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Abstract 

Real-time monitoring of the heavy equipment can help practitioners improve machine-
intensive and cyclic earthmoving operations. It can also provide reliable data for future 
planning. Surface earthmoving job sites are among the best candidates for vision-based 
systems due to relatively clear sightlines and recognizable equipment. Several cutting edge 
computer vision algorithms are integrated with spatiotemporal information, and 
background knowledge to develop a framework, called server-customer interaction tracker 
(SCIT), which recognizes and measures the dirt loading cycles. The SCIT system detects 
dirt loading plants, including excavator and dump trucks, tracks them, and then uses 
captured spatiotemporal data to recognize loading cycles. A novel hybrid tracking 
algorithm is developed for the SCIT system to track dump trucks under visually noisy 
conditions of loading zones. The developed framework was evaluated using videos taken 
under various conditions. The SCIT system with novel hybrid tracking engine 
demonstrated reliable performance as the comparison of the machine-generated and ground 
truth data showed high accuracy.  
CE Database subject headings:  Construction management; automatic identification 
systems; data collection; imaging techniques; earthmoving; construction equipment.  

Introduction 

Earthmoving operations are a major component of certain types of construction and mining 
industries, including heavy civil operations, sand and gravel pits, rock quarries, as well as 
surface mining for minerals, ores, and oil sands. These all depend on heavy equipment and 
have a repetitive character; slight reductions in cycle durations may result in considerable 
improvements in productivity, cost savings, and reductions in carbon emissions. For this 
reason, timely and reliable data are critical. 
Manual real-time monitoring where workers watch the operations are costly, tedious, and 
error-prone. As a result, some sensing technologies, such as global positioning system 
(GPS) and radio frequency identification (RFID) have been used to monitor earthwork 
machines and to provide real-time locational data. GPS can calculate the three-dimensional 
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location of the plant, and then a central processing unit analyzes the spatiotemporal pattern 
of the machine to recognize the action and therefore the productivity. However, there are 
a number of shortcomings associated with these devices. First, a receiver antenna needs to 
be installed on the equipment, which may be difficult for rented plants. Second, the 
acquired data is limited to time and location which sometimes makes it difficult to 
distinguish between productive and non-value added movements. Finally, these 
spatiotemporal records cannot help in the review process to find the events that caused 
abnormal cycles. 
Computer vision-based methods are another possible solution to monitor earthmoving 
activities if clear sightlines can be selected and earthmoving machines are fairly 
recognizable at that distance. Different approaches are available to monitor earthmoving 
equipment using computer vision. The first approach is to develop software to analyze the 
visual capture from common electronic tools, such as video cameras. Recent wireless 
cameras and high-capacity storage devices are available at relatively low-cost, therefore it 
has become a common practice to monitor construction sites by CCTV systems (Zou and 
Kim 2007; Gong and Caldas 2011). Although this is a cheap alternative, normal cameras 
provide only 2D projections of the real world, thereby limiting the analysis to 2D. The 
second method is to employ other sensing devices together with video cameras to obtain 
more data from the scene. LASER range-finder, infrared cameras, and the application of 
multiple cameras at the same scene can provide 3D coordinates, but they are expensive and 
must remain accurately calibrated to work properly.   
A novel pipeline framework developed in this research, called server-customer interaction 
tracker (SCIT), combines image and video processing modules, spatiotemporal reasoning, 
and expert logic. SCIT is used to detect the machines involved in loading actions, track 
them, recognize their interactions, and estimate the cycle times. Two different frameworks 
have been implemented using the same object recognition and action interpretation 
modules but different tracking engines: one has a classic tracking engine while the other 
uses an innovative framework to track the loading dump truck.  
This research has two main contributions. First, it introduces a novel tracking algorithm to 
track dump trucks under moderate occlusion. Secondly, it proposes an action recognition 
framework to estimate dirt loading cycles in actual job site conditions.  
The structure of the paper is as follows. First, it describes related advancements in 
construction research and highlights the motivations of this research. Then the modules 
and the structure of the SCIT framework are explained. Next, test results are provided for 
both systems using several test videos captured in different construction sites under varying 
visual conditions. Finally, the potential applications and shortcomings of the developed 
prototype are discussed.  

Literature Review 

The earthmoving sector has a longer history of the application of automated monitoring 
systems than other segments of the construction industry (Navon 2005). Due to the 
permanent and manufacturing nature of surface mining operations, faster technology 
adoption to locate and dispatch the large equipment fleet has been encouraged. Sensing 
technologies were gradually employed in heavy construction projects due to common 
equipment used in mining and heavy construction. 
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GPS antennas have been the main tool to track machines in construction projects and then 
measure their productivity such as grading and leveling (Navon and Shpatnisky 2005; 
Navon et al. 2004) and asphalt paving (Navon and Shpatnisky 2005; Peyret et al. 2000). 
Manual preparation, indirect data interpretation, and the intrusive character of the GPS 
receivers are the main shortcomings of this system.  
RFID tags were also used to estimate the loading, hauling, and dumping times of the dump 
trucks. Fixed readers installed in entrance gates of the loading and dumping sites record 
the entrance and exit of RFID tags attached to dump trucks. The time differences are 
considered as loading, traveling, and dumping cycle times (Montaser and Moselhi 2012). 
Implementation of this system is cumbersome in linear projects (e.g. highway 
construction). Further, it can not confirm whether the truck is actually loaded.  
Computer vision techniques are relatively new data collection tools that have significant 
potential to monitor earthmoving equipment. Several advances have been achieved in 
construction for video processing including object tracking (Brilakis et al. 2011; Park et al. 
2011) and object recognition (Rezazadeh Azar and McCabe 2012; Chi and Caldas 2011; 
Jog et al. 2011; Rezazadeh Azar and McCabe 2011), and productivity measurement 
including labour (Peddi et al. 2009; Weerasinghe and Ruwanpura 2009), concrete pouring 
(Gong and Caldas 2011), and earthmoving equipment (Gong and Caldas 2011). However, 
the research has a long way to go before a reliable and automated system can be 
implemented in the construction industry. This is due in part because computer vision is 
itself a continually evolving field of science. At the present time, existing algorithms for 
object recognition, tracking, and segmentation can fail under certain conditions, 
particularly in the visually noisy images and videos typical of a construction site. Further, 
the construction industry is resistant to new technologies (Navon and Sacks 2007), unless 
they are shown to reduce costs, be easy to use, and decrease the amount of non-productive 
time required from their staff. Despite the significant progress made to be able to use 
computer vision techniques in construction, much more research is needed as most 
developments to date have limited applicability, operate only under specific conditions, 
and require a high level of human intervention. 
For example, color-based approaches to monitor earthmoving plants are not invariant 
against occlusion, lighting conditions, and the existence of other similarly coloured objects 
(Zou and Kim 2007). A vision-based system was developed to measure working cycles of 
a mini loader (Gong and Caldas 2011). It uses background subtraction to isolate moving 
equipment, and then classifies it using Bayes or neural network algorithms (Chi and Caldas 
2011). This framework however, has difficulty in processing unfamiliar moving entities 
which typically appear in job sites. Detecting smaller tools that are dedicated to one activity 
type, such as a concrete hopper, also posed challenges as they required manual defining of 
the work zone (Gong and Caldas 2011, Almassi and McCabe 2008). 
Our research intends to close the practicability gap between vision-based systems and 
earthmoving productivity measurement processes, where it can recognize and estimate dirt 
loading cycles under broader visual conditions such as different viewpoints and with the 
presence of multiple types of construction equipment. In addition, our system requires 
limited human intervention in the initial setup of the camera viewpoint. 
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SCIT Modules 

Both of the developed SCIT systems use the same object recognition techniques and action 
interpretation modules, but they have different trackers. The following subsections 
describe these modules. 

Object recognition 

Details of the background effort for the object recognition module of this research to detect 
dump trucks is described in Rezazadeh Azar and McCabe (2011) where the Histogram of 
Oriented Gradients (HOG) (Dalal and Triggs 2005) algorithm used to detect dump trucks 
from eight viewpoints. Unfortunately, this method is computationally intensive and the 
runtimes were too high for real-time purposes. This is because the HOG object recognition 
method is rather brute force; and its classifier window searches for the target object in every 
location and scale of the image. For example, it takes about 26 seconds to scan a 640x480 
frame for all eight orientations on a 2.93 GHz dual core CPU, as shown in Table 1.  
Parallel implementation of the HOG algorithm using a Graphics Processing Unit (GPU) 
can accelerate the standard sequential code by over 67x (Prisacariu and Reid 2009). The 
parallel computing platform and programming model (CUDA) technology developed by 
NVIDIA is used for this research (NVIDIA 2012).  This new generation of the GPUs have 
hundreds of cores, allowing them process thousands of threads in parallel and enable non-
uniform access to memory (NUMA). In this framework, the host CPU first loads the frame 
and copies it to GPU memory. The GPU processes all of the scales and windows of the 
image and returns calculated support vector machines (SVM) scores of each search 
window to the host CPU. The host CPU formats the results, which include the score and 
position of each window, and finally performs the non-maximal suppression to fuse the 
detected boxes. The reason to process fusion operations on CPU is that they require a lot 
of connections to RAM.   
The runtimes for scanning the same eight views with the same CPU (2.93 GHz dual core) 
and a GeForce GT 440 GPU with 2.1 compute capability were reduced drastically (see 
Table 1). Therefore, it is now possible to use the standalone HOG method as the truck 
recognition engine of the system, with an acceptable detection rate, and maintain the real-
time video stream. 

Table 1. Runtimes of the HOG recognition process for eight viewpoints of a dump truck 

                       Detector 
 
Image size 

CPU Dual core 2.93 GHz 
GPU 

NVIDIA GeForce GT440 

HOG (Sec) H&H (Sec) HOG (Sec) 

640x480 26 1.2~2.6 1.07 
1024x768 69 2.5~5.3 2.8 
1920x1080 186 6.9~14 7.6 
2592x1944 455 19.6~25.9 18.8 

Unlike the rigid figures of dump trucks, the articulated features of hydraulic excavators 
make them a more difficult recognition target. A recognition algorithm was developed that 
uses a part-based approach and spatiotemporal reasoning to detect an excavator in 
consecutive frames of a video (Rezazadeh Azar and McCabe 2012). The excavator 
recognition module in SCIT has been also implemented using GPU which the recognition 
process of 640x480 frames has been reduced from 6.5-7.0 seconds to 0.35-1.2 seconds. 
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Mean-shift tracking 

In comparative studies of tracking algorithms applied to the harsh and visually noisy 
construction environment, researchers agree that the Mean-shift algorithm is reliable for 
tracking equipment (Gong and Caldas 2011; Park et al. 2011), and the addition of the 
Kalman filter and Particle filter can stabilize its performance (Gong and Caldas 2011). 
Mean-shift tracking is a Kernel-based algorithm that searches for a local peak in the density 
distribution of a dataset, and ignores the outliers far from the maxima (Comaniciu et al. 
2003). As a result, the first framework developed here used a modified version of the Mean-
shift algorithm, called continuously adaptive Mean-shift or Camshift (Bradski 1998), as 
the main tracking engine. Mean-shift and Camshift trackers can track different feature 
types; application of hue, saturation, and value (HSV) color features is the most common 
approach. HSV color histogram and intensity response of the HOG detectors were used as 
tracking features for this research. In the second approach, the dense greyscale image of 
the HOG detector response is provided for the Mean-shift tracker. The maximum response 
is colored with the highest intensity and the rest of the responses are normalized based on 
their HOG detection score. The Mean-shift method however, has a limitation: since this 
algorithm searches for local maxima, the tracking blob may expand or shift to a nearby 
object of similar color or to similar textures that the algorithm uses. This issue, along with 
other problems we encountered, are described further in the discussion section.  

Hybrid tracking 

Because existing tracking methods have difficulty performing well when applied to 
construction videos (Gong and Caldas 2011; Park et al. 2011), a new hybrid tracking 
technique was developed by the authors to overcome the shortcomings of the Mean-shift 
method. The hybrid tracking method is inspired by a new recognition-based tracking and 
activity interpretation framework (Barbu et al. 2012). They employed a latent SVM 
detection method (Felzenszwalb et al. 2010) with lowered thresholds to produce tracking 
candidates, and also applied a feature tracker (Tomasi and Kanade 1991) to project each 
detection five frames forward to compensate for false negatives of the raw detector.  Then 
a dynamic-programming algorithm (Viterbi 1971) selects a temporally coherent set of 
detections for tracking.  
Our hybrid technique incorporates the HOG algorithm to help track identified equipment. 
This is achievable because equipment profiles do not change drastically between time 
steps. After recognizing that a truck is being loaded, the system continues to search for 
trucks, but in an optimized manner using much shorter time intervals. In these settings, the 
recognition module searches for only three orientations every two seconds, i.e., the initial 
orientation of the target dump truck and the two adjacent viewpoints, which takes about 
0.39 seconds with the same GPU and processor. For example, if the target truck was in a 
side-left orientation, the framework only scans for front-left, side-left, and rear-left 
viewpoints. This way, changes in the trajectory of the machine are caught quickly, but the 
computational effort required to check all eight orientations is not necessary using a priori 
knowledge. In addition, the thresholds are decreased to avoid false negatives; however, the 
rate of false alarms increases as well. Each detection creates a bounding box to mark the 
location of the potential target. 
Two issues exist with the pure recognition-based tracking. First, even lowering the 
thresholds cannot guarantee continuous detection of the equipment, which can result in 
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losing the target. Second, there were several instances in the test videos where a second 
truck entered the frame and waited in the loading zone with a similar orientation as the 
truck being loaded. This often misled the recognition-based tracking algorithm, as did 
nearby false positives. 
Thus, a tracking tool was added to the framework to artificially generate new bounding 
boxes in new frames to eliminate the risk of losing the truck, and also keep track of the 
actual target. In this approach, the center point of the loading truck is tracked by the KLT 
feature tracker (Tomasi and Kanade 1991) to project that bounding box to the next scanning 
frame. The KLT method is a differential method to estimate the optical flow, which is 
based on three assumptions: 1) brightness constancy, 2) temporal persistence, and 3) spatial 
coherence. The KLT optical flow estimator projects a rectangle in addition to the true 
positive and false alarm windows generated by the recognition engine in every new frame.  
A simple disjoint-set data structure algorithm is then used to partition the detection that is 
temporally coherent with the projected rectangle, yielding a new bounding box and 
eliminating other boxes. Two boxes are considered to be in the same subset if their 
bounding regions overlap. All of the distances between x and y elements of the matching 
corners should be less than the minimum average of the width and height of the boxes times 
a threshold to group two rectangles (Viola and Jones 2001). The corners of the final box 
are the average of the corners of the projected rectangle and the overlapping detection. If 
there is not temporally coherent detection, the projected box will be taken as the final 
rectangle. 
The flowchart and the visual sequence of the entire process are presented in Figure 1 and 
Figure 2, respectively. Figure 2a shows the truck of interest (the next section explains how 
to select the loading truck among others), and frames b and c depict the result of the object 
recognition and projected box by KLT tracking two seconds later. The final fusion result 
of the algorithm is presented in Figure 2d. After creation of the new box, the center of that 
rectangle becomes a feature for the KLT tracker. The KLT feature tracker is very sensitive 
to any object passing in front of the tracking features, such as workers or the bucket of an 
excavator. Even the shadow of the bucket could distract the tracker; however, the hybrid 
nature of this novel tracker means that the continuous HOG object recognition in short time 
intervals prevents equipment from being lost, improving the performance of this hybrid 
tracker.  

 

Figure 1. Flowchart of the hybrid tracking algorithm 
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Action recognition module 

There are two main activity recognition approaches in the computer vision community: 
logical reasoning and artificial intelligence plan recognition algorithms. In logic-based 
methods, a set of consistent logical constraints is developed where all must be met to 
confirm the action. In artificial intelligence approaches, however, probability theory and 
machine learning models, such as Hidden Markov Models and support vector machines, 
are used to interpret the events and allow for uncertainty. It was argued that any plan 
recognition system should include some theory of uncertainty (Charniak and Goldman 
1993) to find the most probable plan between two or more feasible candidates.  In addition, 
artificial intelligence task recognition algorithms can continually learn the new unknown 
situations.  
Every detected dump truck and excavator is defined by the system with its 2D coordinates, 
dimensions of the bounding box that represents the detected equipment, and its orientation. 
To identify a loading action, a dump truck should be within range of the excavator’s boom 
and be in the proper orientation. Thus, the configuration and the distance of the equipment 
are two key data in recognition of the action. Together with time, these spatiotemporal data 
are used in SCIT to interpret the interaction of the detected machines. 

 

Figure 2. a: detected truck at frame x1; b: HOG recognition result with lowered thresholds for three 
viewpoints in frame x2; c: projected box of previous frame (frame x1) to frame x2 using KLT feature 
tracker; d: fusion of the rectangles in b and c 

A combination of the logical reasoning and a pattern recognition algorithm were used to 
develop a module which can recognize dirt loading activity. The first component of this 
algorithm is a logical reasoning framework that checks equipment orientations for loading. 
For example, a right facing boom and a side-left dump truck located in the right of the 
excavator will never result in loading. Since this logical reasoning only intends to filter 
candidates, inclusion of uncertainty is not an issue.  Table 2 presents the logical loading 
configurations based on the location of the excavator and orientation of dump trucks. 
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Table 2: Possible loading configurations 

                       Excavator 
 
Dump truck 

Left side of the dump 
truck 

Right side of the dump 
truck 

Front   
Front-left   
Front-right   
Side-left   
Side-right   
Rear   
Rear-left   
Rear-right   

Dump trucks that pass this phase will be sent to the second stage, which examines the 
distance and size ratio of the server and customer. The corner of the excavator boom’s 
bounding box closest to the hinged support of the boom is set as the base point. For 
example, if the boom is right-sided, the base point would be the bottom left corner of the 
bounding rectangle. The algorithm measures the distances between the base point of the 
excavator and four corners of the dump truck, and then these distances are divided by the 
width of the excavator bounding box to incorporate the size factor. Figure 3 illustrates these 
distances. The resulting numbers form a vector with four elements. Several positive and 
negative sample vectors were collected to train a linear support vector machines (Cortes 
and Vapnik 1995) under supervised learning as the second filter of the action recognition 
process. Seven videos with total duration of fifty one minutes were used to train the action 
recognition classifier. The bounding boxes of the dump trucks appearing in the videos were 
manually labeled as if they are being loaded by the existing excavator. This manual labeling 
produced 514 positive and 828 negative samples to train the classifier. Open source SVM-
light software (Joachims 1999) trained the classifier.  
 

 

Figure 3: Distances between the corners of trucks and the base point in both left and right 
configurations 
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This classifier checks the dump trucks that passed the first phase. The distances between 
the base point of the excavator and four corners of the available dump trucks are computed 
and then divided by the excavator’s width to produce a vector with four elements, which 
was then classified by the trained SVM classifier. The scalar product of the classifier and 
test vectors produces a score and the objects with scores greater than a threshold are 
accepted. If two or more dump trucks pass the classification stage, the system will pick the 
machine with the highest classification score as a loading truck. 
In addition to action recognition, these constraints enable the system to ignore the trucks 
and false positives which do not meet the constraints, and allow the truck recognition 
thresholds to be lowered to result in fewer false negatives. 

Structure of SCIT Systems 

As mentioned before, the SCIT system was developed using two different tracking engines 
and this section explains the structure of both SCIT frameworks.  They were implemented 
using open source OpenCV 2.3.1 library (OpenCV 2011) in Visual C++ express 2010 
environment.  
In this approach, the system searches for an excavator. Once found (Figure 4.a), it sends 
the detected bounding box to the Mean-shift tracking engine (Figure 4.b). The current 
prototype of SCIT stops searching at one excavator, but it is possible to modify the 
framework to process videos with two or more loading units. In addition to tracking the 
excavator, the system also starts to scan for dump trucks in predetermined time intervals 
(see Figure 4.c). Since it takes about 1.07 seconds to scan a 640x480 pixel frame for all 
eight orientations, the system can be set to search for dump trucks in any time interval 
greater than 1.07 seconds. In this case, the recommended four second intervals were used 
(Rojas 2008). The action recognition module analyzes all of the detected dump trucks in 
each recognition interval to check if any of them pass the classification. As soon as the 
system confirms the loading action (see Figure 4.d), it will stop searching for dump trucks 
and pass the loading truck to the tracking module (see Figure 4.e, this image shows the 
Mean-shift tracker), define the loading zone, and record the start time of the loading cycle. 
The loading zone is defined as 1.25 times the truck length and 1.5 times the truck height 
(dark blue rectangles in frame d and e in Figure 4). This loading zone is defined relatively 
large due to minor movements of dump trucks during loading for better positioning, and to 
accommodate the relatively small spatial variations used by the tracking algorithms thereby 
reducing the risk of early termination of the tracking. As shown in frame d and e of Figure 
4, the center of the loading zone is not the same as the center of the detected truck and is 
shifted toward the hydraulic excavator. This formation handles the slight truck movements, 
which are mostly backward, and reduces the difference between the actual and SCIT finish 
times.  
The tracking module continues tracking the truck until the center of the tracking blob exits 
the loading zone. At that moment, it records the finish time, terminates tracking of the 
dump truck, deletes the loading zone (see Figure 4.f), and begins to search for new dump 
trucks. The entire flowchart of this frame work is depicted in Figure 5.   
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Figure 4. a: Detection of the excavator; b: tracking the excavator; c: detection of a truck that does not 
meet loading criteria; d: detection of the loading truck; e: tracking of the both equipment; f: truck 
leaves the zone and tracking of the truck terminates 

 

Figure 5: Flowchart of the SCIT systems 

Experimental Results 

To test and compare the two developed methods, eighteen videos with total duration of two 
hours and twenty seven minutes were captured of excavation activities at two 
condominium complexes in downtown Toronto, Ontario. None of these videos were used 
in training stage. The equipment of these two projects had very similar productivity rates, 
which resulted in a homogenous productivity dataset. Two types of hydraulic excavators 



 11

(Caterpillar 245B and Caterpillar 345D), and several makes of urban dump trucks with 
similar hauling capacity, such as Mack, Sterling, Volvo, and Kenworth appeared in the 
videos. These videos were recorded by one of the authors during eight site visits under 
different lighting conditions in all four seasons, from ground and elevated angles with two 
different makes of digital cameras. Figure 6 shows some of these views. 
 
The excavators had typical construction colors, but the urban dump trucks were painted in 
a wide range of colors. The SCIT systems processed the test videos with varied action 
recognition thresholds and the results are presented together with manual observation as 
ground truth in Table 3.  This table shows the statistics of true positives, false alarms, and 
average cycle times of true positive cycles. In the manual observation, the loading time 
starts when a dump truck completely stops in front of the excavator; the action ends as the 
truck starts moving out of the zone. The tests with smaller ID numbers have lower action 
recognition thresholds, and the threshold rises as the test number increases.  

 

 

Figure 6. Some of the dirt loading views 

 
Table 3: Results of the experiments on test videos 

 Number of Cycles Average true 
positive 

cycle time 

Seconds 

True positive 
cycles 

False 
negative 
cycles 

False 
positive 
cycles 

Manual 55 0 0 101.87 

SCIT with hybrid, test 1 53 2 4 106.49 

SCIT with hybrid, test 2 54 1 2 106.43 

SCIT with hybrid, test 3 54 1 2 105.93 

SCIT with hybrid, test 4 51 4 1 105.08 
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SCIT with Mean-shift ,  test 3 30 1 2 105.00 

 
As shown in Table 3, the best performance was SCIT with hybrid, test 3. The threshold of 
test 3 is optimal as it had the highest true positive cycles along with test 2, and its deviation 
was less than test 2. Only one test round was carried out with the Mean-shift algorithm 
(one with HSV colors and one with HOG response) using the optimal threshold found in 
the Hybrid 3 test, but the performance was substandard, so the other tests were aborted.  

Discussion 

Lowering the threshold increases the risk of false positives e.g. accepting a false positive 
object or accepting a waiting truck as the one being loaded. In addition, lower thresholds 
may produce longer cycle times as they detect the loading truck before it completely 
positions for loading. The results reveal that increasing the thresholds improved the average 
time. However, it improves the performance up to a certain level (hybrid test 3 in Table 3) 
and afterwards causes some missing cycles as the SVM classifier does not accept the actual 
loading truck. For instance, the test 4, which had the highest threshold, missed three more 
cycles than the test 3.   
All of the processed videos were studied manually to identify the root of the errors. Both 
systems failed to recognize one loading cycle due to occlusion where the loading truck was 
entirely masked by another truck. This case is difficult even for a human to track (Figure 
7a, b, and c). Both of the frameworks detected and tracked the foreground machine (green 
truck) instead of the real loading truck (dark blue) and produced wrong outcomes. This 
only occurred in a video captured from ground level; videos with overlooking views did 
not have trucks mostly masked by another. Frames d, e, and f in Figure 7 show the same 
work zone with the same configuration of the equipment that were captured only a few 
minutes later from a higher angle. In this case, the SCIT with hybrid tracker correctly 
detected and tracked the loading truck. These results show the importance of the proper 
viewpoint of the camera for robust outcomes. The camera can be installed on nearby 
buildings, tower cranes, peaks of slopes, or temporary posts; however, some construction 
sites do not have this luxury where there are no overlooking points around, or they are not 
accessible. Application of multiple cameras is another possible solution for such cases, but 
this is beyond the scope of this research.  
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Figure 7. Recognition and tracking of the wrong loading truck due to severe occlusion 

 
The SCIT with the Mean-shift algorithm using color features had serious difficulty tracking 
dirty gray, white, or black dump trucks as their color histogram was similar to the 
background color (frames a and f in Figure 6). In several cases, it missed the target, thereby 
thinking that the loading activity was complete. This resulted in early termination of the 
loading clock, resetting of the cycle upon the next detection of the same truck, and therefore 
inaccurate productivity data. Since the HOG method is invariant to color, the Mean-shift 
with HOG response and the hybrid algorithms could successfully process those cycles. In 
addition, the Mean-shift method with color histograms failed in some cases where the 
tracking blob moved or expanded from the target to a nearby truck of the same color 
(frames a to c in Figure 8), again resulting in incorrect results. The same issue occurred in 
Mean-shift with HOG response regardless of the machine color, because both dump trucks 
had similar orientations resulting in high detection scores. SCIT with the hybrid tracker 
flawlessly processed all of the mentioned cases (frames d to f in Figure 8).  
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Figure 8. a through c: mixture and wrong shifting of the tracking blob to nearby same colored truck, 
d to f: hybrid algorithm correctly tracked the target in the same scenario 

 
Both methods, regardless of their tracking engine, had some variations in recording the 
start and finish times, which resulted in different average cycle times (Table 3). In 
reviewing the data, the errors fell into three main causes: 

 The videos were scanned for new dump trucks every four seconds, so 0 to 4 second 
variations of the activity start times compared to manual observation are inevitable; 

 SCIT was slow to find the loading truck although it was in place when it was 
scanning for it;  

 It takes a few seconds after the truck begins to pull away for the center of the 
tracking blob to leave the loading region. This resulted in variations in recording 
the activity finish times in SCIT whereas the human observer instantly recorded the 
finish time when the loading truck started to leave.   

Practical Applications 

There are two main applications for the automated productivity measurement of dirt 
loading cycles: production confirmation and productivity improvement. 
The system can count the number of trips made by an earthmoving subcontractor, thereby 
confirming the work achieved for payment. It is also possible to approximate the quantity 
of earth moved using the number of trips and the standard capacity of dump trucks. These 
data are currently handled by foremen, who are also responsible for directing trucks in the 
loading zone. This is one of the most hazardous areas in construction sites due to slewing 
excavators, and the forward and reverse movement of dump trucks in a confined area 
(Edwards and Nicholas 2002). SCIT will eliminate the distracting recording task and help 
the foremen focus on site safety.  
Activity duration data can be used to study productivity, find bottlenecks, and enhance 
ongoing operations. They can also be used in advanced analysis such as stochastic 
simulation for planning future activities (AbouRizk and Halpin 1992).  
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Table 4 provides the detailed results of test number 3. This table excludes the one false 
positive cycle and is based on the rest of 54 correctly detected cycles. These productivity 
data are grouped into the eight site visits because the productivity durations and visual 
conditions were different in each visit. The best case had 100% accuracy in average cycle 
times (site visit 6) and the worst was 86.3% (site visit 2). The overall accuracy of the 
average cycle times was 95% with the standard deviation of 4.5%. The accuracy of average 
cycle times is calculated as: 1-(software data-manual data)/manual data. 

 
Table 4. Detailed results of the dirt loading analysis 

Site 
visit 

No of  
cycle
s 

Data 

Type 

Waitin
g 
time 

Loadin
g 
time 

Waitin
g 

Loadin
g 

Accurac
y 

Averag
e 
loading 
 time 

Averag
e 
waiting 
 time 

1 17 

Manual 0:16:05 0:28:54 35.75% 64.25% 

98.04% 

0:01:42 0:00:57 

Softwar
e 

0:15:12 0:29:47 33.79% 66.21% 0:01:45 0:00:54 

2 6 

Manual 0:04:17 0:10:12 29.57% 70.43% 

90.45% 

0:01:42 0:00:43 

Softwar
e 

0:02:54 0:11:35 20.02% 79.98% 0:01:56 0:00:29 

3 3 

Manual 0:06:14 0:03:55 61.41% 38.59% 

95.73% 

0:01:18 0:02:05 

Softwar
e 

0:05:48 0:04:21 57.14% 42.86% 0:01:27 0:01:56 

4 2 

Manual 0:02:28 0:04:32 35.24% 64.76% 

97.62% 

0:02:16 0:01:14 

Softwar
e 

0:02:18 0:04:42 32.86% 67.14% 0:02:21 0:01:09 

5 3 

Manual 0:02:25 0:05:42 29.77% 70.23% 

95.69% 

0:01:54 0:00:48 

Softwar
e 

0:02:04 0:06:03 25.46% 74.54% 0:02:01 0:00:41 

6 5 

Manual 0:04:16 0:06:11 40.83% 59.17% 

99.52% 

0:01:14 0:00:51 

Softwar
e 

0:04:19 0:06:08 41.31% 58.69% 0:01:14 0:00:52 

7 6 

Manual 0:04:53 0:10:27 31.85% 68.15% 

97.17% 

0:01:44 0:00:49 

Softwar
e 

0:04:27 0:10:53 29.02% 70.98% 0:01:49 0:00:45 

8 12 

Manual 0:12:36 0:21:25 37.04% 62.96% 

98.73% 

0:01:47 0:01:03 

Softwar
e 

0:12:10 0:21:51 35.77% 64.23% 0:01:49 0:01:01 

Overall 54 

Manual 0:53:14 1:31:18 36.83% 63.17% 

97.21% 

0:01:41 0:00:59 

Softwar
e 

0:49:12 1:35:20 34.04% 65.96% 0:01:46 0:00:55 

 
These promising results demonstrate the practicability of the SCIT system to estimate dirt 
loading cycles, but they also highlight the constraints to employ this system. It is critical 
for the system to have a clear view of the scene and the loading trucks should be mostly 



 16

visible during the loading operation. Moreover, since the object recognition framework for 
excavator can currently detect only one excavator, the SCIT performance is restricted to 
one operating excavator and the job sites with more than one loading units require more 
cameras accordingly.  

Conclusion 

Fifty-five years ago, Herbert Simon promised that in a foreseeable future, machines could 
think, learn, and create like a human (Simon and Newell 1958). We apparently are far from 
that goal even after half a century, although the technology is gradually moving in that 
direction.  
In this research, we introduce a vision-based framework, named SCIT, which can recognize 
and estimate dirt loading cycles. The prototype software was developed using two different 
tracking methods and then evaluated using several test videos captured from two 
construction sites under different visual conditions. The SCIT with the novel hybrid 
tracking engine outperformed the SCIT with the well-known Mean-shift tracker. The 
results showed that this system could recognize and measure 98.2% of the loading cycles 
with 95% accuracy in durations; however, the system is vulnerable against harshly 
occluded target objects. From this issue, the proper location of the camera is seen to be a 
key factor for accurate results. In addition, the current version of the SCIT can only process 
videos with one operating excavator. The contribution of this research is to introduce a 
novel tracking method and an action recognition module to practically estimate dirt loading 
cycles. The future work will focus on the expansion the system to recognize and measure 
other types of earthmoving operations with multiple plants. 
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