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Abstract-- We present a technique that controls the 

peak power consumption of a high-density server by 

implementing a feedback controller that uses precise, 

system-level power measurement to periodically select the 

highest performance state while keeping the system within 

a fixed power constraint. A control theoretic methodology 

is applied to systematically design this control loop with 

analytic assurances of system stability and controller 

performance, despite unpredictable workloads and running 

environments. In a real server we are able to control power 

over a 1 second period to within 1 W. Additionally, we 

have observed that power over an 8 second period can be 

controlled to within 0.1 W. We believe that we are the first 

to demonstrate such precise control of power in a real 

server. 

Conventional servers respond to power supply 

constraint situations by using simple open-loop policies to 

set a safe performance level in order to limit peak power 

consumption. We show that closed-loop control can 

provide higher performance under these conditions and test 

this technique on an IBM BladeCenter HS20 server. 

Experimental results demonstrate that closed-loop control 

provides up to 82% higher application performance 

compared to open-loop control and up to 17% higher 

performance compared to a widely used ad-hoc technique. 

1. Introduction 

As modern enterprise data centers continue to increase 

computing capabilities to meet their growing business 

requirements, high-density servers become more and more 

desirable due to space considerations and better system 

management features. However, the greatest immediate 

concerns about high-density servers are their power and 

cooling requirements, imposed by limited space inside the 

server chassis. 

Server products have been traditionally designed to 

provide for worst-case operating environments and 

workloads by over-provisioning the cooling and power 

delivery systems. Such over-provisioning adds cost to the 

system and enlarges the server footprint, but benefits few 

real environments or workloads. In response, server 

designers have started to adopt a “better-than-worst-case” 

design approach [22]. Ideally, such servers would 

dynamically monitor the available operating margin and 

adjust the system operating point to run safely at the edge 

of physical limitations. For example, a server could 

dynamically adjust its operation to the highest performance 

possible that did not violate power and thermal constraints. 

One widely deployed example of “better-than-worst-

case” design is Intel’s use of Thermal Design Power (TDP) 

[21]. Intel recommends vendors build a cooling system that 

is sufficient for most situations, but not for unrealistic 

workloads. During rare periods when the processor 

temperature exceeds the limits of the cooling system, the 

processor reduces the processor speed to a safe, 

predetermined setting. This allows the cooling system 

capability to be under-provisioned and yet maintain safety 

at all times. 

Similar techniques for system-level power constraints 

have been less studied. In this paper, we demonstrate 

management of the peak system-level power consumption 

with a feedback controller that uses precise system-level 

power measurements to periodically select the highest 

performance state that keeps the server within the desired 

power constraint. When the server runs at less than the 

power supply capacity, it runs at full speed. When the 

server power would be greater than the power supply 

capacity, it runs at a slower speed so that its power 

consumption matches the available power supply capacity. 

This gives vendors the option to use smaller, cost-effective 

power supplies that allow real-world workloads to run at 

nominal frequency, but under exceptional conditions result 

in a small performance degradation. 

This paper makes the following contributions: 

1.  To our knowledge, we are the first to demonstrate 

managing the peak system power of a single server to a 

power constraint using precision measurement with a 

closed-loop control system. This differentiates our work 

from previous solutions that manage average power, use 

ad-hoc control, or use estimations of power in place of real 

measurement. In addition, we control whole-server power 

consumption (not only the power of the processor) and can 

compensate for power load changes in other components. 

2.  We present a novel control design based on 

feedback control theory to manage system-level power 

with theoretic guarantees on accuracy and stability. We 

show that a P controller is sufficient to control server-level 

power in our prototype. Often PI controllers are used to 

obtain zero steady-state error, however our system has an 

integration step in the actuator (as part of a first-order 

delta-sigma modulator) such that zero steady-state error 

can be achieved without resorting to PI controllers. 

3.  We demonstrate how to derive controller 

parameters such that the controlled system is guaranteed to 

achieve the desired controller performance in the presence 
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of run-time variations that cause the system to behave 

differently from the control model. 

4.  We implement our control system directly in an 

IBM BladeCenter blade server and evaluate it using 

industry standard benchmarks. 

5.  We show that under a heavy power constraint, our 

controller can provide much better performance than 

simpler open-loop and ad-hoc techniques. Under light 

power constraints, our controller often runs workloads at 

full speed. 

6. Our controller allows server designers to safely 

underprovision the power supply to lower costs while 

negligibly affecting performance of real-world workloads. 

In the next section we highlight the distinction of our 

work by discussing related work. In Section 3, we discuss 

system-level management of power in conventional 

systems and those with feedback controllers. We then 

demonstrate how we design the controller based on 

feedback control theory in Section 4. Next, in Section 5, 

we analyze the control performance and show how to 

account for system variation. In Section 6, we describe the 

detailed implementation of each component in the 

feedback control loop. Our empirical results are presented 

in Section 7 and we draw conclusions in Section 8. 

2. Related work 

Power consumption is one of the most important 

design constraints for high-density servers. Much of the 

prior work has attempted to reduce power consumption by 

improving the energy-efficiency of individual server 

components [1]. In contrast, our paper is focused on 

providing an effective power management algorithm to 

control system-level power. Previous work [2] has shown 

that processors are often the dominant consumers of power 

in servers. This is particularly true in dense blade server 

environments. We use processor throttling as the actuator 

in our power controller. 

Many researchers use expensive power measurement 

equipment to instrument servers for their studies [2]. In our 

work, we use an inexpensive, yet highly accurate, power 

measurement circuit built-in to recent IBM servers [20] 

which measures power consumed by the entire server. This 

enables our technique for power management to be used in 

ordinary, high-volume servers. 

There has been much work done on system-level 

power management. Zeng et al. [3] and Lu et al. [4] have 

developed power management strategies for operating 

systems. In contrast, our work is at the system-architecture 

level. Our feedback controller in the service processor 

firmware directly controls the main host processors to keep 

the system-level power within a power constraint, while 

requiring no support from the OS or workloads running on 

the system and is operational during system boot. Thus, the 

power management is more robust and less susceptible to 

software errors or malicious threats. 

Feedback control theory has proven to be an effective 

way in improving performance and robustness of 

computing systems [5]. Skadron et al. [6] use control 

theory to dynamically manage the temperature of 

microprocessors. Likewise, Wu et al. [7] manage power 

using dynamic voltage scaling by controlling the 

synchronizing queues in multi-clock-domain processors. In 

contrast to their work, we control peak power for a whole 

server instead of just the processors and implement it on a 

conventional server. For example, we are able to handle 

unexpected power demand from memory, disk, and I/O 

components. 

Minerick et al. [8] develop a feedback controller for 

managing the average power consumption of a laptop to 

prolong battery lifetime. Their study relies on experiments 

to find the best control parameters. In contrast, we derive 

parameters based on a systematically built control model. 

In addition, we not only design our controller based on 

feedback control theory, but also analytically model the 

possible system variations and provide corresponding 

theoretic guarantees. We believe our work is the first to 

provide such insightful analyses for system-level power 

 
Figure 1: BladeCenter chassis. 

 
Figure 2: IBM BladeCenter HS20 blade. 
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management. As a result, our control method does not 

assume any knowledge about potential workloads and thus 

can be generally applied to any server system. In addition, 

our controller is designed to meet the tighter real-time 

constraints for the overload condition of server power 

supplies. Femal et al. [9] present a two-level framework for 

controlling cluster-wide power. The Local Power Agent 

(LPA) applies the controller from Minerick et al. to each 

server in order to limit the server-level power. The Global 

Power Agent dynamically re-allocates the power budgets 

between the local managers. Our blade server prototype 

could be used in place of the LPA to control cluster-wide 

power with tighter margins.  

Sharma et al. [10] effectively apply control theory to 

control application-level quality of service requirements. 

Chen et al. [11] also develop a controller to manage the 

response time in a server cluster. Although they both use 

control theory to manage power consumption, power is 

only used as a knob to control application-level service 

metrics. As a result, they do not provide any absolute 

guarantee to the power consumption of a computing 

system. In this paper, we explicitly control the power 

consumption itself to adhere to a given power constraint. 

Brooks et al. [17] use ad-hoc control to limit processor 

temperature so cheaper heat-sinks can be used. In a similar 

way, one result of our work is that system designers are no 

longer required to use over-provisioned power supplies to 

survive worst-case scenarios. 

Felter et al. [18] use open-loop control to shift power 

between processor and memory components to maintain a 

server power budget. In contrast, our solution can operate 

at smaller design margins because it uses precision 

measurement. Our controller could be added to such a 

system to provide tight guarantees on the system-level limit 

and provide a safe environment for power shifting between 

components that do not use measurement. 

Foxton [19], which is not yet available in products, 

uses on-chip power measurement to control power in a 

single Itanium processor. Our technique is used outside the 

main application processor and is therefore applicable to a 

wider range of architectures. Our power measurement 

circuit has already been deployed across multiple server 

products spanning three processor architectures [20]. 

Ranganathan et al. propose using processor 

performance states to control blade server power [23]. 

However, they rely on ad-hoc control methods that do not 

guarantee stability across a variety of workloads. 

This paper builds on a previously designed control 

system described in a technical report [15]. The previous 

controller had a power measurement precision of 1 W, 

while the controller presented here has a precision of 0.1 

W. This not only improves the measurement quality, but 

raises the performance results slightly. We add a discussion 

of the modulation technique used by the system. We also 

add a comparison to a typical ad-hoc approach to control 

power and show why such a technique is generally not 

desirable for server power management. 

3. System-level power management 

We present a description of the current power 

management solution in the BladeCenter as an example of 

requirements in conventional servers that the control loop 

must meet in order to satisfy power supply constraints. 

3.1. BladeCenter test platform 
Our test platform is a single IBM BladeCenter HS20 

blade server with Intel Xeon microprocessors. The power 

management architecture of BladeCenter is shown in 

Figure 1. A BladeCenter chassis has two power domains 

and is configured with four 2000 W power supplies total. 

Each power domain is redundantly connected to two of the 

power supplies so that in the event of a single supply 

failure, the domain continues operating with the remaining 

power supply. The first power domain provides power for 

six blade servers as well as supporting components shared 

by the blades including management modules, fans, the 

media tray, and network switches. The second power 

domain holds eight blade servers. Our discussion and 

experiments focus on the second power domain because its 

blades have a stricter, lower power constraint. 

BladeCenter adheres to a policy which specifies that 

the power supplies must not be in an overload situation 

(drawing more power than their rating) for more than 1 

second [14]. Overload can happen when one of the power 

supplies fails and the load is shifted completely to the 

remaining supply. If the load remains too high on the 

single supply for too long, then the remaining power 

supply may turn off and remove power from all blades in 

the domain. In practice, the one second target is 

conservative and the power supply can sustain a power 

overload for even longer periods of time. In this work, we 

design the controller to manage power at this one second 

time scale. Servers with different overload power 

constraints may have different requirements. 

Our blade has a label power of 308 W. During 

overload conditions, the power must be reduced to 250 W. 

The mechanism to throttle blade power is processor clock 

modulation (“clock throttling”) which lowers the effective 

 

 

 

 

 

 

Figure 3: System diagram for power control 



 

frequency of the processors. There are 8 performance states 

which correspond to effective frequencies of 12.5%, 25%, 

37.5%, 50%, 62.5%, 75%, 87.5%, and 100%. 

3.2. Feedback control of power 

We have developed a feedback control loop which 

adaptively controls the power consumption of the server by 

manipulating the processor clock modulation setting. There 

are two reasons for us to use processor throttling as our 

actuation method. First, processors typically have well-

documented interfaces to adjust performance levels. 

Second, processors commonly contribute the majority of 

total power consumption of small form-factor servers. As a 

result, the processor power difference between the highest 

and lowest performance states is large enough to 

compensate for the power variation of other components. 

Developing additional power controller for non-processor 

components would further extend the power control range 

for the server. Femal et al. and Ranganathan et al. have 

adopted the approach of using only processor performance 

states to limit whole-server power consumption [9][23]. 

The key components in the control loop include the 

monitor, the controller, and the actuator. The control loop 

is invoked periodically and its period is decided based on 

the trade-off between actuation overhead and system 

settling time. At each control period, a precision 

measurement of the real system-level power consumption 

is input to the controller. The controller computes the new 

performance state and sends it to the actuator. The actuator 

throttles the processors to the new performance state. A 

detailed description of each component is given in Section 

6. The photo in Figure 2 shows our HS20 blade with the 

power measurement circuitry and sense resistors used for 

closed-loop control. 

4. Controller Design and Analysis 

A detailed description of the feedback control loop, 

including its derivation, can be found in our prior technical 

report [15]. Hence, this section will only reiterate the 

important features of the controller. Figure 3 shows the 

system diagram. 

We first introduce the following notation: 

T:   The control period.  

p(k):  The power consumption of the server in the k
th

 

control period. 

Ps:   The power set point of the server, namely, the 

desired power constraint.  

t(k): The performance state of the processors in the k
th

 

control period. 

d(k): The difference between t(k+1) and t(k). 

Specifically d(k)= t(k+1)-t(k). 

The goal of the controller is to guarantee that p(k) 

converges to Ps within a given settling time. 

For this paper, we construct a control loop that can be 

used for our particular blade at nominal temperatures. 

Constructing a control loop for an actual product is similar, 

but involves taking measurements from many blades to 

account for manufacturing variation and taking the 

measurements of the BladeCenter under thermal stress to 

account for different machine room environments, which is 

beyond the scope of this paper. 

4.1. System Modeling 

We have observed the power consumption changes 

immediately (within a millisecond) as the performance 

state changes without regard to the previous performance 

state. That means the power consumption of the server for 

a given workload is determined exclusively by the 

performance setting and is independent of the power 

consumption in previous control periods. Although 

temperature also affects system-level power, it operates on 

a much slower timescale and can be modeled as a 

disturbance input to the controller. Figure 4 plots the 

relationship between the processor performance setting and 

the maximum 1 second power consumption. A linear 

model fits well (R
2
 > 99%) for all workloads. Hence, our 

system model of power consumption is: 

BkAtkp += )()(  (1) 

The dynamic model of the system as a difference 

equation is: 

)()()1( kAdkpkp +=+  (2)  

4.2. Controller Design 
Following standard control theory, we design a 

proportional (P) controller [12]. We used a P controller 

instead of a more sophisticated PI controller because the 

actuator includes an integration step (as part of the first-

order delta-sigma modulator) such that zero steady-state 

error can be achieved without resorting to a PI controller. 
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Figure 4: Maximum system-level power measurement for 
each processor performance state. 



 

The time-domain form of our P controller is:  

))((
1

)( kpP
A

kd s −=  (3) 

It is easy to prove that the controller is stable and has 

zero steady state error. Satisfying these requirements 

means that when the power level or set point is changed, 

the controller will converge precisely to the desired set 

point. Due to space limitations, we skip the detailed 

derivation which can be found in standard control 

textbooks [12]. 

The desired performance setting in period k+1 is: 

)()()1( kdktkt +=+  (4) 

5. Performance Analysis for Model Variation 

Our controller is designed to achieve the control 

performance specified in Section 4.2 when the system 

model is accurate. However, the real system model is 

usually different from the nominal model (Equation 1) we 

used to design the controller. This variation could have 

several causes. For example, the server may have different 

components and configurations from the modeled system, 

the workload could be different from the ones used in 

system identification, or manufacturing differences in the 

microprocessors may cause them to have different power 

levels. Since developing a different controller for every 

server and every workload is infeasible, it is very important 

to analyze the impact of model variation to control 

performance, before we deliver any theoretical guarantees. 

An important observation from our measurements is 

that the workloads always exhibit a linear relationship 

between power consumption and the performance state, 

even running on different servers. Based on this 

observation, we mathematically analyze the impact of 

model variation on control performance. Without loss of 

generality, we model the real system as 

BgkAtgkp 21 )()( +=  (5) 

where AAg '1 =  and BBg '2 =  are system gains 

and are used to model the variation between the real system 

model (Equation 5) and the nominal model (Equation 1). 

Since our controller is designed based on the difference 

equation (Equation 2) of the system model, g2 has no effect 

on the performance of the controller.  

We investigate system stability when a controller 

designed based on the nominal model (1) is used to control 

the real system (5). The technical report [15] shows that the 

system will remain stable as long as 0 < g1 < 2. This 

established stability range is an important guideline for us 

to choose the control parameter A. 

The technical report explains the reasoning for our 

selection of A. In brief, we calculate A as the average 

between the minimum and maximum slopes (Figure 4) to 

guarantee stability even in extreme cases. In this case, A is 

78.85. and 0.406 < g1 < 1.594. The technical report also 

shows that the system has zero steady state error even 

under model variation. Hence, as long as the system is 

stable (i.e. 0<g1<2), we are guaranteed to achieve the 

desired power value. 

In the technical report, we show that the system will 

settle to within 0.5 W of the power set point in 13 control 

intervals. Dividing 1 second by 13 periods tells us the 

control period should be less than 76.9 ms. For the P 

controller, we use a slightly more conservative interval of 

64 ms. 

Empirically, we found the minimum set point to be 

170 W, which is the maximum power consumed by the 

workloads at the lowest performance setting. In other 

words, using a set point less than 170 W risks a violation of 

the power constraint for some workloads. Therefore, the 

practical range of the set point is from 170 W to 308 W 

(label power). 

6. System Architecture and Implementation 

The power control architecture in our server has three 

pieces. A power monitor (hardware and firmware) and a 

controller (firmware) are two new pieces added to the 

blade that measure power at 1000 samples per second and 

decide on a throttle setting for the processors every 64 ms. 

The actuator piece providing performance state selection is 

already available in processors today. We augment the 

actuator by modulating between the available performance 

states to effectively produce a finer range of performance 

states. The pseudo code used on the service processor for 

the controller and the actuator components is shown in 

Figure 5. 

6.1. Power monitor 

The power monitor measures the blade’s power at its 

12 V bulk power supply interface. The power supply 

interface is attached to sense resistors and a signal 

conditioning circuit to obtain the current and voltage 

levels. The conditioning circuit attaches to analog-to-

digital converters on the service processor. Every 

millisecond, the power monitor firmware in the service 

processor (a 29 MHz Renesas H8) converts the current and 

voltage signals into a calibrated power measurement for the 

 
Figure 5: Pseudo code for P controller 

// Controller code 

error = setpoint – power_measurement; 

ideal_throttle = throttle + (1/A) * error; 

 

// Actuator code 

// First-order delta-sigma modulation 

throttle = truncate(ideal_throttle); 

frac = ideal_throttle – throttle; 

total_fraction = total_fraction + frac; 

if (total_fraction > 1) { 

  throttle = throttle + 1; 

  total_fraction = total_fraction – 1; 

} 

// Actuator saturation handling 

if (throttle > 7) throttle = 7; 

if (throttle < 0) throttle = 0; 

 



 

entire blade. After every 64 readings, the power monitor 

calculates the average power over the previous 64 ms 

interval which is sent to the controller. 

The absolute measurement is accurate to within 2% 

due to a calibration feature realized between the hardware 

and service processor firmware and due to the 1% accuracy 

rating of the sense resistors. The calibration step reduces a 

number of additional circuit thermal, aging, and precision 

issues that would otherwise have led to measurements that 

varied by 5% or worse as temperatures changed inside the 

chassis and as a blade’s components aged over time. It is 

fundamental to the entire server system to build its power 

measurement and management around precision dynamic 

measurements. The quality of the power measurement is 

constrained by the cost of the measurement circuit. For a 

high-volume, low-cost server, we use a low-cost circuit 

that meets a 2% maximum error goal and a 0.1 Watt digital 

resolution representation of the discrete power signal.  

6.2. Controller 

At each 64 ms control interval, the 64 ms average 

power is used to select the processor throttle level. The 

output of the controller is an ideal throttle value 

represented as a floating-point number. The value 0 

represents the 12.5% performance state and 7 represents 

the 100% performance state. It is possible to represent 

effective performance states that are not strictly available 

in the processor. For example, 6.2 represents a 

performance state of 90%. The actuator is responsible for 

approximating this value. 

6.3. Actuator 
Since the output of the controller is a floating-point 

value, the actuator code must resolve this to a series of 

discrete performance state settings to approximate the 

value. For example, to approximate 6.2, the modulator 

would output the sequence  6, 6, 6, 6, 7, 6, 6, 6, 6, 7, etc. 

To do this, we implement a first-order delta-sigma 

modulator [16], which is commonly used in analog-to-

digital signal conversion. 

If the modulator outputs a performance state that was 

different from the previous control interval, the service 

processor affects the actuation by activating a BIOS routine 

on the host processor. This routine sets the 

IA32_CLOCK_MODULATION register in the Xeon 

processor to invoke the performance state. All processors 

in the server are set to the same performance state. 

In the worst case, the controller may actuate every 

control period. In our two processor server, the BIOS takes 

40 microseconds to change the performance state. 

Therefore, the effect of actuation overhead on system 

performance is no more than 0.07% (40 

microseconds/64ms). In situations where the performance 

state does not change (e.g. server requires less than the 

power constraint), there is no actuation overhead. 

6.4. Power budget 

In Section 5, we found the minimum value for the 

controller set point to be 170 W. Considering we have a 

2% maximum error in power measurement, we must 

subtract the measurement error from the desired power 

budget to form the set point used in the controller. For 

example, if the desired power budget is 250.0 W, then we 

Workload OS Notes 

P4MAX Windows Run for 3 minutes on both 

processors using 100% setting 

(4 threads total). 

SPEC 

CPU2000 

Linux Compiled with Intel Compiler 

9.0 (32-bit). Performance 

results are only shown for rate 

mode (2 users). 

SPECjbb2005 Windows JVM is BEA JRockit JRE 5.0 

Update 3 (RR25.2.0-28). Run 

4 warehouses only. 

Intel Optimized 

LINPACK 

Linux Version 2.1.2. Run with two 

threads. 15000x15000 matrix. 

Table 1: Workloads. 

Power 

budget 

Open-loop processor 

performance setting 

Improved Ad-

hoc set point 

P control 

set point 

250 W 75% 238.9 W 245.0 W 

240 W 62.5% 229.1 W 235.2 W 

230 W 62.5% 219.3 W 225.4 W 

220 W 50% 209.5 W 215.6 W 

210 W 37.5% 199.7 W 205.8 W 

Table 2: Controller set points used in application 
performance measurements. The open-loop performance 
setting is determined by the finding the highest 
performance setting that runs P4MAX without a violation of 
the power budget. P controller set point is calculated by 
reducing the power budget by 2% measurement error. Ad-
hoc controller set point is 6.1 W lower than P controller set 
point to account for safety margin due to steady-state error 
in the ad-hoc controller. 
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use 245.0 W as the controller set point to ensure that the 

real power is below the budget even with the worst case 

measurement error. Accounting for the worst-case 

measurement error means the lowest power budget we can 

guarantee is 173.4 W. When the server power consumption 

is below the set point the controller saturates at the highest 

performance state which allows the system to operate at 

full performance. Selection of the highest performance 

state is desired because we want the system to run at full 

performance in normal situations. 

7. Results 

In this section, we present the experimental results of 

using closed-loop control of power on an a single IBM 

BladeCenter blade. We first describe the experimental 

environment and benchmarks used in our experiments. 

Then we introduce the open-loop and ad-hoc controllers to 

compare with the P controller. Finally we present results 

evaluating common benchmarks under several power 

budgets. 

7.1. Experimental Environment 

Our test environment is an IBM BladeCenter HS20 

blade which was introduced in Section 3.1. This server is 

fully populated with two 3.6GHz Intel Xeon Irwindale 

SMP processors with hyper-threading, 8GB memory, two 

36 GB SCSI hard-disks, dual 1 Gb Ethernet interfaces, and 

a Fibre Channel daughter card.  

We compare our P controller to an open-loop 

controller and an ad-hoc controller that both represent 

common solutions found in industry. We evaluate each of 

these three power management policies using power 

budgets ranging from 210 W to 250 W. The 250 W budget 

corresponds to the case in which the BladeCenter has lost a 

single redundant 2000 W power supply. Each measurement 

presented is the average value of three runs. 

Our evaluation workloads are listed in Table 1. Some 

of the workloads are run under SUSE Linux Enterprise 

Server 9 SP 2 and others are run under Windows Server 

2003 Enterprise x64 Edition. In our evaluation, we do not 

show results for single thread SPEC CPU2000 because the 

power consumption is typically below the power budgets 

we evaluate and would result in no application slowdown. 

The P4MAX workload is a program designed to produce 

the maximum power consumption on the Intel Xeon 

microprocessors [13]. 
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Figure 7: Example of ad-hoc controller and P controller. Linpack benchmark from Figure 6 is shown with the feedback 
controller turned on at about 39 seconds into the run. The set point for each controller is 211.0 W. In A) and C), the ad-hoc 
controller moves one performance state up or down depending on whether the 64 ms power is above or below the set point. 
After 1 second (around t=40s), the average 1 second power is 216.0 W, violating the set point by 5 W. The processor speed 
averages 68.8%. The power consumption never reaches the set point.  In B) and D), the P controller shows more efficient 
use of the actuator and modulates it to achieve precisely the 211.0 W target. One second after the set point (around t=40s) 
the average power over 1 second is 210.7 W and is considered to be settled (by design, within 0.5 W of the set point). By 
t=41, the average power over 1 second measures 211.0 W and the processor speed averages 65.8%. 



 

7.2. Open-loop control 

The open-loop controller, referred to as open-loop, 

selects a fixed performance setting for a given power 

budget. It assumes that the system could be running any 

workload and therefore must lower the performance state 

to the point that even the most power-consuming workload 

could be run. For this study we take the highest power load 

to be P4MAX running at normal machine room 

temperatures. The performance state used for a specific 

power budget is shown in Table 2 which comes from our 

power measurements of P4MAX in Figure 4. 

7.3. Ad-hoc control 

We also compare the P controller with an ad-hoc 

controller that is representative of typical industry solutions 

to control power and temperature. We use this to motivate 

our use of control theory and demonstrate that ad-hoc 

controllers do not generally have the desired properties that 

make them safe and reliable. Our ad-hoc controller actuates 

every 64 ms just like the P controller. However, it simply 

raises or lowers the performance state by one step 

depending on whether the measured power is lower or 

higher than the power set point. 

A simple example of the P controller and ad-hoc 

controller shows how they are different from each other. 

First, consider the LINPACK benchmark shown in Figure 

6 which runs at up to 245 W with no power management. 

In Figure 7, a power constraint is introduced by setting the 

power set point to 211.0 W at t=39 s.  

The ad-hoc control responds by stepping down the 

performance state of the processors until the power is 

lower than the set point. Afterwards, the controller 

oscillates between the 62.5% and 75% performance states 

because the set point power is between the power 

consumption levels at these performance states for 
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Figure 8: Steady-state error. This figure shows the error 
the controller experiences in adhering to a given set point 
value. P4MAX, which exhibits very steady power 
consumption, was run for set points from 180 W to 260 W in 
1 W increments. The maximum power within a 66 second 
interval was recorded and the average of 3 runs is plotted. 
The P controller measurements matched the set point to 0.1 
W precision (the limits of the measurement circuit). The ad-
hoc controller showed long-term steady-state violations in 
the measured power by up to 6.1 W over the set point. The 
final series shows the improved ad-hoc controller run with a 
safety margin by subtracting 6.1 W from the set point before 
running the experiment. 
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Figure 9: Application performance. The Y-axis shows 
throughput performance compared to the application 
running at full-performance (no power management). 



 

LINPACK. The power consumption never settles to the set 

point and has a steady-state error of 5 W. Even if the ad-

hoc controller used a shorter control period, it would still 

oscillate and have a steady-state error. 

The P controller initially responds by lowering the 

performance state by several steps in the first control 

interval. One important benefit of proportional control is 

that it can react quicker than the ad-hoc method. It initially 

overshoots the set point, but then settles within 1 second as 

designed to the set point power. The first-order delta-sigma 

modulator in the P controller modulates performance states 

to run the processors at an effective frequency of 65.8% to 

meet this set point. 

One is tempted to think that the delta-sigma modulator 

could easily be added to the ad-hoc controller to improve 

its steady-state error. However, it is difficult in practice. 

Imagine using an ad-hoc controller that uses smaller step 

sizes to change the ideal throttle level (e.g., 0.1 instead of 

1.0). As the number of discrete performance steps available 

rises, the steady-state error would reduce, but at the cost of 

increased settling time. While it may be possible in some 

cases to design an ad-hoc controller that works well in 

practice, proportional control is preferred because there are 

established techniques to provide theoretical guarantees on 

the control performance and in the case of our P controller 

there is no steady-state error. 

7.4. Improved ad-hoc control 

The ad-hoc controller of the previous section can be 

improved to not have positive steady-state error. In Figure 

8, we show the result of running both the P controller and 

the ad-hoc controller at many set points from 180 W to 260 

W. The results are collected by running P4MAX and 

collecting the long-term steady-state error observed after a 

few minutes. The P controller is able to precisely meet the 

set point with 0.1 W precision. However, the ad-hoc 

controller shows steady-state error that is often above the 

set point. At most it is 6.1 W above the set point. An 

improved ad-hoc controller that always runs at or below 

the set point is created by subtracting 6.1 W from the set 

point used. The figure shows that the improved ad-hoc 

controller with the safety margin does not violate the set 

point. We use this improved version of the ad-hoc 

controller in the rest of the paper. 

7.5. Application Performance 

In this section, we investigate the impact of closed-

loop power control on the performance of common 

microprocessor benchmarks. We use the improved ad-hoc 

controller with the safety margin of 6.1 W because this 

allows both controllers to run with the same power 

constraints so that application performance can be 

compared. Without the safety margin, the ad-hoc controller 

would violate the power constraint for some workloads and 

show better performance than the P controller. 

We ran open-loop, (improved) ad-hoc, and P 

controller under each power budget and recorded the 

throughput achieved. In Figure 9, we present the 

benchmark performance as a percentage of the throughput 

at full-performance. For example, a measure of 100% 

means the application ran at the same rate as it would in the 

100% performance state (no power management). A 

measure of 50% means that the workload achieved half of 

the throughput as it would the 100% performance state. 

The throughput for LINPACK is measured in GFLOP/S, 

the throughput for SPECjbb2005 is measured in business 

operations per second, and SPEC CPU2000 is run with 2 

user threads and recorded as number of runs per second. 

CPU2000 is divided into CINT2000 and CFP2000 which 

consist of integer and floating-point benchmarks, 

respectively. The reported result is the average for all 

benchmarks in the category. 

Over the entire power budget range, application 

performance with the P controller is 31% to 82% faster 

than open-loop and up to 17% faster than ad-hoc. The 

open-loop policy runs applications at 29% to 76% of full-

performance. The slowdown is very high because open-

loop does not use real-time measurement and must select a 

single static speed at which to run the processors. The 

improved ad-hoc policy does much better and runs 

applications at 49% to 99% of full-performance. However, 

the P controller can do even better due to quicker settling 

times in response to changing power levels and more 

efficient modulation of the performance states in the 

processors. The P controller achieves between 53% and 

100% of full-performance on the workloads across power 

budgets from 210 W to 250 W. Budgets beyond 250 W for 

P controller, cause performance to quickly converge to 

full-performance for all workloads. 

Figure 10 summarizes the speedup of the P controller 

over other methods. The speedup is calculated as the 

throughput of workload under the P controller divided by 

the throughput of the workload under the other control 

mechanism. In general, the largest improvements are made 

at the lowest power budgets where the power constraints 

are the greatest. At the highest power budgets (240 W and 

250 W), the improved ad-hoc and P controller policies ran 

most benchmarks near full performance because the 

workloads often run below the power set point at these 

levels. 

8. Conclusions  

In this paper we present a control-theoretic peak power 

management system for servers. We show that a relatively 

simple closed-loop controller provides better application 

performance under a power constraint than by using open-

loop solutions found in conventional servers. Since the 

closed-loop controller measures the actual power the 

system consumes, it can react to workload changes and 

adapt the performance state to meet the requested power 

budget. This can increase application performance by up to 

82%. A key factor in realizing this performance 

improvement is having accurate power measurement which 



 

reduces controller design margins and utilizes the available 

power supply effectively. 

We compared our controller to a widely used ad-hoc 

technique. In general our controller is superior because 1) it 

has no steady-state error, 2) it has much shorter settling 

time, 3) it has less actuation overhead, 4) it has guaranteed 

stability and predictable settling time even when the system 

model is not accurate, and 5) it provides a stability range 

which gives the designer confidence about the degree of 

variation that the control system can tolerate. The P 

controller runs applications at up to 17% faster than the ad-

hoc controller.  

Feedback control of power has many implications for 

the future design and operation of servers. Enforcing a run-

time power constraint with closed-loop control, rather than 

a design-time power constraint with open-loop control, will 

allow servers to flexibly adapt to changing power and 

thermal environments. In addition, it allows design-time 

safety margins to be reduced so that severs run closer to the 

limits of the available power supply constraints. In our 

blade, we could reduce label power from 308 W to 250 W 

with a minimal impact on the performance of real 

applications. We expect this technique will be applied to 

low-cost rack-mount and blade servers so that cost-

effective power supplies with lower power ratings can be 

used. At another level, datacenter operators may use power 

control to match server power consumption to the available 

rack cooling capacity. 
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Figure 10: Speedup of P controller over other methods. 


