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Purpose
Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-8 is

widely established as a reliable prognostic indicator in patients with advanced metastatic
disease but is of limited predictive value in tumor-free patients. This study was aimed to
determine whether molecular profiling of the serum proteome could discriminate between
early- and late-stage melanoma and predict disease progression.

Patients and Methods
Two hundred five serum samples from 101 early-stage (American Joint Committee on

Cancer [AJCC] stage |) and 104 advanced stage (AJCC stage V) melanoma patients were
analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-
ToF) mass spectrometry utilizing protein chip technology and artificial neural networks
(ANN). Serum samples from 55 additional patients after complete dissection of regional
lymph node metastases (AJCC stage Ill), with 28 of 55 patients relapsing within the first year
of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-8 was
measured using a sandwich immunoluminometric assay.

Results
Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set

of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84
(88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage Il serum
samples could be correctly assigned as progressors or nonprogressors using random sample
cross-validation statistical methodologies. Twenty-three (82%) of 28 stage Il progressors
were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28
could be detected by S100-B.

Conclusion
Validation of these findings may enable proteomic profiling to become a valuable tool for

identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.

J Clin Oncol 23:5088-5093. © 2005 by American Society of Clinical Oncology

breast, and prostate).>* The application of
this approach, if validated for its sensitivity

Blood contains a plethora of undefined bi-
omarkers that may reflect the state of the
individual organism."? Recently, proteomic
and bioinformatic approaches were shown
to be able to dissect the serum proteome and
identify signature biomarker patterns indic-
ative of cancers of different origin (eg, ovary,

and robustness, may influence diagnostic
and therapeutic decisions, as shown by the
successful prediction of the chemorespon-
siveness of breast cancer cell lines.” As no
serum biomarker is currently known to reli-
ably predict the prognosis of melanoma pa-
tients, the present study was designed to test
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whether signature patterns of proteomic profiles obtained
from serum samples could be indicative for different stages
of the disease and predict its progression.

Serum samples were selected from a frozen collection of sera from
patients with histologically confirmed melanoma. All serum sam-
ples were obtained and processed following a standardized proto-
col: Blood was drawn from patients’ cubital veins into gel-coated
serum tubes (Sarstedt, Nuembrecht, Germany) and allowed to
clot at room temperature for at least 30 minutes, but for no longer
than 60 minutes. Thereafter, the tubes were centrifugated at 2,500
gfor 10 minutes. The serum phase was harvested and subsequently
frozen without any additives in 1-mL aliquots at —20°C and not
thawed until immediately before analysis. The collection of sera
and clinical data was performed after receipt of patients’ informed
consent with institutional review board approval. Serum samples
from stage I patients were selected as follows: (1) the blood sam-
ples must have been obtained in a time frame of 2 to 6 weeks after
surgical resection of the primary tumor, and (2) patients must
have been confirmed to have stage I disease according to the
guidelines of the American Joint Committee on Cancer® (in brief:
primary melanoma with a tumor thickness up to 2.0 mm without
ulceration or a tumor thickness up to 1.0 mm with ulceration or
Clark’s level IV or V, respectively; no evidence of metastatic dis-
ease). Serum samples from stage III patients were selected accord-
ing to the following criteria: (1) confirmation of macroscopic stage
111 disease® (in brief: macrometastases of the regional lymph nodes
and/or satellite or in-transit metastases; no evidence of distant
metastases); (2) blood withdrawal within a time frame of 2 to 6
weeks after complete surgical dissection of the affected lymph
node basin; (3) no systemic treatment in stage III prior to blood
withdrawal; and (4) performance of follow-up examinations, in-
cluding physical examination, chest x-ray/computed tomography
(CT), ultrasound or CT of the abdomen and regional lymph
nodes, as well as blood chemistry at regular intervals of 3 months
for at least 1 year. Serum samples from stage IV patients were
selected as follows: (1) confirmation of stage IV disease® (in brief
distant metastases); and (2) no systemic treatment in stage IV
prior to blood withdrawal.

Matrix-assisted laser desorption/ionisation (MALDI) time-
of-flight (ToF; MALDI-ToF) mass spectrometry analysis was con-
ducted using a phosphate-buffered saline II mass analyser
(Ciphergen Biosystems, Fremont, CA). Two uL of undiluted se-
rum was subjected onto a H4 protein chip (Ciphergen Biosystems)
and allowed to bind at room temperature for 15 minutes in a
humidified chamber. Serum was removed, the chip surface was
washed five times, and the surface was allowed to air dry. There-
after, 0.8 uL of a saturated solution of sinapinic acid was added to
each spot. Mass analysis conditions were conducted as follows:
laser intensity setting of 270, sensitivity of 6, with 65 transient
collections per spot using automated data collection. Data acqui-
sitions were made from 0 to 30 kDa, and mass accuracy was
determined to be approximately 0.2% of actual mass values using
external calibration with bovine superoxide dismutase single- and
double-charged peaks. To check mass accuracy, serum samples
were run as a single batch, with calibrants being placed on approx-
imately one chip in every eight. Spectra were background sub-
tracted and then exported as csv files into Microsoft Excel
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(Microsoft, Redmond, WA). Density plots using log of the data
were performed and plotted against sample numbers using the
statistical program “R” (open source available at http://www
.T-project.org). The obtained data were used to train and test
supervised learning algorithms based on artificial neural networks
(ANN; Neuroshell 2; Ward Systems, Frederick, MD). The ANN
architecture is a three-layer multilayer perceptron with a sigmoi-
dal transfer function on the hidden and output layers, and a linear
function on the input layer. The algorithm used is a feed-forward/
back-propagation network, more commonly termed a back-
propagation network. Serum concentration of S100-B was
measured using a sandwich immunoluminometric assay (LIA-
mat Sangtec 100; Sangtec Medical, Bromma, Sweden).

An initial exploratory analysis of the data was carried out
(Fig 1A) to examine reproducibility of the mass spectra of
all 205 samples. Data from mass values of 2,000 to 30,000 Da
were plotted on a log scale. The y-axis denotes the patient
sample spectra obtained from stage I (numbers 1 to 101)
and stage IV patients (numbers 102 to 205; note that stage |
and stage IV patients are separated by a black line), whereas
the x-axis displays the mass-charge (m/z) value. Higher
scan readings are denoted by dark pixel coloration as com-
pared with lower scan readings, which are represented by
light pixel coloration. Figure 1A suggests that there is no
overall systematic difference between the stage I or stage IV
populations (Fig 1A lanes Y1 to Y7). There is, however, one
notable feature of the data set in which the presence of a
signal with an average mass value of 11,700 Da produces
higher intensity readings within a greater proportion of
stage IV than stage I melanoma samples (Fig 1A lane Z1).
We then evaluated the F statistic for two independent pop-
ulations for each m/z value between 2,000 and 30,000 Da
(Fig 1B). The most obvious feature is the huge value of the F
statistic, around 11,700, as expected from the density map
shown in Figure 1A. The peak with high F values is very
wide. A further plot of the average value of the data over
this range of m/z for each observation is shown in Figure
1C. The data indicate that approximately 25% of stage IV
melanoma samples (triangles) have very high scan read-
ings over this range as compared with the stage I sample
spectra (circles).

The profiles of 205 serum samples, corresponding to
101 stage I and 104 stage IV patients, were imported into
Neuroshell 2 and randomized, and a subset of 50 (n = 25
stage I; n = 25 stage IV) was selected as an independent
validation data set. For the remaining 155 samples, 94 were
utilized to train the ANN through an iterative learning
process, with 15 samples used to test model performance
(training was stopped when model performance failed to
improve for 100,000 events), with the remaining 46 sam-
ples providing an additional blind data set (n = 96 total
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Fig 1. (A) Density plot of relative intensity data derived from mass spectral
peak analysis versus patient sample number for stage | and stage IV patients.
Log values of density for each mass-charge ratio (m\z) from 2,000 to 30,000 Da
(x-axis) were plotted against patient number (y-axis). Patients 1 to 101 represent
stage |, and 102 to 205 represent stage IV. Higher intensity values are in red. Y1
to Y7 represents bands consistent between both populations. Z1 indicates a
mass with higher intensity predominantly associated with stage IV patients. (B)
F test for testing equality of two independent population variances; evaluation
of the F score for testing between two independent population variances for all
m/z values between 2,000 and 30,000 Da using the statistical program “R.”
Mass values centered at approximately 11,700 Da have been identified as
highly significant. (C) Mean intensity readings for m\z values: 11,583 to 11,788
Da; a plot of mean intensity values in the range of 11,5683 to 11,788 Da for each
sample. Approximately 25% of stage IV samples (A) have higher readings
compared with the stage | samples (O). The y-axis denotes mean intensity
values, with the x-axis corresponding to patient sample. Patients 1 to 101 and
102 to 205 represent stage | and stage |V patients, respectively.
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blind samples). Receiver operating characteristic curves,
sensitivity, specificity, positive predictive value (the ability
to predict true-positives from false-positives), and negative
predictive value (the ability to identify true-negatives from
false-negatives) for both independent datasets (n = 96 sam-
ples) are presented for the first eight ANN architectures
(Table 1). An alternative method of prediction is to use
Fisher’s linear discriminant rule on the first few principal
component scores from the data. Using 100 training sets of 50
randomly chosen observations from each group, averages of
71%, 78%, 80%, 81%, 83%, 84%, and 86% correct classifica-
tion were obtained using the first 2, 3, 5, 10, 15, 20, and 30
principal component scores, respectively. So the ANN and
discriminant analysis give broadly similar classification rates.

Next, 33 of 55 serum samples from stage III melanoma
patients were chosen at random to train the ANN, 11 to test
model performance during training with the remaining 11
samples chosen to test the predictive capability of the sys-
tem for blind data via a random sample cross validation
approach.” On error convergence the system was utilized to
predict the staging class of the remaining 11 blind samples.
This procedure was repeated a total of 51 times, thus en-
abling every sample to appear in training and blind sample
sets, and allowed an average class assignment value for a
particular serum sample to be obtained. Class assignment
was derived using a Student’s ¢ test at the 5% significance
level. Patients progressing within 1 year of clinical follow-up
were given discriminatory numerical values of 1, and those
not progressing to stage IV were assigned values of 2. Data
analysis indicated that 44 (80%) of 55 correct class assign-
ments were obtained, with 39 of 44 occurring at P < .05 (Fig
2). Assessment of S100-f3 revealed elevated concentrations
in six (21%) of 28 progressors and four (15%) of 27 non-
progressors (Fig 2).

The identification of melanoma patients who are at risk of
disease progression is an essential task of appropriate clini-
cal management. Serum markers of predictive relevance are
few.”” The widely used S100-8 correlates with tumor bur-
den and, therefore, is of limited predictive value in tumor-
free patients.'®'* Our results show that nonlinear ANN
bioinformatic algorithms, in conjunction with protein pro-
filing technologies, can discriminate between serum protein
expression patterns from either stage I or stage IV mela-
noma patients for accurate disease staging. Data parameter-
ization, in terms of hierarchical ranking, led to the
identification of key ions that could be important predictive
biomarkers. At least, these technologies offer the potential
to identify patients at enhanced risk of disease progression
even in patients with no detectable macroscopic disease.
The low predictive sensitivity of serum S100-f3 (six of 28;

JOURNAL OF CLINICAL ONCOLOGY
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Table 1. Classification Performance for the First Eight Artificial Neural Networks Architectures in Predicting Class Assignment for 96 Blind Stage |
and Stage IV Melanoma Samples

Model No. Accuracy Sensitivity Specificity Positive Predictive Value Negative Predictive Value Area Under the Curve

1 88 84 92 91.30434783 85.18518519 0.9512
2 86 84 88 87.5 84.61538462 0.9368
3 86 84 88 87.56 84.61538462 0.9368
4 86 80 92 90.90909091 82.14285714 0.948

5 88 88 88 88 88 0.9048
6 80 80 80 80 80 0.884

7 78 76 80 79.16666667 76.92307692 0.8664
8 80 88 72 75.86206897 85.71428571 0.8544

NOTE. Stage IV samples are treated as positive, and stage | as negative. Sensitivity indicates the percentage of stage IV serum samples that are correctly
classified. Specificity represents percentage of stage IV samples correctly classified. Positive predictive values represent percentage of true-positives
distinguished from false-positives. Negative predictive values represent percentage of true-negatives from false-negatives.

21%) compared with MALDI-ToF combined with ANN to collect and analyze serum samples from these patients in
(23 0f 28; 82%) to identify stage III progressors implies that order to ascertain whether discrimination between stage II1
other proteins than S100-8 are major components of the patients was consistent and reproducible throughout this
detected signature profiles indicative of disease progression. period. Moreover, in all patients included in this study, the
While conventional clinical assessment was performed on blood samples selected for proteomic analysis were drawn
these stage 11 patients for 1 year, it would have been useful ata minimum time distance of 2 weeks from the last surgical
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Fig 2. Discrimination of sera obtained from stage Il melanoma patients in relation to disease progression within the first year of follow-up. Samples with
recurrent disease were assigned 1, and no relapse was assigned 2. Mean values and associated t values (P < .05) for 51 models are presented. Progressing
patients (277 to 304) and nonprogressing patients (305 to 324) should have values less than 1.5 and greater than 1.5, respectively; 80% were correctly assigned.
The concentration of S100-B (ug/L) is given. Those exceeding 0.12 pg/L are highlighted.
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intervention. This distance was arbitrarily chosen and may
be insufficient to rule out the possibility that soluble factors,
which entered the peripheral blood due to the surgical
procedure, significantly changed the serum proteomic ex-
pression profiles. Further studies are underway to answer
these important questions.

Another feature of interest was that using an F score for
testing equality of variances between two independent pop-
ulations (stage I v stage IV melanoma serum samples) re-
vealed that one region with mass values centered at
approximately 11,700 Da was noted to be highly signifi-
cantly different in variance between the two populations
(refer to Fig 1B and Fig 1C). Initial data analysis by ANN
suggested that the best predictive capability came from the
2,000- to 5,000-Da mass range, and little predictive value was
obtained from the 10,000- to 15,000-Da mass range. This
serves to underscore the fact that different statistical/bioinfor-
matic strategies may well identify different molecular regions
that may be useful as biomarkers (eg, those identified in Fig 1B
that were generally associated with approximately 25% of
stage IV patients) compared with regions that were use-
ful in predicting stage-related disease as highlighted by
the analysis of the ANN models. It is important, there-
fore, to consider that different data mining techniques
may elicit different markers with differing importance
depending on the context in which they may be utilized.

Recently, serum proteomic analysis has been shown to
be able to discriminate between patients with ovarian can-
cer and unaffected individuals with 95% specificity.'* Sub-
sequently, two studies reported on the discrimination of
healthy volunteers and individuals with benign prostate
hyperplasia or prostate cancer (PCA) with 83% sensitivity
and with up to 95% specificity.>'* Petricoin et al reported
on the classification of 26% of sera from benign prostate
hyperplasia wrongly as PCA; however, 10% of patients fol-
lowed for 5 years developed PCA subsequently.'* Further
identification of predictive biomarkers of disease progres-
sion may therefore provide an important diagnostic tool.
This study was performed using Ciphergen H4 protein chip
technology (C16 hydrocarbon chemistry), which is no
longer available. Similar chemistries (eg, H50) and alternate
approaches (eg, ZipTip C18 hydrocarbon columns) may
well provide enhanced methodologies for the identification
of robust biomarker patterns.

Analysis of proteomic expression patterns may be used
in the future to aid clinicians in selecting patients with poor
prognosis for adjuvant therapeutic interventions or closer
follow-up. The validation of this approach, taking into ac-
count biologic variability, differences in mass spectrometric
analysers (eg, instrument resolution, mass accuracy, sensi-
tivity), and statistical analysis, will be necessary before the
methodology would be robust enough to be translated into
a clinical setting. A recent report by Baggerly et al'> has
shown the inherent problems that can be associated with
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the mining of MALDI-ToF data for biologic signatures in
relation to some of the variables outlined above. To over-
come these issues, multiple considerations will have to be
taken into account if a systematically reproducible ap-
proach is to be found using biomarker expression patterns
as predictive indicators. Considerations will have to focus
on the problems of standardization of sample collection,
storage, and processing. To achieve this goal, we have now
implemented the use of relational clinical databases that
will not only enable clinical data (eg, treatment regimen) to
be correlated with expression profiling but will also serve to
actasan audit system for how samples have been stored. For
example, our tracking system will enable information to be
obtained in relation to how a sample may have been manip-
ulated during their storage (eg, how many times a sample
was sectioned at —20°C to determine whether temperature
fluctuations from —80°C to —20°C may have an effect on
biomarker stability). Standardizing material collection be-
tween multiple centers will be a fundamental requirement if
new predictive tools are to be developed using these types of
methodologies. Variation in these procedures may well lead
to assays that are not stringent enough to work on a day-to-day
basis between multiple centers (ie, they may well work well for
a particular laboratory, but they are not robust enough to be
applied to multiple laboratories). Furthermore, the equipment
employed in this study uses linear ToF mass spectrometry in
conjunction with a single dimension (reverse-phase chemis-
try) to deconvolute the serum proteome.

Given the inherent problems associated with low-
resolution instruments to separate individual peaks during
mass spectrometric analysis, combined with the fact that a
single dimension of sample deconvolution may be unable
to consistently provide the resolution necessary to identify
molecules of importance. To this end, it will be possible to
examine mass spectra derived from serum samples that will
be deconvoluted in a number of ways in order to reduce
dynamic range (eg, use of lectin columns, implementation
of robotics to ensure consistent sample preparation); devel-
oping protocols analogous to 2D liquid chromatogra-
phy that use off chip (not directly involving the use of
SELDI-TOF chip clean-up) sample deconvolution proto-
cols such as strong cationic exchange columns in the first
dimension, followed by reverse phase in the second. Future
studies will utilize high-resolution instruments (eg, resolu-
tion at full width half maximum > 20,000) and postsource
decay to enable sequence information to be obtained from
mass values that seem to be important following data anal-
ysis and validate the use of data mining methodologies'® in
relation to peak normalization, background subtraction,
and threshold values as part of the development process.
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