

Server-level Power Control

Charles Lefurgy
1
, Xiaorui Wang

2
, and Malcolm Ware

1

IBM Research, Austin
1
 and University of Tennessee, Knoxville

2

lefurgy@us.ibm.com, xwang@ece.utk.edu, mware@us.ibm.com

Abstract-- We present a technique that controls the

peak power consumption of a high-density server by

implementing a feedback controller that uses precise,

system-level power measurement to periodically select the

highest performance state while keeping the system within

a fixed power constraint. A control theoretic methodology

is applied to systematically design this control loop with

analytic assurances of system stability and controller

performance, despite unpredictable workloads and running

environments. In a real server we are able to control power

over a 1 second period to within 1 W. Additionally, we

have observed that power over an 8 second period can be

controlled to within 0.1 W. We believe that we are the first

to demonstrate such precise control of power in a real

server.

Conventional servers respond to power supply

constraint situations by using simple open-loop policies to

set a safe performance level in order to limit peak power

consumption. We show that closed-loop control can

provide higher performance under these conditions and test

this technique on an IBM BladeCenter HS20 server.

Experimental results demonstrate that closed-loop control

provides up to 82% higher application performance

compared to open-loop control and up to 17% higher

performance compared to a widely used ad-hoc technique.

1. Introduction

As modern enterprise data centers continue to increase

computing capabilities to meet their growing business

requirements, high-density servers become more and more

desirable due to space considerations and better system

management features. However, the greatest immediate

concerns about high-density servers are their power and

cooling requirements, imposed by limited space inside the

server chassis.

Server products have been traditionally designed to

provide for worst-case operating environments and

workloads by over-provisioning the cooling and power

delivery systems. Such over-provisioning adds cost to the

system and enlarges the server footprint, but benefits few

real environments or workloads. In response, server

designers have started to adopt a “better-than-worst-case”

design approach [22]. Ideally, such servers would

dynamically monitor the available operating margin and

adjust the system operating point to run safely at the edge

of physical limitations. For example, a server could

dynamically adjust its operation to the highest performance

possible that did not violate power and thermal constraints.

One widely deployed example of “better-than-worst-

case” design is Intel’s use of Thermal Design Power (TDP)

[21]. Intel recommends vendors build a cooling system that

is sufficient for most situations, but not for unrealistic

workloads. During rare periods when the processor

temperature exceeds the limits of the cooling system, the

processor reduces the processor speed to a safe,

predetermined setting. This allows the cooling system

capability to be under-provisioned and yet maintain safety

at all times.

Similar techniques for system-level power constraints

have been less studied. In this paper, we demonstrate

management of the peak system-level power consumption

with a feedback controller that uses precise system-level

power measurements to periodically select the highest

performance state that keeps the server within the desired

power constraint. When the server runs at less than the

power supply capacity, it runs at full speed. When the

server power would be greater than the power supply

capacity, it runs at a slower speed so that its power

consumption matches the available power supply capacity.

This gives vendors the option to use smaller, cost-effective

power supplies that allow real-world workloads to run at

nominal frequency, but under exceptional conditions result

in a small performance degradation.

This paper makes the following contributions:

1. To our knowledge, we are the first to demonstrate

managing the peak system power of a single server to a

power constraint using precision measurement with a

closed-loop control system. This differentiates our work

from previous solutions that manage average power, use

ad-hoc control, or use estimations of power in place of real

measurement. In addition, we control whole-server power

consumption (not only the power of the processor) and can

compensate for power load changes in other components.

2. We present a novel control design based on

feedback control theory to manage system-level power

with theoretic guarantees on accuracy and stability. We

show that a P controller is sufficient to control server-level

power in our prototype. Often PI controllers are used to

obtain zero steady-state error, however our system has an

integration step in the actuator (as part of a first-order

delta-sigma modulator) such that zero steady-state error

can be achieved without resorting to PI controllers.

3. We demonstrate how to derive controller

parameters such that the controlled system is guaranteed to

achieve the desired controller performance in the presence

The 4th IEEE International Conference on Autonomic Computing (ICAC 2007)

of run-time variations that cause the system to behave

differently from the control model.

4. We implement our control system directly in an

IBM BladeCenter blade server and evaluate it using

industry standard benchmarks.

5. We show that under a heavy power constraint, our

controller can provide much better performance than

simpler open-loop and ad-hoc techniques. Under light

power constraints, our controller often runs workloads at

full speed.

6. Our controller allows server designers to safely

underprovision the power supply to lower costs while

negligibly affecting performance of real-world workloads.

In the next section we highlight the distinction of our

work by discussing related work. In Section 3, we discuss

system-level management of power in conventional

systems and those with feedback controllers. We then

demonstrate how we design the controller based on

feedback control theory in Section 4. Next, in Section 5,

we analyze the control performance and show how to

account for system variation. In Section 6, we describe the

detailed implementation of each component in the

feedback control loop. Our empirical results are presented

in Section 7 and we draw conclusions in Section 8.

2. Related work

Power consumption is one of the most important

design constraints for high-density servers. Much of the

prior work has attempted to reduce power consumption by

improving the energy-efficiency of individual server

components [1]. In contrast, our paper is focused on

providing an effective power management algorithm to

control system-level power. Previous work [2] has shown

that processors are often the dominant consumers of power

in servers. This is particularly true in dense blade server

environments. We use processor throttling as the actuator

in our power controller.

Many researchers use expensive power measurement

equipment to instrument servers for their studies [2]. In our

work, we use an inexpensive, yet highly accurate, power

measurement circuit built-in to recent IBM servers [20]

which measures power consumed by the entire server. This

enables our technique for power management to be used in

ordinary, high-volume servers.

There has been much work done on system-level

power management. Zeng et al. [3] and Lu et al. [4] have

developed power management strategies for operating

systems. In contrast, our work is at the system-architecture

level. Our feedback controller in the service processor

firmware directly controls the main host processors to keep

the system-level power within a power constraint, while

requiring no support from the OS or workloads running on

the system and is operational during system boot. Thus, the

power management is more robust and less susceptible to

software errors or malicious threats.

Feedback control theory has proven to be an effective

way in improving performance and robustness of

computing systems [5]. Skadron et al. [6] use control

theory to dynamically manage the temperature of

microprocessors. Likewise, Wu et al. [7] manage power

using dynamic voltage scaling by controlling the

synchronizing queues in multi-clock-domain processors. In

contrast to their work, we control peak power for a whole

server instead of just the processors and implement it on a

conventional server. For example, we are able to handle

unexpected power demand from memory, disk, and I/O

components.

Minerick et al. [8] develop a feedback controller for

managing the average power consumption of a laptop to

prolong battery lifetime. Their study relies on experiments

to find the best control parameters. In contrast, we derive

parameters based on a systematically built control model.

In addition, we not only design our controller based on

feedback control theory, but also analytically model the

possible system variations and provide corresponding

theoretic guarantees. We believe our work is the first to

provide such insightful analyses for system-level power

Figure 1: BladeCenter chassis.

Figure 2: IBM BladeCenter HS20 blade.

Controller firmware on
service processor (H8
2166)

Power
measurement circuit

Sense resistors

BladeCenter chassis with 8 blades in second power domain

(Note: figure shows only one blade in the domain)

Chassis front

Chassis rear

12 V power

current

voltage

Management module (power domain 1)

Chassis-level power management SW

RS-485 link

S
ig

n
al

co
n
d
it

io
n

in
g

S
en

se

re
si

st
o
rs

HS20 blade

12 V

H8S Service Processor

Power measurement

and control

A/D

A/D

All blade components

(processors, memory, disks, service

processor, etc.)

Power Supply

Real throttle level

�
Integrator Server

-

On-board server-level power measurement from power monitor

Quantizer

Power set point First-order delta-sigma modulator

Ideal

throttle

level

Controller

management. As a result, our control method does not

assume any knowledge about potential workloads and thus

can be generally applied to any server system. In addition,

our controller is designed to meet the tighter real-time

constraints for the overload condition of server power

supplies. Femal et al. [9] present a two-level framework for

controlling cluster-wide power. The Local Power Agent

(LPA) applies the controller from Minerick et al. to each

server in order to limit the server-level power. The Global

Power Agent dynamically re-allocates the power budgets

between the local managers. Our blade server prototype

could be used in place of the LPA to control cluster-wide

power with tighter margins.

Sharma et al. [10] effectively apply control theory to

control application-level quality of service requirements.

Chen et al. [11] also develop a controller to manage the

response time in a server cluster. Although they both use

control theory to manage power consumption, power is

only used as a knob to control application-level service

metrics. As a result, they do not provide any absolute

guarantee to the power consumption of a computing

system. In this paper, we explicitly control the power

consumption itself to adhere to a given power constraint.

Brooks et al. [17] use ad-hoc control to limit processor

temperature so cheaper heat-sinks can be used. In a similar

way, one result of our work is that system designers are no

longer required to use over-provisioned power supplies to

survive worst-case scenarios.

Felter et al. [18] use open-loop control to shift power

between processor and memory components to maintain a

server power budget. In contrast, our solution can operate

at smaller design margins because it uses precision

measurement. Our controller could be added to such a

system to provide tight guarantees on the system-level limit

and provide a safe environment for power shifting between

components that do not use measurement.

Foxton [19], which is not yet available in products,

uses on-chip power measurement to control power in a

single Itanium processor. Our technique is used outside the

main application processor and is therefore applicable to a

wider range of architectures. Our power measurement

circuit has already been deployed across multiple server

products spanning three processor architectures [20].

Ranganathan et al. propose using processor

performance states to control blade server power [23].

However, they rely on ad-hoc control methods that do not

guarantee stability across a variety of workloads.

This paper builds on a previously designed control

system described in a technical report [15]. The previous

controller had a power measurement precision of 1 W,

while the controller presented here has a precision of 0.1

W. This not only improves the measurement quality, but

raises the performance results slightly. We add a discussion

of the modulation technique used by the system. We also

add a comparison to a typical ad-hoc approach to control

power and show why such a technique is generally not

desirable for server power management.

3. System-level power management

We present a description of the current power

management solution in the BladeCenter as an example of

requirements in conventional servers that the control loop

must meet in order to satisfy power supply constraints.

3.1. BladeCenter test platform
Our test platform is a single IBM BladeCenter HS20

blade server with Intel Xeon microprocessors. The power

management architecture of BladeCenter is shown in

Figure 1. A BladeCenter chassis has two power domains

and is configured with four 2000 W power supplies total.

Each power domain is redundantly connected to two of the

power supplies so that in the event of a single supply

failure, the domain continues operating with the remaining

power supply. The first power domain provides power for

six blade servers as well as supporting components shared

by the blades including management modules, fans, the

media tray, and network switches. The second power

domain holds eight blade servers. Our discussion and

experiments focus on the second power domain because its

blades have a stricter, lower power constraint.

BladeCenter adheres to a policy which specifies that

the power supplies must not be in an overload situation

(drawing more power than their rating) for more than 1

second [14]. Overload can happen when one of the power

supplies fails and the load is shifted completely to the

remaining supply. If the load remains too high on the

single supply for too long, then the remaining power

supply may turn off and remove power from all blades in

the domain. In practice, the one second target is

conservative and the power supply can sustain a power

overload for even longer periods of time. In this work, we

design the controller to manage power at this one second

time scale. Servers with different overload power

constraints may have different requirements.

Our blade has a label power of 308 W. During

overload conditions, the power must be reduced to 250 W.

The mechanism to throttle blade power is processor clock

modulation (“clock throttling”) which lowers the effective

Figure 3: System diagram for power control

frequency of the processors. There are 8 performance states

which correspond to effective frequencies of 12.5%, 25%,

37.5%, 50%, 62.5%, 75%, 87.5%, and 100%.

3.2. Feedback control of power

We have developed a feedback control loop which

adaptively controls the power consumption of the server by

manipulating the processor clock modulation setting. There

are two reasons for us to use processor throttling as our

actuation method. First, processors typically have well-

documented interfaces to adjust performance levels.

Second, processors commonly contribute the majority of

total power consumption of small form-factor servers. As a

result, the processor power difference between the highest

and lowest performance states is large enough to

compensate for the power variation of other components.

Developing additional power controller for non-processor

components would further extend the power control range

for the server. Femal et al. and Ranganathan et al. have

adopted the approach of using only processor performance

states to limit whole-server power consumption [9][23].

The key components in the control loop include the

monitor, the controller, and the actuator. The control loop

is invoked periodically and its period is decided based on

the trade-off between actuation overhead and system

settling time. At each control period, a precision

measurement of the real system-level power consumption

is input to the controller. The controller computes the new

performance state and sends it to the actuator. The actuator

throttles the processors to the new performance state. A

detailed description of each component is given in Section

6. The photo in Figure 2 shows our HS20 blade with the

power measurement circuitry and sense resistors used for

closed-loop control.

4. Controller Design and Analysis

A detailed description of the feedback control loop,

including its derivation, can be found in our prior technical

report [15]. Hence, this section will only reiterate the

important features of the controller. Figure 3 shows the

system diagram.

We first introduce the following notation:

T: The control period.

p(k): The power consumption of the server in the k
th

control period.

Ps: The power set point of the server, namely, the

desired power constraint.

t(k): The performance state of the processors in the k
th

control period.

d(k): The difference between t(k+1) and t(k).

Specifically d(k)= t(k+1)-t(k).

The goal of the controller is to guarantee that p(k)

converges to Ps within a given settling time.

For this paper, we construct a control loop that can be

used for our particular blade at nominal temperatures.

Constructing a control loop for an actual product is similar,

but involves taking measurements from many blades to

account for manufacturing variation and taking the

measurements of the BladeCenter under thermal stress to

account for different machine room environments, which is

beyond the scope of this paper.

4.1. System Modeling

We have observed the power consumption changes

immediately (within a millisecond) as the performance

state changes without regard to the previous performance

state. That means the power consumption of the server for

a given workload is determined exclusively by the

performance setting and is independent of the power

consumption in previous control periods. Although

temperature also affects system-level power, it operates on

a much slower timescale and can be modeled as a

disturbance input to the controller. Figure 4 plots the

relationship between the processor performance setting and

the maximum 1 second power consumption. A linear

model fits well (R
2
 > 99%) for all workloads. Hence, our

system model of power consumption is:

BkAtkp +=)()((1)

The dynamic model of the system as a difference

equation is:

)()()1(kAdkpkp +=+ (2)

4.2. Controller Design
Following standard control theory, we design a

proportional (P) controller [12]. We used a P controller

instead of a more sophisticated PI controller because the

actuator includes an integration step (as part of the first-

order delta-sigma modulator) such that zero steady-state

error can be achieved without resorting to a PI controller.

130

150

170

190

210

230

250

270

1
2

.5
%

2
5

.0
%

3
7

.5
%

5
0

.0
%

6
2

.5
%

7
5

.0
%

8
7

.5
%

1
0

0
.0

%

Processor performance setting (effective

frequency)

P
o

w
e

r
(W

)

SPECCPU

2-threads

SPECCPU

1-thread

LINPACK

SPECJBB 2005

P4MAX

Idle

Figure 4: Maximum system-level power measurement for
each processor performance state.

The time-domain form of our P controller is:

))((
1

)(kpP
A

kd s −= (3)

It is easy to prove that the controller is stable and has

zero steady state error. Satisfying these requirements

means that when the power level or set point is changed,

the controller will converge precisely to the desired set

point. Due to space limitations, we skip the detailed

derivation which can be found in standard control

textbooks [12].

The desired performance setting in period k+1 is:

)()()1(kdktkt +=+ (4)

5. Performance Analysis for Model Variation

Our controller is designed to achieve the control

performance specified in Section 4.2 when the system

model is accurate. However, the real system model is

usually different from the nominal model (Equation 1) we

used to design the controller. This variation could have

several causes. For example, the server may have different

components and configurations from the modeled system,

the workload could be different from the ones used in

system identification, or manufacturing differences in the

microprocessors may cause them to have different power

levels. Since developing a different controller for every

server and every workload is infeasible, it is very important

to analyze the impact of model variation to control

performance, before we deliver any theoretical guarantees.

An important observation from our measurements is

that the workloads always exhibit a linear relationship

between power consumption and the performance state,

even running on different servers. Based on this

observation, we mathematically analyze the impact of

model variation on control performance. Without loss of

generality, we model the real system as

BgkAtgkp 21)()(+= (5)

where AAg '1 = and BBg '2 = are system gains

and are used to model the variation between the real system

model (Equation 5) and the nominal model (Equation 1).

Since our controller is designed based on the difference

equation (Equation 2) of the system model, g2 has no effect

on the performance of the controller.

We investigate system stability when a controller

designed based on the nominal model (1) is used to control

the real system (5). The technical report [15] shows that the

system will remain stable as long as 0 < g1 < 2. This

established stability range is an important guideline for us

to choose the control parameter A.

The technical report explains the reasoning for our

selection of A. In brief, we calculate A as the average

between the minimum and maximum slopes (Figure 4) to

guarantee stability even in extreme cases. In this case, A is

78.85. and 0.406 < g1 < 1.594. The technical report also

shows that the system has zero steady state error even

under model variation. Hence, as long as the system is

stable (i.e. 0<g1<2), we are guaranteed to achieve the

desired power value.

In the technical report, we show that the system will

settle to within 0.5 W of the power set point in 13 control

intervals. Dividing 1 second by 13 periods tells us the

control period should be less than 76.9 ms. For the P

controller, we use a slightly more conservative interval of

64 ms.

Empirically, we found the minimum set point to be

170 W, which is the maximum power consumed by the

workloads at the lowest performance setting. In other

words, using a set point less than 170 W risks a violation of

the power constraint for some workloads. Therefore, the

practical range of the set point is from 170 W to 308 W

(label power).

6. System Architecture and Implementation

The power control architecture in our server has three

pieces. A power monitor (hardware and firmware) and a

controller (firmware) are two new pieces added to the

blade that measure power at 1000 samples per second and

decide on a throttle setting for the processors every 64 ms.

The actuator piece providing performance state selection is

already available in processors today. We augment the

actuator by modulating between the available performance

states to effectively produce a finer range of performance

states. The pseudo code used on the service processor for

the controller and the actuator components is shown in

Figure 5.

6.1. Power monitor

The power monitor measures the blade’s power at its

12 V bulk power supply interface. The power supply

interface is attached to sense resistors and a signal

conditioning circuit to obtain the current and voltage

levels. The conditioning circuit attaches to analog-to-

digital converters on the service processor. Every

millisecond, the power monitor firmware in the service

processor (a 29 MHz Renesas H8) converts the current and

voltage signals into a calibrated power measurement for the

Figure 5: Pseudo code for P controller

// Controller code

error = setpoint – power_measurement;

ideal_throttle = throttle + (1/A) * error;

// Actuator code

// First-order delta-sigma modulation

throttle = truncate(ideal_throttle);

frac = ideal_throttle – throttle;

total_fraction = total_fraction + frac;

if (total_fraction > 1) {

 throttle = throttle + 1;

 total_fraction = total_fraction – 1;

}

// Actuator saturation handling

if (throttle > 7) throttle = 7;

if (throttle < 0) throttle = 0;

entire blade. After every 64 readings, the power monitor

calculates the average power over the previous 64 ms

interval which is sent to the controller.

The absolute measurement is accurate to within 2%

due to a calibration feature realized between the hardware

and service processor firmware and due to the 1% accuracy

rating of the sense resistors. The calibration step reduces a

number of additional circuit thermal, aging, and precision

issues that would otherwise have led to measurements that

varied by 5% or worse as temperatures changed inside the

chassis and as a blade’s components aged over time. It is

fundamental to the entire server system to build its power

measurement and management around precision dynamic

measurements. The quality of the power measurement is

constrained by the cost of the measurement circuit. For a

high-volume, low-cost server, we use a low-cost circuit

that meets a 2% maximum error goal and a 0.1 Watt digital

resolution representation of the discrete power signal.

6.2. Controller

At each 64 ms control interval, the 64 ms average

power is used to select the processor throttle level. The

output of the controller is an ideal throttle value

represented as a floating-point number. The value 0

represents the 12.5% performance state and 7 represents

the 100% performance state. It is possible to represent

effective performance states that are not strictly available

in the processor. For example, 6.2 represents a

performance state of 90%. The actuator is responsible for

approximating this value.

6.3. Actuator
Since the output of the controller is a floating-point

value, the actuator code must resolve this to a series of

discrete performance state settings to approximate the

value. For example, to approximate 6.2, the modulator

would output the sequence 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, etc.

To do this, we implement a first-order delta-sigma

modulator [16], which is commonly used in analog-to-

digital signal conversion.

If the modulator outputs a performance state that was

different from the previous control interval, the service

processor affects the actuation by activating a BIOS routine

on the host processor. This routine sets the

IA32_CLOCK_MODULATION register in the Xeon

processor to invoke the performance state. All processors

in the server are set to the same performance state.

In the worst case, the controller may actuate every

control period. In our two processor server, the BIOS takes

40 microseconds to change the performance state.

Therefore, the effect of actuation overhead on system

performance is no more than 0.07% (40

microseconds/64ms). In situations where the performance

state does not change (e.g. server requires less than the

power constraint), there is no actuation overhead.

6.4. Power budget

In Section 5, we found the minimum value for the

controller set point to be 170 W. Considering we have a

2% maximum error in power measurement, we must

subtract the measurement error from the desired power

budget to form the set point used in the controller. For

example, if the desired power budget is 250.0 W, then we

Workload OS Notes

P4MAX Windows Run for 3 minutes on both

processors using 100% setting

(4 threads total).

SPEC

CPU2000

Linux Compiled with Intel Compiler

9.0 (32-bit). Performance

results are only shown for rate

mode (2 users).

SPECjbb2005 Windows JVM is BEA JRockit JRE 5.0

Update 3 (RR25.2.0-28). Run

4 warehouses only.

Intel Optimized

LINPACK

Linux Version 2.1.2. Run with two

threads. 15000x15000 matrix.

Table 1: Workloads.

Power

budget

Open-loop processor

performance setting

Improved Ad-

hoc set point

P control

set point

250 W 75% 238.9 W 245.0 W

240 W 62.5% 229.1 W 235.2 W

230 W 62.5% 219.3 W 225.4 W

220 W 50% 209.5 W 215.6 W

210 W 37.5% 199.7 W 205.8 W

Table 2: Controller set points used in application
performance measurements. The open-loop performance
setting is determined by the finding the highest
performance setting that runs P4MAX without a violation of
the power budget. P controller set point is calculated by
reducing the power budget by 2% measurement error. Ad-
hoc controller set point is 6.1 W lower than P controller set
point to account for safety margin due to steady-state error
in the ad-hoc controller.

220

225

230

235

240

245

250

255

260

38 39 40 41 42
Time (s)

S
e

rv
e
r

p
o

w
e

r
(W

)

power 1ms

power 64ms

power 1s

Figure 6: Linpack without power management. Graph
shows 4 seconds of the Linpack benchmark after running for
38 seconds. Average power over 1 ms, 64 ms, and 1 s
periods is plotted. The plot points mark the end of the
measurement period. Linpack has almost constant power
consumption with periodic dips in power (as seen around
the 40 second mark).

use 245.0 W as the controller set point to ensure that the

real power is below the budget even with the worst case

measurement error. Accounting for the worst-case

measurement error means the lowest power budget we can

guarantee is 173.4 W. When the server power consumption

is below the set point the controller saturates at the highest

performance state which allows the system to operate at

full performance. Selection of the highest performance

state is desired because we want the system to run at full

performance in normal situations.

7. Results

In this section, we present the experimental results of

using closed-loop control of power on an a single IBM

BladeCenter blade. We first describe the experimental

environment and benchmarks used in our experiments.

Then we introduce the open-loop and ad-hoc controllers to

compare with the P controller. Finally we present results

evaluating common benchmarks under several power

budgets.

7.1. Experimental Environment

Our test environment is an IBM BladeCenter HS20

blade which was introduced in Section 3.1. This server is

fully populated with two 3.6GHz Intel Xeon Irwindale

SMP processors with hyper-threading, 8GB memory, two

36 GB SCSI hard-disks, dual 1 Gb Ethernet interfaces, and

a Fibre Channel daughter card.

We compare our P controller to an open-loop

controller and an ad-hoc controller that both represent

common solutions found in industry. We evaluate each of

these three power management policies using power

budgets ranging from 210 W to 250 W. The 250 W budget

corresponds to the case in which the BladeCenter has lost a

single redundant 2000 W power supply. Each measurement

presented is the average value of three runs.

Our evaluation workloads are listed in Table 1. Some

of the workloads are run under SUSE Linux Enterprise

Server 9 SP 2 and others are run under Windows Server

2003 Enterprise x64 Edition. In our evaluation, we do not

show results for single thread SPEC CPU2000 because the

power consumption is typically below the power budgets

we evaluate and would result in no application slowdown.

The P4MAX workload is a program designed to produce

the maximum power consumption on the Intel Xeon

microprocessors [13].

190

200

210

220

230

240

250

38 39 40 41 42
Time (s)

S
e
rv

e
r

p
o
w

e
r

(W
)

power 1ms
power 64ms
power 1s

A) System power with ad-hoc control

190

200

210

220

230

240

250

38 39 40 41 42
Time (s)

S
e
rv

e
r

p
o
w

e
r

(W
)

power 1ms

power 64ms

power 1s

B) System power with proportional control

initial overshoot

40%

50%

60%

70%

80%

90%

100%

38 39 40 41 42
Time (s)

P
e
rf

o
rm

a
n
c
e
 s

ta
te

C) Processor performance with ad-hoc control

40%

50%

60%

70%

80%

90%

100%

38 39 40 41 42
Time (s)

 P
e
rf

o
rm

a
n
c
e
 s

ta
te

initial overshoot

settling and modulation to achive 211.0 W

D) Processor performance with proportional control

Figure 7: Example of ad-hoc controller and P controller. Linpack benchmark from Figure 6 is shown with the feedback
controller turned on at about 39 seconds into the run. The set point for each controller is 211.0 W. In A) and C), the ad-hoc
controller moves one performance state up or down depending on whether the 64 ms power is above or below the set point.
After 1 second (around t=40s), the average 1 second power is 216.0 W, violating the set point by 5 W. The processor speed
averages 68.8%. The power consumption never reaches the set point. In B) and D), the P controller shows more efficient
use of the actuator and modulates it to achieve precisely the 211.0 W target. One second after the set point (around t=40s)
the average power over 1 second is 210.7 W and is considered to be settled (by design, within 0.5 W of the set point). By
t=41, the average power over 1 second measures 211.0 W and the processor speed averages 65.8%.

7.2. Open-loop control

The open-loop controller, referred to as open-loop,

selects a fixed performance setting for a given power

budget. It assumes that the system could be running any

workload and therefore must lower the performance state

to the point that even the most power-consuming workload

could be run. For this study we take the highest power load

to be P4MAX running at normal machine room

temperatures. The performance state used for a specific

power budget is shown in Table 2 which comes from our

power measurements of P4MAX in Figure 4.

7.3. Ad-hoc control

We also compare the P controller with an ad-hoc

controller that is representative of typical industry solutions

to control power and temperature. We use this to motivate

our use of control theory and demonstrate that ad-hoc

controllers do not generally have the desired properties that

make them safe and reliable. Our ad-hoc controller actuates

every 64 ms just like the P controller. However, it simply

raises or lowers the performance state by one step

depending on whether the measured power is lower or

higher than the power set point.

A simple example of the P controller and ad-hoc

controller shows how they are different from each other.

First, consider the LINPACK benchmark shown in Figure

6 which runs at up to 245 W with no power management.

In Figure 7, a power constraint is introduced by setting the

power set point to 211.0 W at t=39 s.

The ad-hoc control responds by stepping down the

performance state of the processors until the power is

lower than the set point. Afterwards, the controller

oscillates between the 62.5% and 75% performance states

because the set point power is between the power

consumption levels at these performance states for

170

180

190

200

210

220

230

240

250

260

270

180 200 220 240 260

Controller power setpoint (W)

P
o
w

e
r

m
e
a
s
u
re

d
 o

v
e
r

6
6
 s

e
c
o
n
d

in
te

rv
a
l
 (

W
)

P controller

Ad-hoc controller

Improved ad-hoc
controller

Figure 8: Steady-state error. This figure shows the error
the controller experiences in adhering to a given set point
value. P4MAX, which exhibits very steady power
consumption, was run for set points from 180 W to 260 W in
1 W increments. The maximum power within a 66 second
interval was recorded and the average of 3 runs is plotted.
The P controller measurements matched the set point to 0.1
W precision (the limits of the measurement circuit). The ad-
hoc controller showed long-term steady-state violations in
the measured power by up to 6.1 W over the set point. The
final series shows the improved ad-hoc controller run with a
safety margin by subtracting 6.1 W from the set point before
running the experiment.

0%

20%

40%

60%

80%

100%

210 220 230 240 250

Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

CINT2000 P controller

CINT2000 improved ad-hoc

CINT2000 open-loop

0%

20%

40%

60%

80%

100%

210 220 230 240 250
Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

CFP2000 P controller

CFP2000 improved ad-hoc

CFP2000 open-loop

0%

20%

40%

60%

80%

100%

210 220 230 240 250

Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

JBB2005 P controller

JBB2005 improved ad-hoc

JBB2005 open-loop

0%

20%

40%

60%

80%

100%

210 220 230 240 250

Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

LINPACK P controller

LINPACK improved ad-hoc

LINPACK open-loop

Figure 9: Application performance. The Y-axis shows
throughput performance compared to the application
running at full-performance (no power management).

LINPACK. The power consumption never settles to the set

point and has a steady-state error of 5 W. Even if the ad-

hoc controller used a shorter control period, it would still

oscillate and have a steady-state error.

The P controller initially responds by lowering the

performance state by several steps in the first control

interval. One important benefit of proportional control is

that it can react quicker than the ad-hoc method. It initially

overshoots the set point, but then settles within 1 second as

designed to the set point power. The first-order delta-sigma

modulator in the P controller modulates performance states

to run the processors at an effective frequency of 65.8% to

meet this set point.

One is tempted to think that the delta-sigma modulator

could easily be added to the ad-hoc controller to improve

its steady-state error. However, it is difficult in practice.

Imagine using an ad-hoc controller that uses smaller step

sizes to change the ideal throttle level (e.g., 0.1 instead of

1.0). As the number of discrete performance steps available

rises, the steady-state error would reduce, but at the cost of

increased settling time. While it may be possible in some

cases to design an ad-hoc controller that works well in

practice, proportional control is preferred because there are

established techniques to provide theoretical guarantees on

the control performance and in the case of our P controller

there is no steady-state error.

7.4. Improved ad-hoc control

The ad-hoc controller of the previous section can be

improved to not have positive steady-state error. In Figure

8, we show the result of running both the P controller and

the ad-hoc controller at many set points from 180 W to 260

W. The results are collected by running P4MAX and

collecting the long-term steady-state error observed after a

few minutes. The P controller is able to precisely meet the

set point with 0.1 W precision. However, the ad-hoc

controller shows steady-state error that is often above the

set point. At most it is 6.1 W above the set point. An

improved ad-hoc controller that always runs at or below

the set point is created by subtracting 6.1 W from the set

point used. The figure shows that the improved ad-hoc

controller with the safety margin does not violate the set

point. We use this improved version of the ad-hoc

controller in the rest of the paper.

7.5. Application Performance

In this section, we investigate the impact of closed-

loop power control on the performance of common

microprocessor benchmarks. We use the improved ad-hoc

controller with the safety margin of 6.1 W because this

allows both controllers to run with the same power

constraints so that application performance can be

compared. Without the safety margin, the ad-hoc controller

would violate the power constraint for some workloads and

show better performance than the P controller.

We ran open-loop, (improved) ad-hoc, and P

controller under each power budget and recorded the

throughput achieved. In Figure 9, we present the

benchmark performance as a percentage of the throughput

at full-performance. For example, a measure of 100%

means the application ran at the same rate as it would in the

100% performance state (no power management). A

measure of 50% means that the workload achieved half of

the throughput as it would the 100% performance state.

The throughput for LINPACK is measured in GFLOP/S,

the throughput for SPECjbb2005 is measured in business

operations per second, and SPEC CPU2000 is run with 2

user threads and recorded as number of runs per second.

CPU2000 is divided into CINT2000 and CFP2000 which

consist of integer and floating-point benchmarks,

respectively. The reported result is the average for all

benchmarks in the category.

Over the entire power budget range, application

performance with the P controller is 31% to 82% faster

than open-loop and up to 17% faster than ad-hoc. The

open-loop policy runs applications at 29% to 76% of full-

performance. The slowdown is very high because open-

loop does not use real-time measurement and must select a

single static speed at which to run the processors. The

improved ad-hoc policy does much better and runs

applications at 49% to 99% of full-performance. However,

the P controller can do even better due to quicker settling

times in response to changing power levels and more

efficient modulation of the performance states in the

processors. The P controller achieves between 53% and

100% of full-performance on the workloads across power

budgets from 210 W to 250 W. Budgets beyond 250 W for

P controller, cause performance to quickly converge to

full-performance for all workloads.

Figure 10 summarizes the speedup of the P controller

over other methods. The speedup is calculated as the

throughput of workload under the P controller divided by

the throughput of the workload under the other control

mechanism. In general, the largest improvements are made

at the lowest power budgets where the power constraints

are the greatest. At the highest power budgets (240 W and

250 W), the improved ad-hoc and P controller policies ran

most benchmarks near full performance because the

workloads often run below the power set point at these

levels.

8. Conclusions

In this paper we present a control-theoretic peak power

management system for servers. We show that a relatively

simple closed-loop controller provides better application

performance under a power constraint than by using open-

loop solutions found in conventional servers. Since the

closed-loop controller measures the actual power the

system consumes, it can react to workload changes and

adapt the performance state to meet the requested power

budget. This can increase application performance by up to

82%. A key factor in realizing this performance

improvement is having accurate power measurement which

reduces controller design margins and utilizes the available

power supply effectively.

We compared our controller to a widely used ad-hoc

technique. In general our controller is superior because 1) it

has no steady-state error, 2) it has much shorter settling

time, 3) it has less actuation overhead, 4) it has guaranteed

stability and predictable settling time even when the system

model is not accurate, and 5) it provides a stability range

which gives the designer confidence about the degree of

variation that the control system can tolerate. The P

controller runs applications at up to 17% faster than the ad-

hoc controller.

Feedback control of power has many implications for

the future design and operation of servers. Enforcing a run-

time power constraint with closed-loop control, rather than

a design-time power constraint with open-loop control, will

allow servers to flexibly adapt to changing power and

thermal environments. In addition, it allows design-time

safety margins to be reduced so that severs run closer to the

limits of the available power supply constraints. In our

blade, we could reduce label power from 308 W to 250 W

with a minimal impact on the performance of real

applications. We expect this technique will be applied to

low-cost rack-mount and blade servers so that cost-

effective power supplies with lower power ratings can be

used. At another level, datacenter operators may use power

control to match server power consumption to the available

rack cooling capacity.

9. References

[1] C. Lefurgy et al., “Energy Management for Commercial

Servers”, Computer, vol. 36, no. 12, December, 2004.

[2] P. Bohrer et al., The Case for Power Management in Web

Servers. In R. Graybill and R. Melhem, editors, Power Aware

Computing. Kluwer Academic Publishers, 2002.

[3] H. Zeng et al., “Ecosystem: Managing energy as a first class

operating system resource”, Int. Conf. on Architectural Support

for Programming Languages and Operating Systems, 2002.

[4] Y. H. Lu et al.. “Operating-system directed power reduction”,

Int. Symp. on Low Power Electronics and Design, 2000.

[5] J. Hellerstein et al., Feedback Control of Computing Systems,

John Wiley & Sons, 2004.

[6] K. Skadron et al., "Control-Theoretic Techniques and

Thermal-RC Modeling for Accurate and Localized Dynamic

Thermal Management." In Proceedings of the Eighth

International Symp. on High-Performance Computer

Architecture, 2002.

[7] Q. Wu et al., Formal control techniques for power-

performance management. IEEE Micro, 25(5):52-62, 2005.

[8] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic

Power Management Using Feedback”, In Proceedings of

Workshop on Compilers and Operating Systems for Low Power

(COLP), 2002.

[9] M. E. Femal and V. W. Freeh, “Boosting Data Center

Performance Through Non-Uniform Power Allocation”, In

Proceedings of 2nd Intl. Conf. on Autonomic Computing, 2005.

[10] V. Sharma et al., “Power-Aware QoS Management on Web

Servers”, In Proceedings of the 24th International Real-Time

Systems Symposium (RTSS), Dec. 2003.

[11] Y. Chen et al., ”Managing Server Energy and Operational

Costs in Hosting Centers”, In Proceedings of the ACM

SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, June 2005.

[12] G. F. Franklin et al., Digital Control of Dynamic Systems,

3rd ed., Addition-Wesley, 1997.

[13] Intel, Maximum Power Program User Guide Version 2.0

for Nocona/Irwindale Processor, 2004.

[14] T. Brey et al., “BladeCenter Chassis Management”, IBM J.

Res. & Dev., vol. 49, no. 6, November, 2005.

[15] X. Wang, C. Lefurgy, and M. Ware,"Managing Peak

System-level Power with Feedback Control", IBM Research

Technical Report RC23835, 2005.

[16] S. Norsworthy, R. Schreier, and G. Temes (Eds.), Delta-

Sigma Data Converters: Theory, Design, and Simulation, Wiley-

IEEE Press, 1996.

[17] D. Brooks and M Martonosi, “Dynamic Thermal

Management for High-Performance Microprocessors”,

Proceedings of the 7th Symp. on High Performance Computer

Architecture (HPCA-7), 2001.

[18] W. Felter et al., "A Performance-Conserving Approach for

Reducing Peak Power Consumption in Server Systems",

Proceedings of the International Conf. on Supercomputing, 2005.

[19] C. Poirier et al., “Power and Temperature Control on a

90nm Itanium-Family Processor”, In proceedings of Intl. Solid

State Circuits Conf., 2005.

[20] IBM Systems, IBM PowerExecutive 1.10 Installation and

User’s Guide Version 1.10, 2nd ed., June, 2006.

[21] Intel, Dual-Core Intel Xeon Processor 5100 Series

Thermal/Mechanical Design Guide, June, 2006.

[22] B. Colwell, “We May Need a New Box”, Computer,

March, 2004.

[23] P. Ranganathan et al., “Ensemble-level Power Management

for Dense Blade Servers”, Proceedings of the 33rd Annual Intl.

Symp. on Computer Architecture (ISCA), 2006.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

210 220 230 240 250

Pow er budget (W)

S
p
e
e
d
u
p
 o

f
P

 c
o
n
tr

o
lle

r

c
o
m

p
a
re

d
 o

v
e
r

o
th

e
r

m
e
th

o
d
s

CINT2000 - openloop CFP2000 - openloop
JBB2005 - openloop LINPACK - openloop
CINT2000 - ad-hoc CFP2000 - ad-hoc
JBB2005 - ad-hoc LINPACK - ad-hoc

Figure 10: Speedup of P controller over other methods.

