
 Open access Proceedings Article DOI:10.1109/CVPRW.2010.5543248

Server-side object recognition and client-side object tracking for mobile augmented
reality — Source link

Stephan Gammeter, Alexander Gassmann, Lukas Bossard, Till Quack ...+1 more authors

Institutions: ETH Zurich

Published on: 13 Jun 2010 - Computer Vision and Pattern Recognition

Topics: Video tracking, Augmented reality, Cognitive neuroscience of visual object recognition, Image retrieval and
Mobile device

Related papers:

 Outdoors augmented reality on mobile phone using loxel-based visual feature organization

 Distinctive Image Features from Scale-Invariant Keypoints

 Parallel Tracking and Mapping on a camera phone

 Machine learning for high-speed corner detection

 Synchronized, interactive augmented reality displays for multifunction devices

Share this paper:

View more about this paper here: https://typeset.io/papers/server-side-object-recognition-and-client-side-object-
24apltnx8w

https://typeset.io/
https://www.doi.org/10.1109/CVPRW.2010.5543248
https://typeset.io/papers/server-side-object-recognition-and-client-side-object-24apltnx8w
https://typeset.io/authors/stephan-gammeter-zhfe06ut9e
https://typeset.io/authors/alexander-gassmann-3jlcqk76am
https://typeset.io/authors/lukas-bossard-33i3djnn87
https://typeset.io/authors/till-quack-1gf2j8qulv
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/conferences/computer-vision-and-pattern-recognition-18ykss65
https://typeset.io/topics/video-tracking-1gcwogmj
https://typeset.io/topics/augmented-reality-16h6gsqc
https://typeset.io/topics/cognitive-neuroscience-of-visual-object-recognition-3j6yymak
https://typeset.io/topics/image-retrieval-1yuoiyis
https://typeset.io/topics/mobile-device-f53b9ubg
https://typeset.io/papers/outdoors-augmented-reality-on-mobile-phone-using-loxel-based-2aegqcgqaf
https://typeset.io/papers/distinctive-image-features-from-scale-invariant-keypoints-3waurjqzke
https://typeset.io/papers/parallel-tracking-and-mapping-on-a-camera-phone-1bqvahrdak
https://typeset.io/papers/machine-learning-for-high-speed-corner-detection-5cjrw8o3xc
https://typeset.io/papers/synchronized-interactive-augmented-reality-displays-for-53xbq5quq9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/server-side-object-recognition-and-client-side-object-24apltnx8w
https://twitter.com/intent/tweet?text=Server-side%20object%20recognition%20and%20client-side%20object%20tracking%20for%20mobile%20augmented%20reality&url=https://typeset.io/papers/server-side-object-recognition-and-client-side-object-24apltnx8w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/server-side-object-recognition-and-client-side-object-24apltnx8w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/server-side-object-recognition-and-client-side-object-24apltnx8w
https://typeset.io/papers/server-side-object-recognition-and-client-side-object-24apltnx8w

Server-side object recognition and client-side object tracking for mobile

augmented reality

Stephan Gammeter1 Alexander Gassmann1 Lukas Bossard1

gammeter@vision.ee.ethz.ch agassman@ee.ethz.ch bossard@vision.ethz.ch

Till Quack1,2 Luc Van Gool1,3

quack@kooaba.com vangool@esat.kuleuven.be

1ETH Zurich 2kooaba AG 3KU Leuven

Zurich, Switzerland Zurich, Switzerland Leuven, Belgium

Abstract

In this paper we present a system for mobile augmented

reality (AR) based on visual recognition. We split the

tasks of recognizing an object and tracking it on the user’s

screen into a server-side and a client-side task, respectively.

The capabilities of this hybrid client-server approach are

demonstrated with a prototype application on the Android

platform, which is able to augment both stationary (land-

marks) and non stationary (media covers) objects. The

database on the server side consists of hundreds of thou-

sands of landmarks, which is crawled using a state of the

art mining method for community photo collections. In ad-

dition to the landmark images, we also integrate a database

of media covers with millions of items. Retrieval from these

databases is done using vocabularies of local visual fea-

tures. In order to fulfill the real-time constraints for AR

applications, we introduce a method to speed-up geomet-

ric verification of feature matches. The client-side tracking

of recognized objects builds on a multi-modal combination

of visual features and sensor measurements. Here, we also

introduce a motion estimation method, which is more effi-

cient and precise than similar approaches. To the best of

our knowledge this is the first system, which demonstrates a

complete pipeline for augmented reality on mobile devices

with visual object recognition scaled to millions of objects

combined with real-time object tracking.

1. Introduction

In recent years, research in Augmented Reality (AR) has

made significant progress towards real world consumer ap-

plications. One of the main drivers for this development

have been the increased processing capabilities and mul-

timedia features of mobile phones. The most advanced

A

B

C

Figure 1. Screenshot of our mobile augmented reality application

running on a Google Nexus One phone. The system is able to rec-

ognize, track and augment non-stationary objects such as books

(A), memorize their position even when out of screen using vi-

sual and sensor based cues (B), and seamlessly also recognizes

and tracks stationary objects such as landmark buildings (C).

1

class of devices (so called smartphones) nowadays come

equipped with high-resolution touch screens, cameras, ac-

celerometers, GPS, compass, etc. Such devices make ideal

platforms for consumer-oriented AR applications (video

see-through), since they are widely available, cheaper and

also more discreet than, say, wearing head mounted displays

(HMD, optical see-through).

Most of the AR applications for phones have focussed

on the visual modality, overlaying virtual objects on the

real world seen through the live camera feed on the mo-

bile phone’s screen. The basic concept consists of identi-

fying real world objects on the screen, tracking them, and

then augmenting the scene with artificial objects. Tracking

is often combined with some estimation of the correct 2D

or 3D world coordinates for proper placement of augmenta-

tions in the scene. Applications can then be further discrim-

inated into those, which build on artificial markers in order

to identify objects [22, 9, 28], or those, which use “natural”

image features [10, 16, 17, 25]. Both kinds of application

have been demonstrated to work in real-time on PC’s for

quite a while [10, 25], but have gone through a renaissance

with their adaption to mobile computing platforms in recent

years [16, 17, 5]. Here, especially the discovery of more

robust and efficient local features [6, 18, 23] has fueled the

advance of markerless approaches.

In a parallel development, the computer vision commu-

nity has made astonishing progress in visual object recog-

nition, both in terms of precision and scalability [7, 13, 19,

20, 24]. State of the art methods allow for retrieving specific

objects (such as products, buildings, etc.) from databases

with millions of items in a matter of seconds. In fact, much

of this advance can also be attributed to the same improved

local features, which are responsible for the improved track-

ing performance on the client.

Combining those two strands of work has the potential

for very exciting AR applications. To that end, in this pa-

per we propose a hybrid approach, which delegates the ob-

ject recognition task to a server, and carries out tracking on

the client-side, i.e. on the mobile phone. This has several

advantages. Firstly, it allows to retrieve objects from very

large databases in near real-time, as opposed to keeping the

database on the client. Second, it still allows for interactive

usage on the client, as opposed to sending only single im-

ages with the click of a button. Third, while being interac-

tive, the approach also limits the amount of communication

with the server, as opposed to the extreme case of transmit-

ting live video to the server. This is particularly important

considering today’s mobile data transmission costs, espe-

cially when it comes to roaming charges due to the usage of

data intensive applications abroad.

Furthermore, in comparison to AR approaches that

strongly rely on GPS and sensor input like [1, 15, 3, 27],

basing a system on visual recognition has the advantage,

that both stationary objects (such as landmark buildings)

and non-stationary objects (such as products, billboards,

print media etc.) can be augmented seamlessly. The advan-

tage over marker-based approaches is also quite obvious,

as no markers have to be placed, which allows widespread

application. On the other hand it is evident, that the useful-

ness of such a system is constrained by the size of the object

database on the server side. To cope with this challenge, we

build on recent research in mining data from community

photo collections [8, 11, 12, 21] for landmarks and a com-

mercial API for product recognition [2].

With all these components in place, the research we

present in this paper relates to several recent lines of work

in both commercial and scientific context. Overall, taking

into account the server-side modules our system is built of,

Google Goggles [4] is probably the product that is most

similar to our system. However, to this date, the client-

side of Google Goggles does not allow “live” tracking and

augmenting of objects, i.e. recognition is triggered with a

manual shutter release. Adding tracking adds the important

option to incorporate gesture like Human-Computer Inter-

action, e.g. to indicate regions of particular interest. Also, in

terms of server-side recognition, besides Goggles our sys-

tem must be among the currently largest deployments, using

roughly 12 million images for landmark recognition (fol-

lowing the approach of [11]) and about 10 million media

covers using the public API of kooaba [2].

In terms of client-side tracking this paper relates to sev-

eral recent advances reported in that field [16, 17, 26, 29].

As we will show, our tracking is somewhat simpler than

many of the recent methods (e.g. it does not allow for 3D

scene estimation). However, this comes with a benefit of

efficiency, and furthermore, we argue that for many AR ap-

plications 2D augmentation is fully sufficient. A further

contribution on the client-side tracking element is the inte-

gration with sensors. Opposed to other works, we do not at-

tempt to fuse the information from visual and sensor modal-

ities, but use the sensors to reset the visual tracking when

needed.

In summary, the main contributions of this work are:

• An efficient combination of client-side object tracking

and server-side object recognition.

• The complete integration of a server-side object

database covering millions of objects.

• Memory efficient geometric verification method for to

state of the art large-scale object retrieval methods to

fulfill near real-time requirements for AR.

• The integration of sensor data in order to reset client-

side tracking.

• A fully functional implementation of the system on the

Android platform.

Mobile Phone

Lost ?

Direct / Incremental

visual tracking

Initialize visual

tracker

New Frame

Extract features

Validation with

sensor tracker

yes

no

Server-based recognition service

Identified object Image (+ optionally GPS)

Camera

Figure 2. The mobile phone sends recognition requests to an exter-

nal service. Once information on a recognized object is returned,

the phone tracks the position of said object using a combination

of vision and sensor based trackers. Whenever a tracked object is

“lost” a new recognition request is issued to reinitialize tracking.

With these contributions our system makes a signifi-

cant step ahead from earlier prototype applications, bring-

ing vision-based AR for mobile phones significantly closer

to real world applications.

The remainder of this paper is organized as follows:

Section 2 gives an overview over the system architecture.

Sections 3 and 4 describe the server-side recognition and

client-side tracking, respectively. Implementation details

are given in Section 5 and experimental results are shown

in Section 6.

2. System overview

As motivated in the previous section, we propose a sys-

tem, which delegates recognition tasks to a server and exe-

cutes tracking operations on the client. The purpose of this

is to provide large scale object recognition coupled with a

responsive user interface for mobile AR. When a relevant

object is seen through the mobile phone’s screen it should

immediately be overlaid with relevant information, ideally

without noticing the processing of a search request in the

backend. To that end we actively try to minimize the num-

ber of requests sent to the server by determining if a new

object may have entered the camera’s field of view. Figure 2

gives an overview over our system. The tracker running on

the client initiates a request to a recognition service, trans-

mitting both a frame grabbed from the camera feed and op-

tionally GPS coordinates over a HTTP connection. The mo-

ment for sending a request is chosen based on a heuristic in

the tracking algorithm, which will be explained in detail in

Section 4. In fact, in our application the client sends the re-

quest to two recognition services in parallel, namely one for

stationary objects (landmarks) and one for non-stationary

objects (products, media covers). Details for this step will

be given in Section 3. The server’s response consist of XML

data containing the information about the recognized object

Figure 3. Sample images from a typical image cluster.

(title,id) and the location of the detection in the query frame

(bounding box coordinates). The bounding box coordinates

are then used by the client to (re-)initialize the tracker, and

the title is used to label the augmentation on the screen. The

id of the object can be used to obtain additional information

about it on user’s request. This operation initiates a request

to a dedicated object information web-service, which will

not be explained in further detail in this paper. The follow-

ing sections will describe the individual components of the

system in more detail.

3. Server-side object recognition

The tasks of the server side recognition module are to

accept query images, to identify any objects present includ-

ing their location in the image, and return the response

to the client. To that end we build on state of the art

approaches using visual vocabularies of local image fea-

tures [11, 19, 20]. More precisely, for landmark recogni-

tion, we follow very closely our earlier work [11], which in

turn merges a data crawling method with the scalable object

recognition method of Philbin et al. [20]. We then combine

our own service for landmark recognition with the media

recognition service offered by the company kooaba. Their

API gives access to recognition for a couple of million me-

dia covers (books, CDs, DVDs) and is available online [2].

We assume that kooaba’s system also builds on local fea-

tures and visual vocabularies, thus we will focus on sum-

marizing the landmark recognition in this section.

3.1. Landmark recognition

A visual recognition service for AR applications, which

is able to identify objects such as landmark buildings re-

quires both a database of images, covering each object from

several viewpoints, and a scalable and near real-time re-

trieval method on top of it. In addition, for each object in

the database some description such as titles, related web-

links etc. should be available.

We have recently proposed such a system [11], in the

context of auto-annotation for holiday photos. Ultimately,

this application is similar to AR except that the query hap-

pens from a mobile device and demands for a close to real-

time response. Thus, for this paper, we implemented a sim-

ilar system as in [11] and then focussed on improving its re-

sponse times. We briefly summarize [11] and then explain

our improvements.

Crawling and clustering of data. In order to collect a

sufficient amount of images for a large number of land-

marks around the world, we proposed to crawl geotagged

images from Flickr. All photos, which are geographically

close to each other are then also checked for their visual

similarity (based on matching with SURF features [6]) and

then clustered.

The outcome of this procedure is a set of clusters, where

most of them represent some landmark. An example clus-

ter is shown in Figure 3. Once clusters have been formed

based on visual similarity, a post-processing step is exe-

cuted. Among other things, it determines labels and re-

lated content for each object by resorting to the meta data

of its cluster. Also, for each image of an object cluster, the

bounding box of the object’s position is calculated. For a

more detailed description of these steps the interested reader

is referred to [11]. Following this approach, we collected

around 12 million images, which we clustered into roughly

300’000 objects.

Cluster retrieval. For all images in the cluster database

their SURF features are quantized using a visual vocabulary

of 1 million visual words which was learned using approx-

imate k-means [20]. Every image in the database is then

represented as a set of visual words. For every incoming

query image the same procedure is applied. The query-set

of visual words is matched against all database visual word

sets using set intersection as distance measure.

Efficiency for this step is obtained by using an inverted

file structure. For the closest 500 candidate images a ge-

ometric consistency check is performed. This is done by

means of a RANSAC estimation of the homography map-

ping of feature matches between query and database candi-

date. The final matching score for each of the 500 candidate

images is derived from the number of inliers.

Here, in contrast to many other implementations, we do

not take the matching visual words as correspondence pairs

for the homography estimation. Instead we reestimate the

correspondences based on the second nearest neighbor dis-

tance ratio of the original features as proposed in [18]. This

approach yields far better retrieval accuracy. A drawback is

that for each query 500 SURF feature files need to be loaded

into memory from disk.

The final step is a voting procedure, where the retrieved

database images vote for their clusters and the cluster which

receives the most votes is selected as the final result.

Optimized response times with compressed features.

The geometric verification step turned out to be the bottle-

neck for achieving AR compatible response times. Assum-

ing a single file access takes roughly 10 ms, then geometric

verification alone would take at least 5 seconds. So, instead

of loading features from disk, we compress them using a

product quantizer [14] in order to be able to keep the fea-

tures in memory.

The main idea of [14] is to decompose the feature space

into a Cartesian product of low dimensional subspaces and

to quantize each subspace separately. A feature vector is

then represented by a short code composed of its subspace

quantization indices. In our implementation first the entire

64-dimensional feature space is quantized using only 8 cen-

troids (3 bits). Then, for every feature vector in the train-

ing set we subtract it’s closest centroid and the marginal-

ized features are used to train a product quantizer. To that

end, we divide the 64-dimensional feature space into 16 4-

dimensional subspaces and quantize features in each sub-

space using k-means with 1024 centroids (i.e. 16×10 bits).

Thus, a feature vector is now represented by a compact

160 + 3 bit code instead of 64 float or integer values.

For one million images we require now approximately

30 GB of storage instead of 300 GB. This training proce-

dure was carried out on the features of 5000 images. Dur-

ing feature correspondence search in the geometric verifica-

tion step, we only consider features as matching candidates

if their 3 bit coarse quantization indices match. We also

found that in contrast to image retrieval with large vocabu-

laries it doesn’t matter whether the quantizer is learned on

the database images themselves or on an independent set.

With this adaptation, we gain a significant speed im-

provement over [11]. In the original implementation, ge-

ometric verification is performed using uncompressed fea-

ture files that are (due to their size) loaded from disk. The

resulting recognition times would be on the order of 10 sec-

onds, which is not sufficient for an AR application. Using

our in-memory quantized features we achieve recognition

times strictly under 2 seconds.

4. Client-side object tracking

Once an object has been recognized by the server and the

response has been received by the mobile phone, a virtual

label is attached to the object. The label’s on screen position

has to be updated for every frame, i.e. we need to track the

object. Thanks to the equipment of modern smartphones

with camera, accelerometer and a magnetic compass, we

have several options for tracking at our disposal. Tracking

based on sensors has received significant attention due to its

simplicity. From the sensors alone the phone’s pose can be

estimated, but since signals from the sensors are often noisy

the resulting AR experience is often not optimal. However,

sensors are not subject to any drift which is an important

property we can leverage to make overall tracking more ro-

bust.

The other option for tracking is visual tracking using im-

age features. This is much more accurate than sensor based

tracking, however it can easily fail during rapid movement

and in some cases it can be subject to drift. Our strategy is to

combine sensor based tracking and visual tracking to keep

the good bits of both methods. Throughout this section,

we make the simplifying assumption that a tracked object’s

movement is orthogonal to the cameras viewing direction,

so that we can model an object’s pose merely using a trans-

lation and a rotation. This assumption holds true for most

objects that are at a reasonable distance from the camera,

which applies to most AR scenarios. Furthermore, for the

placement of the label we even discard the rotational com-

ponent of the movement, since we focus on text labels as

augmentation, which should not change orientation to en-

sure good readability. Thus, ultimately we are only inter-

ested in the 2D screen location of a tracked object. We

found that for our purposes this simple model works very

well in practice. In cases where the motion model is not

able to capture an object’s pose correctly (e.g. during scale

change) the tracker can be reinitialized by sending a new re-

quest to the recognition service. Note, that this also helps to

overcome drift, i.e. re-initiating the client-side tracker with

a request to the recognition server increases robustness even

more.

In the following two sections we will first describe vi-

sual tracking, and immediately after the integration of sen-

sor tracking with the visual trackers.

4.1. Visual feature tracking

For tracking we use FAST [23] corners in conjunction

with 8×8 pixel image patches as feature descriptors. When-

ever a recognition request is sent to the server the extracted

features of the current frame are kept as reference features.

We make a distinction between two different modes of

visual tracking, direct tracking and incremental tracking. In

direct tracking mode we attempt to match the features of

the current frame against the reference features. If this suc-

ceeds then the recognized object can usually be very accu-

rately located, with localization error typically in the order

of a single pixel. Direct tracking can fail for a number of

reasons, the most obvious of which is when the recognized

object moves outside the field of view of the camera. Even

when a recognized object is visible on the screen, direct

tracking can fail since for objects very close to the camera

the assumption of Euclidean motion between frames might

not hold true and the simple image patch features we use

are neither rotation nor scale invariant.

In these situations incremental tracking jumps in, which

matches the features of the current frame against the fea-

tures of the previous frame, in order to estimate the inter-

frame motion. The location of a tracked object is then up-

dated solely based on the incremental movements estimated

between successive frames. Due to the limited accuracy of

the feature detection (± 0.5 pixel) and image noise an ac-

cumulation of small localization errors may happen, which

means incremental tracking is subject to drift. Thus, if the

tracker remains in this mode for several successive frames,

a new recognition request is initiated.

In both tracking scenarios feature correspondences are

calculated using simple neighbor search with the L2 norm

on the patch descriptors. Several heuristics are put in place

to further speed-up the matching process. For instance we

a-priori reject features with different FAST corner polari-

ties and under the assumption that the inter-frame motion is

small we can even further reduce the set of correspondence

candidates.

4.2. Motion estimation

Once the basic feature correspondences between frames

are estimated, for robust motion estimation we then use

a procedure similar to what [28] refers to as “incremen-

tal tracking using pixel flow”. The idea is that each inter-

frame correspondence yields a translation vector which is

inserted into a two dimensional histogram. The total trans-

lation is then estimated by taking the weighted sum of all

pixel flows in the neighborhood of the histogram’s primary

mode. Since the motion model of [28] only consists of a

pure translation without any rotational component, this pro-

cedure fails in the presence of rotation around the camera’s

viewing direction. This is because no dominant mode can

be found in the translation histogram. The situation is illus-

trated in Figure 5.

In order to account for translation and rotation we need

to consider at least two feature correspondence pairs at the

same time. We first take into account all 780 possible pair-

ings of the 40 best matching features correspondences (i.e.

the ones with smallest L2 distance). We then reject any pair

of correspondences where the distance of the two points in

the reference frame and the current frame changes by more

than 5 pixels. This is due to the assumption of planar Eu-

clidean motion without scale change, where the distance be-

tween two matched features is expected to remain the same

in every frame. Furthermore, if the two features in either

the first or second frame are less than 5 pixels apart, then

the correspondence pair is also rejected.

The remaining correspondence pairs are used for motion

estimation. As in [28] we use a two dimensional histogram.

However, instead of considering the translation of individ-

ual correspondences, we consider the translation and rota-

tion of correspondence pairs. For each considered corre-

spondence pair
(

(~A, ~A′), (~B, ~B′)
)

we now first rotate the

two points ~A and ~B in the reference frame around the la-

bels position such that the difference vectors ~d = ~A − ~B in

the reference frame and the difference vector ~d′ = ~A′
− ~B′

in the current frame become co-linear. This is illustrated

in Figure 4. If ~A′′ and ~B′′ denote the rotated points in the

reference frame, then a translation estimate for this feature

�
�

� ��
�����

��	�
�����
��� ��

����
���

���
����

�

��
�����

��
���

���

�

��

Figure 4. Before a translation estimate is calculated we compen-

sate for any rotation around an objects label in the reference frame.

pair is given by

∆~x =
~A′

− ~A′′

2
+

~B′
− ~B′′

2

Each resulting estimate ∆~x is then inserted into a two di-

mensional histogram. If the inter-frame motion can be prop-

erly approximated by only a translation and rotation, we

expect to find one single mode in the histogram as demon-

strated on the bottom right of Figure 5. Finally, we deter-

mine whether tracking across the two frames was successful

by checking if the following conditions are met

• At least 120 votes are cast

• The histogram bin with the highest number of votes

together with it’s 8 neighboring bins must contain at

least 1

4
of all cast votes

• The second highest mode of the histogram must either

be very close to the first mode or contain less than half

the amount of votes

If all these conditions are satisfied, then we assume that

tracking has been successful and keep a weighted sum of all

translation estimates in the neighborhood of the histogram’s

primary mode as translation estimate. This voting scheme

offers robustness against potential remaining outliers, as

isolated votes will not affect the final result.

For each frame the visual tracker always first tries to per-

form direct tracking and uses the aforementioned criteria to

determine if direct tracking was successful or not. If direct

tracking fails, tracking switches to incremental mode, using

the same criteria to determine if tracking was successful or

not. If this also fails, we can still resort to sensor tracking,

which is described in the next section.

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

Dx

D
y

translation estimates using
individual correspondences

translation estimates using
correspondence pairs

Dx
D

y

inter-frame motion with obvious rotational component

label location in reference frame

label location in new frame

Figure 5. Bottom left: When considering the translation vectors of

individual correspondences in the presence of a rotation, then no

distinct translation direction can be determined. Bottom right: If

however we compensate for the rotational component around an

object label in the reference frame, then a clear consensus on the

labels translation vector is found.

4.3. Sensor tracking

We now want to combine our visual tracking with sensor

tracking. Instead of trying to fuse the cues from both track-

ers, we use the input from the sensors as watchdog for the

visual tracking system. As mentioned earlier, the pose of a

mobile phone relative to the earth surface can in principle

be fully determined from the sensors. When the camera pa-

rameters are also known, every camera pixel can be mapped

to a point on a sphere with a fixed radius around the mobile

phone1. Because the accelerometer and magnetic sensors

are used to measure the earth’s gravitational and magnetic

field directly, the resulting pose estimates are not subject

to drift. However, the sensors built into consumer devices

provide only very noisy signals and we also found that on

Android phones the sensors’ outputs are provided at irregu-

lar time intervals. Thus in order to accurately place a label

on the phone’s screen these signals need to undergo heavy

filtering.

We let the visual and the sensor tracker run indepen-

dently. The watchdog mechanism then works as follows.

For every frame where direct visual tracking succeeded we

assume that the tracked object has been accurately local-

ized, thus we update the sensor tracker’s view of the world,

1This is exploited in AR applications like Layar [1] or Wikitude [3]

where based on the user’s position (obtained using GPS) markers for

nearby objects like buildings or other landmarks are displayed on the mo-

bile phone’s screen.

so that it matches the visual tracker. Whenever direct track-

ing fails and the visual tracker is in incremental tracking

mode we compare the proposed label locations of the vi-

sual and sensor tracker. When over 10 successive frames

the proposed label locations do not coincide, we assume

that the incremental tracker suffered from drift and assume

the tracked object has been lost. In this case we submit a

new recognition request to the recognition service and reset

the visual tracker to match the sensor tracker’s view of the

world.

5. Implementation details

For the client-side implementation of our system we

chose the Android mobile platform. This is due to the easy

access to advanced features such as camera stream, GPS,

sensor data etc. and the modern programming environment,

which makes development more productive than on other

mobile platforms. The user interface, network handling and

sensor handling were implemented in Java. However, for

the visual tracking we had to resort to native code in order

to allow for interactive frame rates. Frames are passed from

Java to native C code, which handles feature extraction, fea-

ture matching and motion estimation. Frame size is set at

480*320 pixels. With these settings we reach about 12 fps

on a Google Nexus One phone. The Android platform is

not yet fully optimized for vision based AR applications.

There is a substantial overhead due to unnecessary mem-

ory allocation and garbage collection when grabbing frames

from the camera. Additionally it is not trivial to synchronize

the tracking results with the displayed frames resulting in a

slightly offset label position.

6. Experiments and results

In order to perform reproducible tracking experiments

we recorded video sequences together with sensor data, so

that all experiments could be done offline. A groundtruth

was generated by manually annotating every frame in the

recorded videos. We found that even though sensor track-

ing is quite inaccurate with typical localization errors on

the order of 50 pixels it’s very effective in detecting failures

caused by drift during incremental tracking. To demonstrate

this we recorded a special sequence, where a rapid move-

ment cause incremental tracking to fail. We observed that

within less than 2 seconds, the sensor tracker detects this

failure and resets the visual tracker (see supplemental mate-

rial). Figure 6 shows an experiment for the visual part of the

tracking pipeline. It can be observed, that for direct tracking

the localization error remains bounded and reaches at most

4 pixels. For incremental tracking we found that even after

50 frames the accumulated error stays below 8 pixels.

Figure 7 shows frames from a sequence recorded under

live operating conditions on a Google Nexus One. In the be-

ginning the users points his phone at a book which is recog-

nized by the kooaba [2] recognition service. Next he looks

at the building in front of him which is recognized a land-

mark building by our own recognition service. Thanks to

the integration of the server-side system proposed in [11],

our augmented reality service covers hundreds of thousands

of landmarks around the world.

7. Conclusions

We have demonstrated a fully functional and complete

AR system which recognizes and tracks stationary as well

as mobile objects. It combines a client-side implementa-

tion on an Android powered mobile phone together with a

server-side object recognition service. The client-side ap-

plication allows for real-time tracking and interactive usage

on state of the art smart phones. Our server-side provides an

AR compatible object recognition service for 300000 object

clusters with response times strictly under 2 seconds using

a memory efficient geometric verification method. In our

whole set-up we do not use any markers and do not require

GPS information for object recognition and tracking.

References

[1] http://layar.com.

[2] http://www.kooaba.com/developers/.

[3] http://www.wikitude.org.

[4] lhttp://www.google.com/mobile/goggles/.

[5] A. Adams, N. Gelfand, and K. Pulli. Viewfinder alignment.

Comput. Graph. Forum, 27(2):597–606, 2008.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up

robust features. In ECCV’06, 2006.

[7] O. Chum and J.Matas. Web scale image clustering. Technical

report, Czech Technical University Prague, 2008.

[8] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Klein-

berg. Mapping the world’s photos. In WWW ’09, 2009.

[9] D.Wagner and D. Schmalstieg. First steps towards handheld

augmented reality. In ISWC’03, 2003.

[10] V. Ferrari, T. Tuytelaars, and L. V. Gool. Markerless aug-

mented reality with a real-time affine region tracker. IEEE

ISAR’01, 2001.

[11] S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. I know

what you did last summer: object level auto-annotation of

holiday snaps. In ICCV ’09, 2009.

[12] J. Hays and A. A. Efros. Im2gps: estimating geographic

information from a single image. In CVPR08, 2008.

[13] H. Jegou, M. Douze, and C. Schmid. Hamming embedding

and weak geometric consistency for large scale image search.

In ECCV08, 2008.

[14] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE Transactions on Pattern

Analysis & Machine Intelligence, 2010. to appear.

[15] M. Kähäri and D. Murphy. Mara: Sensor based augmented

reality system for mobile imaging device. In ISMAR’06,

2006.

0 20 40 60 80 100
0

2

4

6

8

tracking error

direct tracking

incremental tracking

Error in pixelsFrame Number

0 1 2 3 4
0

5

10

15

20

25

0 1 2 3 4 5 6 7
0

5

10

15

20

E
rr

o
r

in
 p

ix
e

ls

#
 o

f
o

c
c
u

rr
e

n
c
e

s

in
c
re

m
e
n
ta

l
tr

a
c
k
in

g

direct tracking

Figure 6. Top: Manually annotated test sequence. The green circle indicates the groundtruth, the red circle indicates the tracking result.

Bottom: absolute tracking error in pixels. Note that incremental tracking clearly shows signs of drifting. Note how at around frame 70 the

system switches back to precise direct tracking, as the original object features were found again as rotation came back towards 0.

Figure 7. A real life demonstration of our application under a typical usage scenario. Note how both stationary and non stationary objects

are augmented. Also note how sensor tracking kicks in once the object is out of the screen (indicated by arrows).

[16] G. Klein and D. Murray. Improving the agility of keyframe-

based SLAM. In ECCV08, 2008.

[17] G. Klein and D. Murray. Parallel tracking and mapping on a

camera phone. In ISMAR’09, 2009.

[18] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2), 2004.

[19] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In CVPR’06, 2006.

[20] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-

man. Object retrieval with large vocabularies and fast spatial

matching. In CVPR’07, 2007.

[21] T. Quack, B. Leibe, and L. Van Gool. World-scale mining

of objects and events from community photo collections. In

CIVR ’08, 2008.

[22] M. Rohs and B. Gfeller. Using camera-equipped mobile

phones for interacting with real-world objects. In Advances

in Pervasive Computing, pages 265–271, 2004.

[23] E. Rosten and T. Drummond. Machine learning for high-

speed corner detection. In ECCV06, volume 1, pages 430–

443, May 2006.

[24] J. Sivic and A. Zisserman. Video google: a text retrieval

approach to object matching in videos. In ICCV’03, 2003.

[25] I. Skrypnyk and D. Lowe. Scene modelling, recognition and

tracking with invariant image features. In ISMAR’04, 2004.

[26] D. Ta, W. Chen, N. Gelfand, and K. Pulli. Surftrac: Effi-

cient tracking and continuous object recognition using local

feature descriptors. In CVPR09, 2009.

[27] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-

C. Chen, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and

B. Girod. Outdoors augmented reality on mobile phone using

loxel-based visual feature organization. In MIR ’08, pages

427–434, New York, NY, USA, 2008. ACM.

[28] D. Wagner, T. Langlotz, and D. Schmalstieg. Robust and un-

obtrusive marker tracking on mobile phones. In ISMAR’08,

2008.

[29] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and

D. Schmalstieg. Pose tracking from natural features on mo-

bile phones. In ISMAR’08, 2008.

