
Server Consolidation in Clouds through Gossiping
Moreno Marzolla, Ozalp Babaoglu, Fabio Panzieri

Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura A. Zamboni 7, I-40127 Bologna, Italy

Email: {marzolla, babaoglu, panzieri}@cs.unibo.it

Abstract—The success of Cloud computing, where computing
power is treated as a utility, has resulted in the creation of
many large datacenters that are very expensive to build and
operate. In particular, the energy bill accounts for a significant
fraction of the total operation costs. For this reason a significant
attention is being devoted to energy conservation techniques,
for example by taking advantage of the built-in power saving
features of modern hardware. Cloud computing offers novel
opportunities for achieving energy savings: Cloud systems rely
on virtualization techniques to allocate computing resources on
demand, and modern Virtual Machine (VM) monitors allow live
migration of running VMs. Thus, energy conservation can be
achieved through server consolidation, moving VM instances away
from lightly loaded computing nodes so that they become empty
and can be switched to low-power mode. In this paper we present
V-MAN, a fully decentralized algorithm for consolidating VMs
in large Cloud datacenters. V-MAN can operate on any arbitrary
initial allocation of VMs on the Cloud, iteratively producing new
allocations that quickly converge towards the one maximizing
the number of idle hosts. V-MAN uses a simple gossip proto-
col to achieve efficiency, scalability and robustness to failures.
Simulation experiments indicate that, starting from a random
allocation, V-MAN produces an almost-optimal VM placement
in just a few rounds; the protocol is intrinsically robust and can
cope with computing nodes being added to or removed from the
Cloud.

I. INTRODUCTION

Many large-scale IT services are relying on Cloud in-
frastructures to host applications and to process data. Cloud
computing allows computing resources to be provided as
utilities: users can request CPU power, storage space, or
access to applications and only pay for their use as needed.
Resources which are no longer needed can be released at any
time. From the user’s perspective, Cloud computing allows
access to resources “on demand”, without the need to acquire,
provision or maintain them. Furthermore, users only pay for
what they actually use, and thus can make optimal utilization
of resources [1].

Cloud services make large use of virtualization techniques: a
common use case involves customers requesting a virtual host
with some given characteristics (e.g. CPU speed, RAM size),
on which the user can either install his/her Operating System
of choice, or use some pre-packaged OS image to boot the
virtual machine from.

A Cloud service is physically hosted inside big datacenters,
containing a large number of computing nodes. The energy
requirement of the whole datacenter (for illumination, power
supply, cooling and so on) is a significant fraction of the total
operating costs [2]. Thus, reducing the energy consumption

is becoming an important issue [3], both for economical
reasons (reducing costs) but also for making IT services
environmentally sustainable.

In this paper we address the problem of reducing the power
consumption of Cloud infrastructures by moving VMs on a
limited subset of the available (physical) computing resources,
so that the remaining (idle) computing nodes can be switched
to low power consumption modes.

The process of aggregating services running on multiple
servers into a reduced number of more powerful servers is
known as server consolidation. In this paper we use the term
VM consolidation to denote the consolidation of multiple VMs
on a reduced number of physical hosts. VM consolidation
allows the Cloud provider to reduce the number of servers
needed to run a set of user VM instances; the remaining servers
can have their CPUs put in low-power mode to save energy.

For example, let us consider the situation depicted in
Figure 1. We have three hosts, each of which is capable
of executing four VMs; in this example each processor has
four cores so that it can host four VMs, each providing the
computational power of a single CPU core. We assume that at
a given time, the three servers are running four VM instances
labeled VM1–VM4. According to the allocation shown in
Figure 1(a), all three servers are running user code, even
though their utilizations are quite low: assuming that a VM
is confined to run in a single core, the utilization of hosts 1
and 3 is at most 25%, while the utilization of host 2 is at most
50%.

The situation above is far from optimal. It is known that
most current hardware is power inefficient under light load [2].
Unfortunately, studies show that in practice servers operate at
10 to 50 percent their maximum utilization level [4]. Thus, it
makes sense to move VMs on fewer, highly utilized servers so
that the remaining (empty) servers can be put in power-saving
mode. In Figure 1(b) we show the effect of migrating VM1

and VM4 to host 2. Hosts 1 and 3 can now be switched to
power-saving states, until new VMs need to be allocated.

In this paper we present V-MAN, a fully distributed al-
gorithm for VM consolidation on Cloud systems. V-MAN
is based on a simple gossip protocol that does not require
any central coordinator or globally shared data structure.
V-MAN is completely VM and application agnostic; it does
not require any instrumentation of either the VMs or the hosted
applications. V-MAN is executed periodically to identify a
new arrangement of existing VM instances so that the number
of empty servers is maximized. Once the new allocation has

Fig. 1. Effect of VM consolidation

been identified, it is possible to migrate VM instances to their
final destination using the live migration feature provided by
most Virtual Machine monitors (e.g. Xen [5], OpenVZ [6]
and VMware [7]). We evaluated V-MAN through simulation
experiments: results show good scalability and high resiliency
to failures.

Organization of this paper: This paper is organized as
follows. In Section II we review existing results from the sci-
entific literature. In Section III we formally define the problem
we are addressing, and we describe the V-MAN algorithm. In
Section IV we assess the performance of V-MAN by means
of numerical experiments. Finally, we report conclusions and
outline future research directions in Section V.

II. RELATED WORK

Processor Energy Management: Most modern CPUs and
computer systems support advanced energy reduction tech-
niques, such as those defined by the Advanced Configuration
and Power Interface (ACPI) specification [8]. ACPI is an open
standard for platform-independent configuration and power
management of both individual devices and entire systems.
ACPI-compliant devices allow higher-level components (such
as the Operating System) to explicitly control system power
consumption. The ACPI specification defines four global sys-
tem states G0–C3, four device power states D0–D3 and four
processor power states C0–C3. Lower-numbered states have
the highest power consumption, while higher-numbered states
require less power. In state C0 the processor operates normally.
All other states (‘C1 “Halt”, C2 “Stop-Clock” and C3 “Sleep”)
are non-operational states (the processor does not executes
instructions), and offer increasing power savings at the cost
of a larger delay to bring the processor back to state C0.

VM Migration: The problem of migrating running pro-
cesses from one processor to another has been initially con-
sidered for balancing workload in distributed multiprocessor

systems [9]. Recent advances in virtualization technologies
allow entire running VMs to be transferred across different
physical hosts [10]. This opportunity is being investigated
for different purposes, mostly related with various Quality of
Service aspects.

Stage and Setzer [11] describe a network-aware migration
scheduler which takes into consideration the workload type
of each VM. The migration takes into explicit consideration
the network topology and the bandwidth requirements to
move VM images within a given deadline. Wood et al. [12] de-
scribe Sandpiper, a system which automatically identifies per-
formance bottlenecks, identifies a new VM allocation which
removes them and finally initiate the required migrations to
instantiate the new allocation. Sandpiper is OS and application
independent, relying on monitoring disk and network usage
inside the Xen VM monitor.

Some recent works considered distributed (hierarchical) ap-
proaches for energy management in large datacenters. Bennani
and Menasce [13] present a hierarchical approach addressing
the problem of dynamically redeploying servers in a contin-
uously varying workload scenario. In this case, servers are
grouped according to an application environmental logic, and a
so-called local controller that is in charge of managing a set of
servers. Das et al. [14] present a multi-agent system approach
to the problem of green performance in data center. As for
aforementioned papers, the framework is based on a hierarchy,
according to which a resource arbiter assigns resources to
the application managers, which in turn become in charge of
managing physical servers. Srikantaiah et al. [15] study the
impact of consolidation of multiple workloads with different
resource usage on performance, energy usage, and resource
utilization. This is not achieved by migrating applications,
but rather by consolidating the workload so that each server
receives a “balanced mix” of requests. Finally, Barbagallo et
al. [16] describe a bio-inspired algorithm based on the scout-
worker migration method, in which some entities (the scouts)
are allowed to move from one physical node to another in
order to cooperatively identify a suitable destination for VMs
(the workers) which are migrated.

V-MAN uses a fully decentralized approach with no shared
data structures or central controllers. Also, V-MAN does not
require any instrumentation of either VMs or hosted appli-
cations, V-MAN does not rely on a small subset of special
entities (e.g., the scouts of [16]): instead, all servers cooperate
to identify a new VM allocation, and this ensures that V-MAN
is capable of scaling with the size of the datacenter.

III. SERVER CONSOLIDATION THROUGH GOSSIPING

A. Problem Formulation

We consider a set of N servers, identified as 1, . . . , N . Each
server has a unique ID (IP address) which can be used to
address the node directly. We assume that the Cloud system
includes an appropriate communication layer such that any
pair of servers can exchange messages. However, we do not
require that each server know the ID of all other servers. We
allow servers to join and leave the Cloud at any time; this

TABLE I
SYMBOLS USED IN THIS PAPER

N Number of servers
C Maximum number of VMs which can run on a server
M Current number of running VM instances
Hi Number of VMs running on server i, 0 ≤ Hi ≤ C

Fk(H) Fraction of servers hosting exactly k VMs
F0,opt(H) Optimal fraction of empty servers

is important because large-scale Cloud services are prone to
failures which must be handled gracefully.

Each server can host at most C VMs, although the more
general case in which each host has a different capacity can be
handled as well with trivial modifications to V-MAN. Cloud
users can request allocation of new VMs at any time, provided
that the total system capacity CN is not exceeded; similarly,
VM instances can be terminated at any time.

A VM allocation H is an array of N non negative integers
H = (H1, . . . ,HN) where Hi is the number of VMs running
on server i, Hi ∈ {0, . . . , C}. We let M =

∑N
i=1 Hi denote

the total number of VMs in allocation H. Since the maximum
capacity of the Cloud is CN , it must be M ≤ CN . We assume
that the system can force the migration of a VM running on
server i to any other server j 6= i, provided that the destination
is not full (i.e., before the migration we must have Hj <
C). V-MAN only cares about the number of VMs running on
each server, so there is no need to complicate the notation by
also specifying which VMs are running on each node. Also,
migration costs are not considered by V-MAN.

Given an allocation H = (H1, . . . ,HN), we denote with
Fk(H) the fraction of hosts containing exactly k VMs:

Fk(H) = |{i : Hi = k}|/N k = 0, . . . , C (1)

Given a set of N servers with capacity C and M ≤ CN VMs,
we want to identify a valid allocation H which satisfies the
following optimization problem:

maximize F0(H) (2)

subject to
N∑

i=1

Hi = M

Hi ∈ {0, . . . , C} i = 1, . . . , N

Problem (2) requires that the M VMs are allocated so
that the number of empty hosts is maximized. This allows
unused processors to be switched to non-operating ACPI
states, producing significant power savings. Note that the value
of M is not globally known; furthermore, the value of M can
be different at different times, as VM instances are started or
terminated.

Table I summarizes the symbols used in this paper.
If we assume global system knowledge, the optimization

problem (2) has a very simple greedy solution algorithm
which consists of allocating C VMs on bM/Cc servers, so

that the maximum fraction of empty servers is F0,opt(Ht) =
1− d

∑N
i=1 Hi/Ce/N .

Unfortunately, the solution above can be difficult to im-
plement in practice: as users request the instantiation or
termination of VMs, an initial optimal allocation may become
no longer optimal after some time.

Some desirable properties of a decentralized protocol for
solving the optimization problem (2) are the following [17]:
(i) Self-organization: the protocol must be able to operate
properly even when nodes (servers) leave or join the system,
without any manual intervention; (ii) Effectiveness: the pro-
tocol should produce a good solution as fast as possible; (iii)
Scalability: the protocol must be efficient even when applied
to very large Cloud systems; (iv) Robustness: the protocol
must tolerate massive failures, which could actually occur in a
datacenter (e.g., whole racks losing power, which would result
in correlated failures of multiple servers).

B. Solving the optimization problem through gossip

We now describe V-MAN, a gossip-based algorithm for VM
consolidation in Clouds. V-MAN is an iterative algorithm
which, starting from an arbitrary initial VM allocation H1,
produces a sequence of allocations H2,H3, . . . ,Ht, . . . such
that F0(Ht) ≤ F0(Ht+1). Empirical evidence will be given
in Section IV that the sequence of allocations {Ht}t=1,...

converges quickly towards a solution of the optimization
problem (2).

V-MAN does not require any special policy for allocating
new VMs to servers; furthermore, no special action must be
taken when a VM terminates and is deallocated. V-MAN can
be executed as a periodic task which “compacts” all run-
ning VMs on fewer hosts. V-MAN allows servers to be added
or removed while it is running; furthermore, VM instances
can be created or shut down while V-MAN operates. Thus,
V-MAN can be executed as a background task which does not
interfere with the normal operation of the Cloud system.

V-MAN maintains a dynamic overlay over the N Cloud
servers: each server (node of the overlay) only knows a subset
of K hosts which are included in its local view. Messages are
exchanged only with nodes in the local view. Maintenance of
the overlay is crucial for the correct operation of V-MAN:
the overlay must be built and maintained with no global
knowledge. In particular, each node must not be required to
know the identity of all other nodes. Also, the overlay must
be maintained even when nodes join and leave the Cloud. The
last requirement is of particular importance, because Cloud
systems are hosted in large datacenters and the probability of
some of the servers failing is high.

The overlay network is built and maintained using a peer
sampling service implemented as a modified NEWSCAST
protocol [18]. The peer sampling service provides each node
with peers to exchange information with. The peer sampling
service is implemented as follows: each node periodically
sends its local view to the K neighbors, and builds a new
local view by merging the old one with those received by
neighbors. See [18] for more details.

Once the overlay is built, V-MAN works as follows. Let
H = (H1, H2, . . . ,HN) be the current allocation. Each server
i only knows the number Hi of VMs which it is currently
hosting. Apart from the peer sampling service, each server
executes two threads whose pseudocode is shown in Figure 2.
The idea is the following: node i sends the value Hi to each
neighbor j in its view. At each interaction, the server with the
higher number of running VMs receives the VMs running on
the other peer, until the receiving side reaches its maximum
capacity C. Note that in this phase no VM is actually migrated:
only when a new allocation has been determined with enough
accuracy, actual VM migration can take place.

ACTIVETHREAD is the active thread, which is executed
each ∆ time units. The thread iterates over each neighbor j, to
which it sends the current number of VMs running on i, Hi; it
then receives an updated value H ′

i (which is possibly different
from Hi), and updates Hi accordingly. Updates to the local
value of Hi must be done atomically. Also, each server must
keep track of the initial location of each VM it receives, so
that at the end it cal pull the assigned VMs from their original
location.

PASSIVETHREAD listens for messages coming from the
other peers. Upon receiving Hj from peer j, server i decides
whether some VMs should be pushed to j (line 19), or pulled
from node (line 15). VMs are always transferred from the least
loaded peer to the most loaded one; the number of VMs to
transfer is limited by the residual capacity of the receiving
node. We do not address the important issues of deciding
which specific VMs to migrate; probably it makes sense to
transfer those with smaller memory footprint, so that the
transferred image is smaller.

We show in the next section that H′ stabilizes after a few
rounds; at that point each VM can be transferred to its final
destination.

IV. EXPERIMENTAL EVALUATION

We implemented V-MAN using Peersim [19], an open
source Java simulator of peer-to-peer systems. The simulation
is executed as a sequence of steps (called cycles). At each step
all nodes execute both V-MAN and the peer sampling service
which is needed to maintain the unstructured overlay topology.
The implementation of the peer sampling service is already
provided by the example.newscast Peersim package.

Each node maintains a local view of K = 20 elements. This
means that each node has 20 neighbors, which are different
at each cycle as NEWSCAST is executed. All tests have been
performed on a network with N = 10000 servers with capacity
C = 8. The initial configuration H1 is created by putting on
each server a random number of VMs uniformly distributed
in [0, C]. The simulation length is set to 20 steps. For each
step t = 1, 2, . . . , 20 we computed Fk(Ht), k = 0, . . . , C, as
defined in (1), and produced area plots showing the fraction
of empty hosts F0(Ht) and the fraction of fully loaded
hosts FC(Ht). All values have been obtained by averaging
the results of 10 independent simulation runs with the same
parameters. The fraction of empty hosts at step t obtained by

1: i← GetProcID()

2: procedure ACTIVETHREAD
3: loop
4: Wait ∆
5: for all j ∈ GetPeers(i) do
6: Send 〈Hi〉 to j
7: Receive 〈H ′

i〉 from j
8: Hi ← H ′

i

9: end for
10: end loop
11: end procedure

12: procedure PASSIVETHREAD
13: loop
14: Wait for message 〈Hj〉 from j
15: if (Hi > Hj) then . Pull from node j
16: D ← min (Hj , C −Hi)
17: Send 〈Hj −D〉 to j
18: Hi ← Hi + D
19: else . Push to node j
20: D ← min (Hi, C −Hj)
21: Send 〈Hj + D〉 to j
22: Hi ← Hi −D
23: end if
24: end loop
25: end procedure

Fig. 2. Active and passive threads executed by peer i

V-MAN, F0(Ht), has been compared with the optimal fraction
F0,opt(Ht) computed as the solution of the optimization
problem (2).

a) Experiment #1: Static system: In the first test we
investigate the convergence speed of V-MAN. To do so, we
consider a static system, where the number of VMs is constant,
and no servers join or leave the system. At time t = 1 the
system is initialized by putting a random number of VMs on
each server, as already described above. In Figure 3 we show
an area plot of the fraction of empty servers (F0(Ht), white
area at the bottom) and full servers (F8(Ht), dark area at the
top); the height of the light gray area on each plot denotes
the fraction of hosts which are neither full nor empty, and
thus can be consolidated. The thick horizontal line shows the
value of the optimal number of empty servers F0,opt(Ht). We
observe that V-MAN converges very quickly: after the first
iteration, the fraction of empty hosts produced by the V-MAN
allocation is only slightly lower than the optimal value. A more
detailed analysis on the convergence speed is done in the next
experiments.

b) Experiment #2: Impact of the local view size K: The
size K of the local view plays an important role, which is
analyzed in this experiment. Again, we consider a static system
with N = 10000 and C = 8. We consider different values of
K, namely K = 5, 10, 20. No servers leave or join the Cloud,

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Time Step

Optimal F0

F0

F8

Fig. 3. Static system. N = 10000, C = 8, random initial configuration.
Values are averages of 10 independent simulation runs.

10-3

10-2

10-1

100

2 4 6 8 10 12 14 16 18 20

F
0,

 o
pt

 -
 F

0

Time Step

K=20
K=10
K=5

Fig. 4. V-MAN accuracy for different values of the local views size K
(static system N = 10000, C = 8, random initial configuration, all values
are averages of 10 independent simulation runs).

and no VM instance is created or destroyed. The optimality of
an allocation Ht is computed as |F0,opt(Ht−F0(Ht)|. Lower
values denote that the fraction of empty hosts in Ht is near the
optimal number of empty hosts for the same number of VMs.
Results are shown in Figure 4; we observe that larger values of
K result in faster convergence of V-MAN towards the optimal
solution. The reason is that, for large values of K, each server
has more neighbors to exchange VMs with.

c) Experiment #3: Static system with variable number of
VMs: We now consider a more realistic scenario in which the
number of servers is still fixed at N = 10000, but at each
step some VMs are added or removed from the system (VM
churn). With this we simulate the fact that in real Clouds users
can request activation or termination of their VM instances
at any time. Specifically, we performed a simulation run in
which at each step t we added or removed a number ∆t

of VMs. We consider three situations: ∆t = 0 (static system),
∆t uniformly distributed in [−200, 200] and ∆t uniformly

10-3

10-2

10-1

100

2 4 6 8 10 12 14 16 18 20

F
0,

 o
pt

 -
 F

0

Time Step

∆t = 0
∆t in [-200, 200]
∆t in [-500, 500]

Fig. 5. Accuracy of V-MAN with variable number of VMs for each step.
Results are averages of 10 independent simulation runs).

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Time Step

Optimal F0

V-Man stoppedF0

F8

Fig. 6. Effect of stopping V-MAN at step t = 5.

distributed in [−500, 500]. The results are shown in Figure 5.
In all cases V-MAN is effective in increasing the number
of empty hosts; of course, as the variability of the number
of VMs increase, V-MAN produces less accurate allocations.
However, results are still acceptable, especially if we consider
that V-MAN operates without the need to interrupt the normal
Cloud operations, and thus does not interfere with the normal
system behavior.

The effect of V-MAN can be better appreciated if we
stop the protocol and let the churn of VMs drive the Cloud
system towards higher entropy (i.e. the VM allocation gets
increasingly irregular). In Figure 6 we executed a simulation
with N = 10000,, C = 8 and the VM churn set to
∆t ∈ [−500, 500]. V-MAN is stopped at time t = 5: after
that we clearly observe that the VM allocation deviates from
the optimum shortly after V-MAN stops.

d) Experiment #4: Dynamic system: In this test we
consider a fully dynamic scenario, in which at each step
we add and remove VMs, but also add and remove servers

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Time step

Optimal F0

-1000 servers +2000 serversF0

F8

Fig. 7. Fully dynamic system. N = 10000, C = 8. VM churn ∆t is
uniformly distributed in [−500, 500]. 1000 random servers are removed at
time t = 5; 2000 empty servers are added at time t = 10.

from the Cloud. We simulate a major Cloud outage at time
t = 5, where 1000 random servers are removed from the
system; all VMs running on them are lost. Then, 2000 new
(empty) servers are added at time t = 10. At each step
t we add or remove ∆t VMs from the system, where ∆t

is uniformly distributed in [−500, 500]. The result shown in
Figure 7 show that V-MAN is resilient to node failures, which
is a common features of many gossip-based protocols [20].
Note that the average fraction of empty servers is always a
good approximation of the optimal value.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed V-MAN, a gossip-based algorithm
for consolidating Virtual Machines in a Cloud. V-MAN imple-
ments a distributed algorithm for identifying a new VM allo-
cation which maximizes the number of empty hosts (i.e. hosts
running no VM). Empty hosts can be put in power-saving
mode, resulting in a large reduction in the total energy
consumption of the Cloud infrastructure.

V-MAN is fully decentralized and does not require any
global knowledge. Each server exchanges messages with a lim-
ited number of peers; these messages are used (i) to maintain
an unstructured overlay network, and (ii) to exchange VMs
from lightly loaded nodes to heavily loaded ones. After each
round, V-MAN produces a new allocation which quickly
converges towards the optimal one.

We implemented V-MAN using the Peersim simulator.
Results are encouraging, showing that V-MAN converges very
quickly–less than five rounds of message exchanges are suf-
ficient to produce an almost optimal allocation. Furthermore,
V-MAN is resilient to server failures, and can tolerate high
variability in the number of running VMs.

We plan to extend this work by taking into consideration
a more detailed cost model when deciding which VM to
migrate. In this paper we have assumed that all VMs are
identical, but in practice this could not be the case. For

example, if two VMs have vastly different memory footprints,
it is cheaper to move the VM with smaller memory image,
as the migration operation can be completed in a shorter
time interval. We plan to improve V-MAN by taking into
consideration a more detailed migration cost model. We will
also implement V-MAN on a real testbed so that a more
accurate and realistic performance assessment can be done.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.

[2] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines, 1st ed. Morgan
and Claypool Publishers, 2009.

[3] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q.
Dang, and K. Pentikousis, “Energy-efficient cloud computing,” The
Computer Journal, vol. 53, no. 7, pp. 1045–1051, 2010.

[4] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture. New York, NY,
USA: ACM, 2007, pp. 13–23.

[5] “Xen hypervisor.” [Online]. Available: http://www.xen.org/
[6] “OpenVZ.” [Online]. Available: http://wiki.openvz.org/
[7] “VMware vMotion.” [Online]. Available: http://www.vmware.com/

products/vmotion/
[8] “Advanced configuration and power interface specification,” Apr. 5 2010,

revision 4.0a, Available at http://www.acpi.info/.
[9] D. S. Miloj́ičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,

“Process migration,” ACM Comput. Surv., vol. 32, pp. 241–299, Septem-
ber 2000.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proc. 2nd
Symposium on Networked Systems Design & Implementation–Vol. 2, ser.
NSDI’05. USENIX Association, 2005, pp. 273–286.

[11] A. Stage and T. Setzer, “Network-aware migration control and schedul-
ing of differentiated virtual machine workloads,” in Proc. ICSE Work-
shop on Software Engineering Challenges of Cloud Computing, ser.
CLOUD’09. IEEE Computer Society, 2009, pp. 9–14.

[12] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in Proc. NSDI ’07:
4th USENIX Symp. on Networked Systems Design & Implementation.
USENIX Association, Apr. 11–13 2007, pp. 229–242.

[13] M. Bennani and D. Menasce, “Resource allocation for autonomic data
centers using analytic performance models,” in Autonomic Computing,
2005. ICAC 2005. Proceedings. Second International Conference on,
June 2005, pp. 229–240.

[14] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and
H. Chan, “Autonomic multi-agent management of power and per-
formance in data centers,” in AAMAS ’08: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent
systems. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 107–114.

[15] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for
cloud computing,” in HotPower’08: Proc. 2008 conf. on Power aware
computing and systems. USENIX Association, 2008, pp. 10–10.

[16] D. Barbagallo, E. Di Nitto, D. J. Dubois, and R. Mirandola, “A bio-
inspired algorithm for energy optimization in a self-organizing data
center,” in Proceedings of the First international conference on Self-
organizing architectures, ser. SOAR’09. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 127–151.

[17] M. Jelasity, W. Kowalczyk, and M. van Steen, “Newscast computing,”
Vrije Universiteit Amsterdam, Technical Report IR-CS-006.03, 2003.
[Online]. Available: http://hdl.handle.net/1871/11668

[18] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, August 2007.

[19] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator.” [Online]. Available: http://peersim.sf.net

[20] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, pp.
219–252, August 2005.

