in Fig. 2. Despite the small sample size

these findings provide preliminary evidence that cir-

culating metabolites, particularly PEs, have diagnostic

value.

4. Discussion

Lung cancer continues to be a leading cause of can-

cer mortality in the United States. Although LDCT

screening has drastically aided in early detection of

lung cancer, it is hindered by high false positive rates.

Consequently, determining whether a SNP is malig-

nant upon presentation and deciding the appropriate

course of management remains challenging and diffi-

cult.

There is considerable clinical need to find com-

plementary screening methodologies that can distin-

guish between a benign and malignant SNP. In the

current study, as part of the discovery phase, a multi-

platform metabolomics approach was utilized to dis-

cover metabolic perturbations in serum that distinguish

subjects with benign SNPs versus those with malig-

nant SNPs. Metabolites are sensitive to physical char-

acteristics such as gender, age and BMI [20,21] and en-

vironmental stimuli (smoking) [22]. Consequently, we

evaluated metabolite abundances adjusted for the men-

tioned above covariates to minimize potential bias. De-

spite the small sample size, these findings provide pre-

liminary evidence of serum metabolic features with di-

agnostic potential that will be expanded upon in future

studies.

Compared to subjects with benign SPNs, subjects

that presented malignant SPNs indicated elevated lev-

els of serum phosphatidylethanolamines, particularly,

PE34:2, PE36:2 and PE38:4. Moreover, elevation in

these specific PEs were maintained pre-diagnosis and

at-diagnosis of lung cancer and reasonably classified

SPNs as malignant with accuracies 67–83%. Notably,

classification performances of the mentioned above

PEs were better in the pre-diagnosis group compared

to the at-diagnosis group. While it cannot be ruled out

that this may be due to differences in sample sizes,

circulating abundances of phospholipids have been

shown to decrease with tumor progression [23]. This

suggests that early aberrations in lipid metabolism ac-

company tumorigenesis and that these behaviors may

alter post transformation. Indeed, NSCLC tumors ex-

hibit drastic changes in lipid profiles, including eleva-

tions in PEs, compared to matched control tissue [24,

25]. Consistent with our findings, Gao et al. also found

that PEs, including PE(38:4), tended to be elevated

in plasma from subjects with malignant nodules com-

pared to those with benign nodules [26]. Huang et al.

previously illustrated that A549 lung adenocarcinoma

cells increase secretion of phosphatidylethanolamine

binding protein (PEBP) [27]. PEBP is overexpressed

in lung cancer and has been shown to modulate devel-

opment, invasion, metastatic potential of tumors [28,

29]. Thus, the elevation in PEs may, in part, act

as agonists of PEBP-mediated signaling transduction.

Interestingly, PE38:4, provisionally assigned as PE

(18:0_20:4), contains an arachidonic acid side chain.

Free fatty acids arachidonic acid and linoleic acid and

their derived-eicosanoids have been shown to be el-

evated in serum from subjects with NSCLC adeno-

carcinoma relative to control [30]. Arachidonic acid

serves as a central precursor for a variety of pro-

inflammatory and immune modulatory lipid signal-

ing mediators [31]. We suspect that increased PEs are

likely related to an inflammatory response rather than

a specific marker of lung cancer. It is interesting to

note that, with the exception of PE(38:4), levels of

PE(36:2) and PE(34:2) declined following surgical re-

moval of malignant nodules. Moreover, when evaluat-

ing those subjects which had all three time-points (pre-

diagnosis, at-diagnosis and post-diagnosis), this gen-

eral trend was conserved. Serum levels of PEs present

promising diagnostic markers for distinguishing be-

tween malignant and benign SPNs that will be further

explored in future studies.

The other seven top candidates were unknown com-

pounds. One was detected by GC-TOFMS and the

other 6 were found by HILIC-qTOF MS. Due to sam-

ple limitations and noisy MSMS spectra, identifica-

tion of these unknown compounds was hampered.

While additional analyses will be needed to identify

these unknown compounds, it is interesting to note

that the unknown primary metabolism compound best

matched the mass spectrum of a methylated hexose.

Both hexose metabolism and methylation (one-carbon)

metabolism is known to be intricately involved in the

etiology of tumors. If these compounds are identified

and validated in further lung nodule studies, the iden-

tity of these compounds can be investigated through

additional analysis.

Despite changes in the mentioned above metabo-

lites, we did not observe differences in metabolites
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which we had previously identified as metabolite (sin-

gle or multiplex)-classifiers for diagnosis of non-small

cell lung adenocarcinoma, including diacetylsper-

mine [9,10]. However, it should be mentioned that the

population size in the current study is small with re-

peated measurements for select subjects and contained

mixed pathologies, whereas our former studies were

exclusively focused on NSCLC adenocarcinoma.

A review on imaging of solitary pulmonary nodule

by Sim and Poon [32] describes certain limitations of

using follow-up imaging for SPNs, since there are still

wide differential diagnoses of benign and malignant

SPNs by current conventional imaging methods. Al-

though 18F FDG PET imaging combined with CT im-

proves the diagnostic accuracy of imaging, and new

CT imaging methods (dual-energy CT, perfusion CT,

magnetic resonance (MR) imaging, dynamic contrast

enhancement or diffusion-weighted imaging) are being

developed, Sim and Poon stress that tissue diagnosis by

resection or percutaneous biopsy of SPN still needs to

be performed in patients determined by clinical strati-

fication to be at moderate or high risk of malignancy.

In conclusion, our preliminary findings highlight

the application of a metabolomics to identify serum-

based metabolites that can distinguish malignant and

benign SNPs as part of the discovery phase. Specif-

ically, we hypothesize that elevations in serum phos-

phatidylethanolamines may serve as potential diagnos-

tic markers that will be explored in conjunction with

previously identified metabolite-classifiers in larger fu-

ture studies.
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