
Server Selection, Configuration and Reconfiguration

Technology for IaaS Cloud with Multiple Server Types

Yoji Yamato1

Received: 28 April 2016 / Revised: 17 July 2017 /Accepted: 26 July 2017 /

Published online: 3 August 2017

� The Author(s) 2017. This article is an open access publication

Abstract We propose a server selection, configuration, reconfiguration and auto-

matic performance verification technology to meet user functional and performance

requirements on various types of cloud compute servers. Various servers mean there

are not only virtual machines on normal CPU servers but also container or baremetal

servers on strong graphic processing unit (GPU) servers or field programmable gate

arrays (FPGAs) with a configuration that accelerates specified computation. Early

cloud systems are composed of many PC-like servers, and virtual machines on these

severs use distributed processing technology to achieve high computational per-

formance. However, recent cloud systems change to make the best use of advances

in hardware power. It is well known that baremetal and container performances are

better than virtual machines performances. And dedicated processing servers, such

as strong GPU servers for graphics processing, and FPGA servers for specified

computation, have increased. Our objective for this study was to enable cloud

providers to provision compute resources on appropriate hardware based on user

requirements, so that users can benefit from high performance of their applications

easily. Our proposed technology select appropriate servers for user compute

resources from various types of hardware, such as GPUs and FPGAs, or set

appropriate configurations or reconfigurations of FPGAs to use hardware power.

Furthermore, our technology automatically verifies the performances of provisioned

systems. We measured provisioning and automatic performance verification times

to show the effectiveness of our technology.
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1 Introduction

Infrastructure as a service (IaaS) cloud services have advanced recently [1–9]. Users

can use virtual resources, such as virtual servers, virtual networks, virtual routers, on

demand from IaaS service providers and can coordinate on-premise servers using

service coordination technologies such as [10–13]. Users can install the OS and

middleware, such as DBMS, web servers, application servers and mail servers, to

virtual servers themselves. Open source IaaS software has also become wide spread,

and adoption of OpenStack is increasing. The NTT group has also been launching

IaaS services based on OpenStack since 2013.

Early cloud systems are composed of many PC-like servers. Hypervisors, such as

Xen [14] or kernel-based virtual machines (KVMs) [15], virtualize these servers and

virtual machines (VMs) on hypervisors using distributed processing technology,

such as MapReduce [16], to achieve high computational performance.

However, recent cloud systems change to make the best use of recent advances in

hardware power. For example, the number of CPU cores of a cloud server has been

increasing, and more than 10 cores is normal in cloud servers and the number of

CPU cores of PCs remains 2–6. To use a large amount of core CPU power, some

providers have started to provide container-based virtual servers (hereinafter,

containers) with little performance degradation and baremetal servers (hereinafter,

baremetal), which do not virtualize physical servers. Moreover, some cloud

providers use special servers with strong graphics processing units (GPUs) to

process graphic applications or special servers with field programmable gate arrays

(FPGAs) to accelerate specific computation logics. For example, Microsoft’s search

engine Bing uses FPGAs to optimize search processing [17].

To use the recent advances in hardware power, users can benefit from high

performance of their applications. However, to achieve this, users need to design

appropriate server configurations and have much technical skills. Therefore, our

objective was to enable cloud providers to provide user resources on appropriate

hardware based on user functional and performance requirements, so that users can

benefit from high performance of their applications. We previously studied

technology to select appropriate provisioning types of baremetals, containers, or

VMs based on user requests. In this paper study, we investigated technology that

selects appropriate servers for user resources from various types of hardware, such

as GPUs and FPGAs for unskilled users or sets appropriate configurations or

reconfigurations of FPGAs for skilled users to provide high-performance systems.

The rest of this paper is organized as follows. In Sect. 2, we introduce an IaaS

platform called OpenStack and review provisioning technology and cloud hardware.

In Sect. 3, we explain typical scenarios and clarify current problems. In Sect. 4, we

discuss the server selection function of our technology for allocating user resources

to appropriate servers and the server reconfiguration function to adapt hardware to

user usages. In Sect. 5, we confirm the performances of the proposed technology.

We compare our work in Sect. 6 and summarize the paper in Sect. 7.
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2 Overview of Cloud Technology

2.1 Outline of OpenStack

OpenStack and Amazon Web Services [18] are major IaaS platforms. Though the

basic idea for our proposed technology is independent from IaaS platforms, we

measured the performance of our proposal on OpenStack, as discussed in Sect. 5.

Thus, we explain OpenStack as an example of an IaaS platform in this

subsection. Note that the functions of OpenStack are similar to other IaaS platforms.

OpenStack is composed of function blocks that manage each virtual resource and

those that integrate other function blocks. Figure 1 shows OpenStack function

blocks. Neutron manages virtual networks. The open virtual switch (OVS) [19] and

other software switches can be used as virtual switches. Nova manages compute

servers. Hypervisors usages are general, but containers, such as Docker containers

and baremetal servers provisioned by Ironic, can also be controllable. OpenStack

provides two storage management function blocks; Cinder for block storage and

Swift for object storage. Glance manages image files for compute servers. Heat [20]

orchestrates these function blocks and provisions multiple resources according to a

template text file. Ceilometer is a monitoring function of resource usage. Keystone

is a function block that enables single sign-on authentication among other

OpenStack function blocks. The functions of OpenStack are used through

Representational State Transfer (REST) APIs. There is also a Web GUI called

Horizon that uses the functions of OpenStack. To utilize cloud APIs [21] and Web

services technologies such as [22–28], users can coordinate other systems easily.

Fig. 1 OpenStack architecture
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2.2 Provisioning Type

In this subsection, we explain the provisioning types of cloud compute resources;

baremetal, container, and VM.

Baremetal is a non-virtualized physical server. IBM SoftLayer provides

baremetal cloud services that have characteristics of prompt provisioning and

pay-per-use billing. In OpenStack, the Ironic component provides baremetal

provisioning. Because baremetal is a dedicated server, flexibility and performance

are high but provisioning and start-up time are long.

A container technology is OS virtualization. OpenVZ or FreeBSD jail have been

used for virtual private servers (VPSs) [29] for many years. Compute resources are

isolated with each unit called a container but the OS kernel is shared among all

containers. Containers do not have kernel flexibility, but container creation only

requires a process invocation and a short time for start up. Virtualization overhead is

also small.

Hypervisor technology is hardware virtualization, and VMs behave on emulated

hardware; thus, users can customize the VM OS flexibly. The major hypervisors are

Xen, KVM, and VMware ESX. Virtual machines have flexible OSs and live

migrations but exhibit low performances and long start up time.

2.3 Advances in Hardware

In this subsection, we explain the computational units of cloud servers; CPU, GPU

and FPGA.

A CPU is the most general computational unit on a server or PC and is designed

for low latency. It has a huge cache, advanced control, and a strong arithmetic unit.

In cloud servers, multi-core CPUs with more than ten cores are generally used.

A GPU is a computational unit originally for graphics processing and is designed

for high throughput. It has a small cache, simple control, and energy-efficient

arithmetic unit, and many arithmetic logic units compute in parallel to achieve high

throughput. Servers for graphics processing have strong GPUs. Recently, GPU

programming, such as the compute unified device architecture (CUDA) [30], that

involves GPU computational power not only for graphics processing has become

popular.

Furthermore, to program without walls between the CPU and GPU, the

heterogeneous system architecture (HSA) [31], which allows shared memory access

from the CPU and GPU and reduces communication latency between them, has

been extensively discussed.

An FPGA is an integrated circuit designed to be configured by a customer after

manufacturing. An FPGA is the most widely spread programmable logic device.

The advantages are that an FPGA can be configured to add new functions and

reconfigured partly with lower cost than an application specific integrated circuit

(ASIC). Formerly, FPGAs were mainly for academic use, but currently cloud

servers use FPGAs to accelerate processing of search or memcached [32], which is a

distributed cache system. The examples are Microsoft’s Bing search [17] and IBM’s

NoSQL engine enhancement by FPGAs [33].
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3 Typical Scenarios and Problems of Current Technology

With the advances in hardware power described in Sect. 2, high performance cloud

services can be provided.

We show typical usage examples when various types of hardware comprise cloud

services. When users operate applications for editing, recognizing, and analyzing

graphics, their compute resources should be deployed on servers with strong GPUs.

When users would like to accelerate NoSQL engines, their compute resources

should be deployed on servers with FPGAs, the configurations of which accelerate

NoSQL processing. Generally, performances of applications suitable for parallel

processing and pipeline processing can be improved much [34] (e.g., some

applications show more than one hundred times compared to CPU [35]) by GPU or

FPGA processing.

Currently, there is no cloud provider that provides various types of hardware,

such as FPGAs and strong GPUs. IBM SoftLayer provides baremetal and VM

servers but no cloud provider provides FPGA hardware for specified computational

logics. Therefore, when cloud providers provide various types of hardware in the

future, users need to design appropriate server configurations and have much

performance knowledge to benefit from high-performance applications.

To reduce user loads for designing server structures, we studied a technology to

select the appropriate provisioning type of baremetal, container, or VM based on

user performance requirements. This technology analyzes abstract templates of

OpenStack Heat to confirm server connection patterns, such as the Web 3-tier

model, and selects an appropriate provisioning type to satisfy the performance

requirements, such as TPC-C [36] transaction throughput. TPC-C is a benchmark

method of online transaction processing defined by TPC (Transaction Processing

Performance Council). It measures tpmC (Transactions processed within 1 min) of

assumed actual business operations. However, provisioning is only for normal CPU

servers, and FPGAs or strong GPU servers are out of this paper’s scope to select.

There have been studies on scheduling to arrange user resources on heteroge-

neous hardware [37, 38]. The typical issue is that to assign tasks appropriately to

heterogeneous hardware is difficult for users. Performances are depended on

computer resources specifics such as number of CPU/GPU, bandwidth of memory/

network and application types of suitability to offload on GPU. For task scheduling,

[37] targets MapReduce performance improvements and achieves high perfor-

mances to assign Map tasks based on CPU and GPU performance ratio. The work of

[38] discusses resource allocations on cloud with heterogeneous hardware.

Our work targets a platform which judges and deploys user applications where to

run on a cloud with CPU, GPU and FPGA servers even users do not know much

about each server specifications by automatic server selections, batch deployments

of computer resources using Heat and automatic performance verifications which

are proposed in Sect. 4.
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4 Proposal of Performance Aware Server Selection, Configuration,
Reconfiguration and Automatic Performance Verification Technology

In this section, we propose server selection, configuration, reconfiguration and

automatic performance verification technology for cloud providers to satisfy user

performance and functional requirements. Our proposed technology involves

functions, an IaaS controller, such as OpenStack, various types of cloud hardware,

and a test case database (DB). The figures describe OpenStack as an IaaS controller,

but OpenStack is not a precondition of the proposed technology.

In Sect. 4.1, we explain the server selection steps. In Sect. 4.2, we explain the

server configuration and reconfiguration steps. In Sect. 4.3, we explain the

automatic performance verification steps of the provisioned servers described in

Sects. 4.1 and 4.2.

4.1 Server Selection

Figure 2 shows the server selection steps based on user functional and performance

requirements. These steps are for users who do not have much performance

knowledge. There are four steps involved to select a server.

1. A user specifies functional and performance requirements to the server selection

function. The functional requirements include low layer information of OS

conditions such as normal Linux or customized Linux or non-Linux and high

layer information of what applications run on the compute resources. For

examples of the latter information, specifying Web server application, graphic

analysis (which is suitable to GPU) and encryption processing (which is

vol vol VM VM cont NoSQL

accelerate
cont Graph

accelerate

vol: volume

VM: virtual machine

cont: container

Fig. 2 Processing steps of server selection
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suitable to FPGA). The performance requirements include server throughput

and/or response time conditions. For examples of throughput, specifying certain

index values of Himeno benchmark [39], TPC-C, UnixBench [40], etc.

2. The server selection function selects and proposes a server where compute

resources are deployed. This proposal contains a specified server with a

specified provisioning type. Figure 3 shows a server selection flow chart.

First, if user requirements require a certain level or higher performance of

specified computation, the server selection function selects the FPGA hardware

configured for specified computation logics by baremetal provisioning. Because

virtualization cancels out the benefits of an FPGA, we need to select berametal

provisioning for FPGA servers.

Second, if user requirements require a certain level or higher performance of

graphics processing, the server selection function selects servers with strong

GPUs by baremetal or container provisioning. Because VMs cannot sufficiently

control GPUs, we need to select berametal or container for GPU control.

However, container technology such as Linux Container (LXC), Docker or

Hyper-V Container cannot change OS kernel setting, we must deploy compute

resources which need customize OS by baremetal provisioning.

Finally, for other general uses, the server selection function selects normal CPU

servers by baremetal, container, or VM provisioning.

For performance requirements, we pre-measured several performances (e.g.,

basic performance results of UnixBench in Sect. 5). The server selection

function determines provisioning servers based on pre-measured performances

data of throughput and response time. For example, when users request certain

index values of Himeno benchmark, TPC-C, UnixBench, etc, our method

selects appropriate servers which performance indexes satisfy user requests

Need specified  

computation logics 

acceleration?

Baremetal provisioning

on pre-configured FPGA 

server with specified 

computation acceleration logics

Need a certain level 

performance or 

customize  OS?

Baremetal

provisioning on

strong GPU server

No

Yes

Yes

NoNeed graphic 

processing power?

Yes

Container provisioning 

on strong GPU server

No

Need for high 

throughput and 

low latency?

Baremetal

provisioning on

normal CPU server

Need for  

customize OS?

Virtual machine 

provisioning on 

normal CPU server

Receive user requirements

Yes
No

Container 

provisioning on 

normal CPU server

Propose selected server

YES

No

Fig. 3 Server selection flow chart
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(e.g., for graphical analysis, select GPU). However, our method cannot

guarantee performances. Instead of guarantee, our method provides automatic

performance verification results for users to support users’ judge in Sect. 4.3.

And locations of data centers affect response times much. Therefore, the server

selection function selects servers on data center near to users’ locations

preferentially.

3. A user confirms the proposal and replies with an acknowledgement to the server

selection function when the user satisfies the proposal. If the user does not

satisfy the proposal, the user may re-select and send a specified server with a

specified provisioning type.

4. The server selection function requests an IaaS controller to deploy the compute

resource on specified hardware with a specified provisioning method. Then, the

IaaS controller creates compute resources. Note that if users would like to

create not only one compute server but several resources, such as virtual

routers, the server selection function sends templates that describe the user

environment structures by JavaScript Object Notation (JSON) and provisions

them by OpenStack Heat [20] or other orchestration technology [41].

4.2 Server Configuration and Reconfiguration

Figure 4 shows FPGA server configuration and reconfiguration steps based on user

requirements and usage change. These steps are for users who have much technical

knowledge on FPGAs.

Configuration steps:

vol vol VM VM cont NoSQL

accelerate
cont Graph

accelerate

vol: volume

VM: virtual machine

cont: container Custom

acceleration

logic

Fig. 4 Processing steps of server configuration and reconfiguration
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1. A user specifies functional and performance requirements to the server

reconfiguration function. Function requirements are what type of application is

operated on the compute resources or the specified configuration to be set to the

FPGA. Performance requirements are server throughput or latency.

2. The server reconfiguration function selects an un-used FPGA server and sets the

configuration to accelerate specified computation logics to the FPGA based on

step 1. If a specified configuration is not received in step 1, the configuration is

set based on application types. For example, if an application is NoSQL,

configuration for NoSQL is set from a pre-defined template because NoSQL

acceleration by FPGA is commonly known [33]. Because FPGA configuration

can be done within several 10 s of ms, there is not much of a problem regarding

configuration time when cloud providers configure an FPGA for each user. The

server reconfiguration function proposes baremetal provisioning on the

configured FPGA to the user. Figure 5 shows a FPGA configuration flow chart.

3. A user confirms the proposal and replies with an acknowledgement to the server

reconfiguration function when the user satisfies the proposed configuration. If

the user does not satisfy the proposed configuration, the user may re-design and

send a specified configuration of the FPGA.

4. The server reconfiguration function requests an IaaS controller to deploy the

compute resource on the configured FPGA server by baremetal provisioning.

Then, the IaaS controller provisions the compute resource by baremetal

provisioning.

The next reconfiguration steps are for FPGA reconfiguration for adapting to

user usage change during user operation. With this reconfiguration, compute

The request includes 

specified configuration 

of FPGA?

Set the specified 

configuration to FPGA

Are there Configuration 

templates corresponding 

to user application type? 

set the template 

configuration corresponding 

to the application type

Request a specified 

configuration to a user.

No

Yes

Yes

No

Propose or request configuration

Receive user requirements

Fig. 5 Server configuration flow chart
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resources can be adapted to data increase or traffic change. Note that these latter

reconfiguration steps can be applied to pre-configured FPGA servers provi-

sioned in Sect. 4.1 step 4.

Reconfiguration steps:

5. The server reconfiguration function periodically collects each computation

frequency in the FPGA server. For example, graph analysis number per minute

and NoSQL processing number per minute are collected. OpenStack itself does

not collect server traffic or computation frequency of provisioned servers.

Therefore, we run a cron process which outputs computation frequency on each

provisioned FPGA server, and then a server reconfiguration function collects

these data periodically.

We assume periodical intervals are daily, weekly or monthly. This is because

high frequency proposal of server reconfiguration is bothering for users. When the

server reconfiguration function collects data, network load can be balanced by time

shift of collecting each server data. (e.g., collecting user A’s servers in night and

collecting user B’s servers in midday)

6. The server reconfiguration function determines whether FPGA reconfiguration

is needed by matching each computation frequency on the server and

accelerated computation logic of the FPGA. For example, if the FPGA server

has accelerated graph analysis logics but the graph analysis number per minute

is 10 and NoSQL processing number per minute is 1000, reconfiguration to

accelerate NoSQL processing should be done. Specifically, the server recon-

figuration function attempts to reconfigure when the non-accelerated compu-

tation frequency exceeds a certain threshold value. When the server

reconfiguration function determines that reconfiguration is needed, it proposes

the reconfiguration to the user.

6. The user confirms the proposal and replies with an acknowledgement to the

server reconfiguration function when the user satisfies the proposed reconfig-

uration. If the user does not satisfy the proposed reconfiguration, the user may

re-design and send a specified configuration of the FPGA or may reject the

reconfiguration proposal.

When users reject proposals of reconfiguration, cloud services continue

operations on current server configurations. There are users who do not want

to reconfigure servers during production operations. For them, we provide

choices to users whether cloud providers propose server reconfiguration or not.

Or we take a method to extend interval of server reconfiguration checks when

users reject proposals of reconfiguration.

8. The server reconfiguration function reconfigures the user’s FPGA to accelerate

the computation logics which frequency of the computation is increased.

Because recent FPGAs can be reconfigured even during in operation, we use

existing reconfiguration technologies of Altera or Xilinx. For example, Altera

Stratix V, Cyclone V and Xilinx Virtex series support dynamic reconfiguration.
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Existing reconfiguration technologies can reconfigure FPGA logics within

several seconds and reconfiguration times do not become huge overhead.

Though reconfiguration completes within several seconds, users who want

reliability may hesitate to accept reconfiguration proposals because cloud servers

are on actual operation. We assume about 1/3 users accept reconfiguration proposal.

When carriers such as NTT released new hosting or cloud plans with more resources

as same prices as previous plans, about 1/3 users moved to new plans fast. So, we

estimate 1/3 users are positive to change configuration which can enhance

performances. To increase reconfiguration, we plan to replicate users’ cloud

environment by OpenStack Heat, conduct automatic performance tests on the

replicated environment and show results of performance improvements to users.

This enables users to confirm the effect of reconfiguration beforehand, then we

suppose more users accept reconfiguration proposals.

And the author recently studies to enhance performances not only changing

FPGA logic like this subsection but also changing resource amount or ratio of CPU

and GPU. We will report it in another paper.

4.3 Automatic Performance Verification

In this subsection, we discuss the automatic performance verification function of our

proposed technology for provisioned user resources. Because estimating application

performance before provisioning is difficult, this verification shows that the actual

provisioned resource satisfies user performance requirements. If users do not satisfy

the confirmed performances, users can delete cloud resources and try another one.

We previously proposed an automatic verification function for cloud user

environments [42–47]. It replicates virtual environments, extracts regression test

cases corresponding to the installed OS, middleware, and applications, and executes

them by using the Jenkins tool to verify software patches automatically.

Figure 6 shows the automatic performance verification steps. Note that virtual

resources, such as virtual routers, are already created in Sect. 4.1 step 4 by

OpenStack Heat or [41].

1. The automatic performance verification function selects appropriate perfor-

mance verification test cases from the test case DB. This function selects test

cases not only for each individual server performance but also for several

servers such as transaction processing of the Web 3-tier model. For example,

Unix benchmark UnixBench or 3-tier model transaction benchmark TPC-C can

be used for performance test cases.

2. The automatic performance verification function executes the performance test

cases selected in Step 1. We use the Jenkins tool to execute performance test

cases. Although performance verification is targeted for compute servers,

verification test cases are executed for all resources in a user environment. In a

case in which containers with web servers are under one virtual load balancer,

web server performance needs to be tested via the virtual load balancer.
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3. The automatic performance verification function collects the results of test

cases for each user environment using the Jenkins tool. Collected data are sent

to users via mail or Web. Regarding to throughput, for examples, TPC-C’s

tpmC can be used for online transaction performance index and Himeno

benchmark’s GFlops results can be used for index of fluid analysis on GPU.

Regarding to response time, as same as throughput, TPC-C transaction response

time can be used.

Users confirm whether the performances satisfy their requests from the data.

After confirming throughput and response time results for user applications, users

judge to start IaaS cloud service usages.

5 Performance Confirmation of Proposed Technology

The proposed technology provisions compute resources on an appropriate server

based on user requirements and shows performances by automatic verification. In

the case of FPGA server use, updated computational logics are reconfigured by

adapting to changes in user usage. In general, GPU performance is 10–100 times

better than that of CPUs for graphics processing, and configured FPGA performance

is several times better than that of GPUs and is 10–100 times better than that of

CPUs for computations suitable for FPGA. Our technology can reduce server

number for users.

We measured performance to show the effectiveness of the proposed technology.

We used Ironic for baremetal provisioning, Docker for container, and KVM for VM.

vol vol VM VM cont NoSQL

accelerate
cont Graph

accelerate

vol: volume

VM: virtual machine

cont: container

Fig. 6 Processing steps of automatic performance verification
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5.1 Performance Measurement Conditions

We measured two performance patterns. In pattern 1, provisioning times of

baremetal, container, and VM were measured using the OpenStack instance creation

API. The FPGA requires baremetal provisioning and GPU requires container or

baremetal provisioning to control. Though the FPGA configuration setting only took

several 10 ms, the total provisioning time which includes network setting, volume

attachment and other setting needs to be confirmed. Because containers or VMs

share one physical server, we confirm performance degradation of several

concurrent instance creations for container and VM cases.

In pattern 2, automatic performance verification times are measured. We do not

need FPGA or GPU performance itself but automatic performance verification

overheads, so we confirm automatic performance verification processing times

using VMs with changing concurrent processing amount. Because server selection

takes only a few seconds, we did not measure such performance.

Because our work uses container for GPU processing and baremetal for FPGA

processing, we also pre-measured base performance indexes of UnixBench to

compare performances. For other benchmarks or applications performance

enhancements with heterogeneous hardware, we will refer existing technologies

results such as [37, 38, 48, 49].

Measurement patterns:

• Pattern 1 measurement item. Server provisioning time (the time of server start

up from instance creation API call).

• Pattern 2 measurement items. Tester resource preparation, test case selection,

and test case execution times.

Tester resource preparation includes network connection or port setting of the

virtual switch and compute servers. The selected performance test case is a

transaction performance test of TPC-C.

• Pre-measurement items. UnixBench is conducted to acquire UnixBench

performance indexes. UnixBench is a major system performance benchmark

and we measured to confirm basic performances. These data can be used for

server selection in Sect. 4.1.

User environment configuration:

• Each user environment has two compute servers, two volumes, two virtual Layer

2 networks, and one virtual router.

• Each compute server has one attached volume of 10 GB with CentOS 6.

• Apache 2.1 and Tomcat 6.0 are installed on one volume, and MySQL 5.6 is

installed on one volume for the compute servers’ software.

Concurrent processing amount:

• Changing from 1 to 5.
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5.2 Performance Measurement Environment

Figure 7 is the test environment. There are many servers for OpenStack virtual

resources, the main server used in our study was server selection, configuration,

reconfiguration, and automatic performance verification server. These servers were

connected with Gigabit Ethernet via Layer 2 and Layer 3 switches.

Figure 7 also shows the physical and virtual servers and the modules in each

server. For example, the OpenStack API server was a virtual server, it was in both

the Internet and control segments, and its modules were a cinder scheduler, cinder

API, nova-api, keystone, glance-registry, nova-scheduler, Ironic, and PXE for

baremetal boot. Two servers were used for redundancy.

Figure 8 lists the specifications and usage for each server. For example, in the DB

case (6th row), the hardware is HP ProLiant BL460c G1, server is a physical server,

name is DB, the main usage is OpenStack and test case DB, the CPU is a Quad-Core

Intel Xeon 1600 MHz*2 and the number of cores is 8, RAM was 24 GB, assigned

HDD is 72 GB, and there are four network interface cards (NICs).

5.3 Performance Measurement Results

Figure 9 shows a pre-measured basic performance of UnixBench. Vertical axis

shows UnixBench performance index value and horizon axis shows each server with

changing number of virtual servers. Before our heterogeneous cloud services

launch, we measure more basic performances with plural servers. Based on them,

the server selection function selects appropriate servers for user requirements.

legend

-Load Balancer

Glance application server

Glance application server

-

Load Balancer

-Volume

-Volume

-Compute

-Compute

DB (OpenStack&Test Case)

-Network

-Network

Virtual Server

segment
segment

User terminal

Operator terminal

Orchestration

provisioning server

configuration

reconfiguration and 

automatic performance 

verification server

Orchestration

provisioning server

Openstack API server

Openstack API server

Fig. 7 Test environment for confirming proposed technology
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Figure 10 shows a comparison of start-up provisioning times including a broken

axis. When there were several concurrent provisioning numbers, the average

provisioning time is shown. Baremetal provisioning took more than 500 s and much

longer than container provisioning. This is because baremetal provisioning requires

data transfer for PXE boot and takes a long time. Regarding the VM cases, OS start

up took a long time. However, a container only requires process invocation and

takes less time. Therefore, if users need temporal graphics editing or analyzing

Fig. 8 Server specifications of test environment

Fig. 9 UnixBench performance indexes of 3 provisioning types
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power, it is appropriate to provision containers on strong GPU servers and to delete

containers when graphics processing is over. Regarding the specified computational

logic processing of an FPGA, more than 500 s is needed before users actually use

even though FPGA configuration takes only few seconds.

Figure 11 shows the processing times of verification to confirm feasibility of

automatic performance verification. In all cases of concurrent processing (1, 3 and

5), test case selection and execution remained almost the same; about 15 min. When

the concurrent processing amount was 3 or 5, tester resource preparation, which

includes network connection setting, port setting and so on, took more time

compared to a single processing case. This is because OpenStack load increased.

However, automatic performance verification can be done within 30 min after the

provisioning time in Fig. 10. Therefore, users can judge whether they can start to

use heterogeneous cloud services in a sufficiently short time.
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Of course, Figs. 10 and 11 only show examples of provision time and time of

performance confirmation with TPC-C, users need to confirm actual performances

of their applications using automatic performance verification function.

6 Related Work

Wuhib studied dynamic resource allocation on OpenStack [50]. There have been

studies on the resource arrangement on hosting services to effectively use physical

server resources [51, 52]. Similarly, we also used resource arrangement technology

on OpenStack but focused on resolving problems of appropriate server selection

from various types of hardware. We previous studied an appropriate provisioning

type of virtual machine, container or baremetal to users. However, FPGA or GPU

servers are out of this paper’s scope.

For heterogeneous programming, PGI Accelerator Compilers with OpenACC

Directives [53] can compile C/C??/Fortran codes with OpenACC directives and

deploy execution binary to run on GPU and CPU. OpenACC directives indicate

parallel processing sections, then PGI compiler creates execution binary for GPU and

CPUbased on the specified directives. Aparapi (APARallel API) of Java [54] is API to

call GPGPU from Java. Using this API, Java byte code is compiled to OpenCL and run

when it is executed. To control FPGA, development tools of OpenCL for FPGA are

provided byAltera andXilinx (for example, Altera SDK for OpenCL [55]). Of course,

these technologies need clear indications of OpenACC, Aparapi or OpenCL

descriptions for GPU or FPGA executions. We also propose PaaS for applications

described bygeneral programming languages to deploy offloadable logics onGPUand

FPGA automatically [56, 57]. The work of [56] detects registered code patterns from

users’ applications source codes, then outputs OpenCL C codes and deploys them to

each server. This paper can use these improvements of compiler technologies.

There have been studies on the use of FPGAs in cloud systems such as

Microsoft’s Bing search [17], JP Morgan’s banking system to enhance scalability

[58], and memcached acceleration by FPGAs [59]. Some Microsoft researchers

have the opinion that Moore’s law is coming to an end because the cost per

transistor has not decreased much; therefore, dedicated processing of appropriate

servers and not parallel processing of uniform servers has become important. We

also expect the number of cloud providers using FPGAs will increase.

Besides FPGAs, the plastic cell architecture (PCA) [60] is a programmable logic

device. Because early FPGAs did not have sufficient reconfigurability, the PCA

targets self-reconfiguration adapting to usage, function, specifications, and envi-

ronment. Though the use of the PCA is not wide spread, the proposed server

reconfiguration function of our technology partly uses the concept of PCA.

For cloud business, GPU and FPGA adoptions are increasing in cloud data

center, but general users cannot use them easily. FPGAs of Microsoft Bing search

[17] are not provided for cloud user directly. Amazon Web Services GPU instances

enable users to utilize GPU resources by CUDA [30], but there are few CUDA

programmers. Our company NTT is now studying to provide cloud services with

GPU and FPGA. Thus, when NTT starts heterogeneous cloud services, this
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technology can be provided as application PaaS (aPaaS) to users. Using this

technology, users can improve application performances without much knowledge

of GPU and FPGA, because this technology can run graphical processing on GPU

and encryption processing on FPGA automatically. Cloud providers can reduce cost

because cloud providers can enhance application performances much by few

number of GPU/FPGA servers. Users also can coordinate outer systems using

service coordination technologies such as [61–66]. We also consider to use GPU/

FPGA servers to IoT applications [67–74].

7 Conclusion

We proposed a server selection, configuration, reconfiguration and automatic perfor-

mance verification technology toprovide highperformance cloud services based onuser

requirements using various types of hardware such as FPGAs or strong GPU servers.

The server selection function of our technology analyzes user functional and

performance requirements and provisions baremetal FPGA servers with specified

configuration for accelerating specified computational logics, provisions strong

GPU servers as baremetals or containers for graphics processing, and provisions

normal CPU servers as baremetals, containers, or VMs for general applications. The

server configuration and reconfiguration functions set configurations to FPGAs to

accelerate specified computational logics based on user requirements. Moreover,

they collect the frequency of each computation in the operation phases and

reconfigure FPGAs to accelerate computation. After compute resource provisioning,

the automatic performance verification function of our technology automatically

executes performance test cases; thus, users can confirm system performance.

We confirmed the server provisioning time and automatic performance

verification time through performance measurements. We found that our technology

can quickly provide appropriate user environments.

In the future, we will implement our technology not only for OpenStack but also

for other IaaS platforms such as CloudStack. We will also increase the number of

performance test cases for actual use cases of IaaS services. In the same

performance test cases, we will increase the number of FPGA configuration

templates for various computational logics to accelerate various applications. We

will then cooperate with IaaS cloud service providers to provide managed services

in which providers propose appropriate servers.
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