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Abstract

Function as a Service (FaaS) has been gaining popularity as
a way to deploy computations to serverless backends in the
cloud. This paradigm shifts the complexity of allocating and
provisioning resources to the cloud provider, which has to
provide the illusion of always-available resources (i.e., fast
function invocations without cold starts) at the lowest possible
resource cost. Doing so requires the provider to deeply under-
stand the characteristics of the FaaS workload. Unfortunately,
there has been little to no public information on these charac-
teristics. Thus, in this paper, we first characterize the entire
production FaaS workload of Azure Functions. We show for
example that most functions are invoked very infrequently,
but there is an 8-order-of-magnitude range of invocation fre-
quencies. Using observations from our characterization, we
then propose a practical resource management policy that
significantly reduces the number of function cold starts, while
spending fewer resources than state-of-the-practice policies.

1 Introduction

Function as a Service (FaaS) is a software paradigm that is
becoming increasingly popular. Multiple cloud providers offer
FaaS [5, 17, 21, 28] as the interface to usage-driven, stateless
(serverless) backend services. FaaS offers an intuitive, event-
based interface for developing cloud-based applications. In
contrast with the traditional cloud interface, in FaaS, users do
not explicitly provision or configure virtual machines (VMs)
or containers. FaaS users do not pay for resources they do
not use either. Instead, users simply upload the code of their
functions to the cloud; functions get executed when “triggered”
or “invoked” by events, such as the receipt of a message (e.g.,
an HTTP request) or a timer going off. The provider is then
responsible for provisioning the needed resources (e.g., a
container in which to execute each function), providing high
function performance, and billing users just for their actual
function executions (e.g., in increments of 100 milliseconds).

Obviously, providers seek to achieve high function per-
formance at the lowest possible resource cost. There are
three main aspects to how fast functions can execute and
the resources they consume. First, function execution requires
having the needed code (e.g., user code, language runtime
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libraries) in memory. A function can be started quickly when
the code is already in memory (warm start) and does not
have to be brought in from persistent storage (cold start).
Second, keeping the resources required by all functions in
memory at all times may be prohibitively expensive for the
provider, especially if function executions are short and in-
frequent. Ideally, the provider wants to give the illusion that
all functions are always warm, while spending resources as
if they were always cold. Third, functions may have widely
varying resource needs and invocation frequencies from mul-
tiple triggers. These characteristics severely complicate any
attempts to predict invocations for reducing resource usage.
For example, the wide range of invocation frequencies sug-
gests that keeping resources in memory may work well for
some functions but not others. With respect to triggers, HTTP
triggers may produce invocations at irregular intervals that
are difficult to predict, whereas timers are regular.

These observations make it clear that providing high func-
tion performance at low cost requires a deep understanding
of the characteristics of the FaaS workload. Unfortunately,
there has been no public information on the characteristics
of production workloads. Prior work [3, 15, 24, 25, 27, 44]
has focused on either (1) running benchmark functions to
assess performance and/or reverse-engineer how providers
manage resources; or (2) implementing prototype systems to
run benchmark functions. In contrast, what is needed is a com-
prehensive characterization of the users’ real FaaS workloads
on a production platform from the provider’s perspective.

Characterizing production workloads. To fill this gap, in
this paper, we first characterize the entire production FaaS
workload of Azure Functions [28]. We characterize the real
functions and their trigger types, invocation frequencies and
patterns, and resource needs. The characterization produces
many interesting observations. For example, it shows that
most functions are invoked very infrequently, but the most
popular functions are invoked 8 orders of magnitude more
frequently than the least popular ones. It also shows that
functions exhibit a variety of triggers, producing invocation
patterns that are often difficult to predict. In terms of resource
needs, the characterization shows a 4x range of function mem-
ory usage and that 50% of functions run in less than 1 second.

Researchers can use the distributions of the workload char-
acteristics we study to create realistic traces for their work.
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Alternatively, they can use the sanitized production traces we
are making available with this paper [31].
Managing cold-start invocations. Using observations from
our characterization, we also propose a practical resource man-
agement policy for reducing the number of cold start execu-
tions while consuming no more resources than the large cloud
providers’ current policies. Specifically, AWS and Azure use
a fixed “keep-alive” policy that retains the resources in mem-
ory for 10 and 20 minutes after a function execution, respec-
tively [39, 40]. Though this policy is simple and practical,
it disregards the functions’ actual invocation frequency and
patterns, and thus behaves poorly and wastes resources.

In contrast, our policy (1) uses a different keep-alive value
for each user’s workload, according to its actual invocation
frequency and pattern; and (2) enables the provider in many
cases to pre-warm a function execution just before its invoca-
tion happens (making it a warm start). Our policy leverages a
small histogram that keeps track of the recent function inter-
invocation times. For workloads that exhibit clear invocation
patterns, the histogram makes clear how much keep-alive is
beneficial and when the pre-warming should take place. For
workloads that do not, our policy reverts back to the fixed
keep-alive policy. As the histogram must be small, for any
workloads that cannot be captured by the histogram but ex-
hibit predictable invocation patterns, our policy uses time-
series analysis to predict when to pre-warm.

We implement our policy in simulation and for the Apache
OpenWhisk [34] FaaS platform, both driven with real work-
load traces. Our simulation results show that the policy sig-
nificantly reduces the number of function cold starts, while
spending fewer resources than the fixed keep-alive policy.
Our experimental results show that the policy can be easily
implemented in real systems with minimal overheads. In fact,
we describe our recent production implementation in Azure
Functions in the end of the paper.
Contributions. In summary, our main contributions are:
• A detailed characterization of the entire production FaaS
workload at a large cloud provider;
• A new policy for reducing the number of cold start function
executions at a low resource provisioning cost;
• Extensive simulation and experimental results based on
real traces showing the benefits of the policy;
• An overview of our implementation in Azure Functions;
• A large sanitized dataset containing production FaaS traces.

2 Background

Abstraction. In FaaS, the user uploads code to the cloud, and
the provider enables a handle (e.g., a URL) for the code to
be run. The choices of which resources to allocate, when to
allocate them, and for how long to retain them, still have to
be made, but they are shifted to the cloud provider.
Triggers. Functions can be invoked in response to several
event types, called triggers [6, 29]. For clarity, in this paper
we group Azure’s many triggers into 7 classes: HTTP, Event,

Queue, Timer, Orchestration, Storage, and others. Event trig-
gers include Azure Event Hub and Azure Event Grid, and
are used for discrete or serial events, with individual or batch
processing. Queue-triggered functions respond to message
insertion in a number of message queueing solutions, such as
Azure Service Bus and Kafka. Timer triggers are similar to
cron jobs, and cause function invocations at pre-determined,
regular intervals. We grouped all triggers related to Azure
Durable Functions [30] as Orchestration. One can use these
triggers to create native, complex function chaining and or-
chestration. Finally, we grouped database and filesystem trig-
gers as Storage. These fire in response to changes in the
underlying data, and include Azure Blob Storage and Redis.
Applications. In Azure Functions, functions are logically
grouped in applications, i.e. an application may encompass
multiple functions. The application concept helps organize the
software and in packaging. The application, not the function,

is the unit of scheduling and resource allocation.
Cold starts. A cold start invocation occurs when a function
is triggered, but its application is not yet loaded in memory.
When this happens, the platform instantiates a “worker” 1 for
the application, loads all the required runtime and libraries,
and calls the function. This process can take a long time
relative to the function execution [44]. There are strategies
to reduce the time taken by each cold start, such as keeping
pre-allocated VMs or containers, instantiated virtual network
interfaces [32], or pre-loaded runtimes that can be specialized
on-demand [18]. In this paper, we focus on the complemen-
tary and orthogonal goal of reducing the number of cold starts.
Concurrency and elasticity. A running instance of an appli-
cation can respond to a configurable number of concurrent
invocations of its functions. The number depends on the na-
ture of the function, and its resource needs. Cold starts can
also happen if there is a spike in the load to an application, and
new instances have to be allocated quickly. Given full-server
instances and our real FaaS workload, only a tiny percentage
(<1%) of applications would experience this type of cold
start. For this reason, we do not consider it in this paper.
Cold start management policy. A key aspect of FaaS is the
trade-off between reducing cold starts by keeping instances
warm, and the resources (e.g., VMs, memory) they need.

Most FaaS providers use a fixed keep-alive policy for all
applications, where application instances are kept loaded in
memory for a fixed amount of time after a function execu-
tion [39, 40]. This is also the case for most open-source im-
plementations (e.g., OpenWhisk uses a 10-minute period).

This policy is simple to implement and maintain, but does
not consider the wide variety of application behaviors our
characterization unearths. Thus, it can have many cold starts
while wasting resources for many applications. Moreover, it
is easy to identify by external users, who sometimes invoke
their applications frequently enough (perhaps with dummy

1In some systems, a worker is a container, but in others it can be a VM.
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Figure 1: Distribution of the number of functions per app.

invocations) to keep them warm. This practice amplifies the
resource waste issue. In this paper, we design a better policy.

3 FaaS Workloads

We characterize the FaaS workloads seen by Azure Functions,
focusing on characteristics that are intrinsic to the applications
and functions (e.g., their arrival pattern), and not on the char-
acteristics that relate to the underlying platform (e.g., where
functions are scheduled). Throughout the characterization, we
highlight interesting observations and their implications for
cold starts and resource management.

3.1 Data Collection

We collected data on all function invocations across Azure’s
entire infrastructure between July 15th and July 28th, 2019.
We collected four related data sets:
1. Invocation counts: per function, in 1-minute bins;
2. Trigger per function;
3. Execution time per function: average, minimum, max-
imum, and count of samples, for each 30-second interval,
recorded per worker; and
4. Memory usage per application: sampled every 5 seconds
by the runtime and averaged, for each worker, each minute.
Average, minimum, maximum, and count of samples, for al-
located and resident memory.

With this paper, we are releasing a subset of our traces at
https://github.com/Azure/AzurePublicDataset.
Limitations. Given the extreme scale of Azure Functions,
the invocation counts are binned in 1-minute intervals, i.e.

our dataset does not allow the precise reconstruction of inter-
arrival times that are smaller than one minute. For this paper,
this granularity is sufficient.

For the execution time, we also do not have the complete
time distribution across all invocations. However, from the
many samples of average time, and corresponding counts, we
keep a set of weighted percentiles, where the weight of an
entry is the number of samples. For example, if we see an
average time of 100ms over 45 samples, the resulting per-
centiles are equivalent to those computed over a distribution
where 100ms are replicated 45 times. The quality of the ap-
proximation to the true distribution depends on the number
of samples in each bin, the smaller the better. We similarly

Trigger %Functions %Invocations

HTTP 55.0 35.9

Queue 15.2 33.5

Event 2.2 24.7

Orchestration 6.9 2.3

Timer 15.6 2.0

Storage 2.8 0.7

Others 2.2 1.0

Figure 2: Functions and invocations per trigger type.

obtain weighted percentiles for memory usage.
For confidentiality reasons, we cannot disclose some ab-

solute numbers, such as total number of functions and invo-
cations. Nevertheless, our characterization is useful for un-
derstanding a full FaaS workload, and for researchers and
practitioners to generate realistic FaaS workloads.

3.2 Functions, Applications, and Triggers

Functions and applications. Figure 1 shows the CDF of the
number of functions per application (top curve). We observe
that 54% of the applications only have one function, and 95%
of the applications have at most 10 functions. About 0.04%
of the applications have more than 100 functions.

The other two curves show the fraction of invocations,
and functions, corresponding to applications with up to a
certain number of functions. For example, we see that 50%
of the invocations come from applications with at most 3
functions, and 50% of the functions are part of applications
with at most 6 functions. Though we found a weak positive
correlation between the number of functions in an application
and the median number of invocations of those applications,
the number of functions in an application is not a useful signal
in resource management.

We took a closer look at the 10 applications with the most
functions. Only 4 had more than 1k functions: these, and 3 oth-
ers, had a pattern of auto-generated function names triggered
by timers or HTTP, which suggests that they were being used
for large automated testing. Of the remaining 3 applications,
two were using Azure Durable Functions for orchestrating
multiple functions, and one seems to be an API application,
where each function corresponds to one route in a large Web
or REST application. We plan to do a broader and more com-
prehensive study of application patterns in future work.
Triggers and applications. Figure 2 shows the fraction of
all functions, and all invocations, per type of trigger. HTTP
is the most popular in both dimensions. Event triggers cor-
respond to only 2.2% of the functions, but to 24.7% of the
invocations, due to their automated, and very high, invocation
rates. Queue triggers also have proportionally more invoca-
tions than functions (33.5% vs 15.2%). The opposite happens
with timer triggers. There are many functions triggered by
timers (15.6%), but they correspond to only 2% of the invo-
cations, due to the relatively low rate they fire in: 95% of the
timer-triggered functions in our dataset were triggered at most
once per minute, on average.
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Trigger Type % Apps

HTTP (H) 64.07

Timer (T) 29.15

Queue (Q) 23.70

Storage (S) 6.83

Event (E) 5.79

Orchestration (O) 3.09

Others (o) 6.28

(a) Apps with ≥ 1 of each trigger.

Trigger 

Types

Fraction of 

Apps (%)

Cum. Frac. 

(%)

H 43.27 43.27

T 13.36 56.63

Q 9.47 66.10

HT 4.59 70.69

HQ 4.22 74.92

E 3.01 77.92

S 2.80 80.73

TQ 2.57 83.30

HTQ 2.48 85.78

Ho 1.69 87.48

HS 1.05 88.53

HO 1.03 89.56

(b) Popular trigger combinations.

Figure 3: Trigger types in applications.
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Figure 4: Invocations per hour, normalized to the peak.

Figure 3 shows how applications combine functions with
different trigger types. In Figure 3(a), we show the applica-
tions with at least one trigger of the given type. We find that
64% of the applications have at least one HTTP trigger, and
29% of the applications have at least one timer trigger. As
applications can have multiple triggers, the fractions sum to
more than 100%. In Figure 3(b), we partition the applications
by their combinations of triggers. 43% of the applications
have only HTTP triggers, and 13% of the apps have only

timer triggers. Combining the two tables, we find that 15.8%
of the applications have timers and at least one other trigger
type. For predicting invocations, as we discuss later, while
timers are very predictable, 86% of the applications have
either no timers or timers combined with other triggers.

3.3 Invocation Patterns

We now look at dynamic function and application invocations.
Figure 4 shows the volume of invocations per hour, across the
entire platform, relative to the peak hourly load on July 18th.
There are clear diurnal and weekly patterns (July 20th, 21st,
27th, and 28th are weekend days), and a constant baseline of
roughly 50% of the invocations that does not show variation.
Though we did not investigate this specifically, there can be
several causes, e.g. a combination of human and machine-
generated traffic, plain high-volume applications, or the over-
lapping of callers in different time zones.

Figure 5(a) shows the CDF of the average number of invo-
cations per day, for a representative sample of both functions
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(a) CDF of daily invocations per function and application, and the correspond-
ing average interval between invocations. Shaded regions show applications
invoked on average at most once per hour (green, 45% of apps) and at most
once per minute (yellow, 81% of apps).
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(b) Fraction of total function invocations by the fraction of the most popular
functions and applications. Same colors as in Figure 5(a).

Figure 5: Invocations per application and per function for a
representative sample of the dataset.

and applications. The invocations for an application are the
sum over all its functions. First, we see that the number of
invocations per day varies by over 8 orders of magnitude for
functions and applications, making the resources the provider
has to dedicate to each application also highly variable.

The second observation with strong implications for re-
source allocation is that the vast majority of applications and
functions are invoked, on average, very infrequently. The
green- and yellow-shaded areas in the graph show, respec-
tively, that 45% of the applications are invoked once per hour
or less on average, and 81% of the applications are invoked
once per minute or less on average. This suggests that the
cost of keeping these applications warm, relative to their total
execution (billable) time, can be prohibitively high.

Figure 5(b) shows the other side of the workload skewness,
by looking at the cumulative fraction of invocations due to
the most popular functions and applications in the sample.
The shaded areas correspond to the same applications as in
Figure 5(a). The applications in the orange-shaded area are the
18.6% most popular, those invoked on average at least once
per minute. They represent 99.6% of all function invocations.

The invocation rates provide information on the average
inter-arrival time (IAT) of function and application invoca-
tions, but not on the distribution of these IATs. If the next
invocation time of a function can be predicted, the platform
can avoid cold starts by pre-warming the application right
before it is to be invoked, and save resources by shutting it
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down right after execution.
Inter-arrival time variability. To gain insight into the IAT
distributions of applications, we look at the coefficient of vari-
ation (CV) of each application. The CV (standard deviation
divided by the mean) provides a measure of the variability in
the IATs. We would expect timer-triggered functions to have
periodic arrivals, with a CV of 0. Human-generated invoca-
tions should approximately follow a Poisson arrival process,
with an exponential (memoryless) distribution of IATs [16].
These would ideally yield a CV of 1. CVs greater than 1
suggest significant variability.

Figure 6 shows the distribution of the CV across all applica-
tions, as well as for subsets of applications with and without
timers. It shows that the real IAT distributions are more com-
plex than the simply periodic or memoryless ones. For exam-
ple, only ∼50% of the applications with only timer-triggered
functions have a CV of 0. Multiple timers with different peri-
ods and/or phases will increase the CV. For applications with
at least one timer, this fraction is less than 30%, and across
all applications the fraction is ∼20%. Interestingly, ∼10% of
applications with no timers have CV close to 0, which means
they are quite periodic, and should be predictable. This could
be due to, for example, external callers (e.g., sensors or IoT
devices) that operate periodically. On the other hand, only a
small fraction of applications has a CV close to 1, meaning
that simple Poisson arrivals are not the norm. These results
show that there is a significant fraction of applications that
should have fairly predictable IATs, even if they do not have
timer triggers. At the same time, these numbers suggest that
for many applications predicting IATs is not trivial.

3.4 Function Execution Times

Another aspect of the workload is the function execution time,
i.e. the time functions take to execute after they are ready to

run. In other words, these numbers do not include the cold
start times. Cold start times depend on the infrastructure to a
large extent, and have been characterized in other studies [44].

Figure 7 shows the distribution of average, minimum, and
maximum execution times of all function executions on July
15th, 2019. The distributions for other days are similar. The
graph also shows a very good log-normal fit (via MLE) to
the distribution of the averages, with log mean -0.38 and σ

1ms 100ms 1s 10s 1m 10m 1h

Time(s)

C
D

F Minimum

Average

Maximum

LogNormal Fit
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Figure 7: Distribution of function execution times. Min, avg,
and max are separate CDFs, and use independent sorting.

2.36. We observe that 50% of the functions execute for less
than 1s on average, and 50% of the functions have maximum
execution time shorter than ∼3s; 90% of the functions take at
most 60s, and 96% of functions take less than 60s on average.

The main implication is that the function execution times
are at the same order of magnitude as the cold start times
reported for major providers [44]. This makes avoiding and/or

optimizing cold starts extremely important for the overall

performance of a FaaS offering.

Another interesting observation is that, overall, functions
in this FaaS workload are very short compared to other cloud
workloads. For example, data from Azure [12] shows that
63% of all VM allocations last longer than 15 minutes, and
only less than 8% of the VMs last less 5 minutes or less. This
implies that FaaS imposes much more stringent requirements
on the provider to stand-up resources quickly.
Idle times. As we discuss in Section 4, an important aspect of
the workload for managing cold starts is idle time (IT), defined
as the time between the end of a function’s execution and its
next invocation. IT relates to IAT and execution time. For most
applications, the average execution time is at least 2 orders
of magnitude smaller than the average IAT. We verified for
the applications in the yellow region in Figure 5(a) – 81% of
the applications invoked at most once per minute on average –
that indeed the IT and IAT distributions are extremely similar.
Potential correlations. Different triggers had average func-
tion execution times differing by about 10×, between 200ms
and 2s at the median, but all with the same shape for the
distributions. One outlier was a class of orchestration func-
tions with median average execution times of ∼30ms, as they
simply dispatch and coordinate other functions.

3.5 Memory Usage

We finally look at the memory demands of applications. Re-
call that the application is the unit of memory allocation in the
platform we study. Figure 8 shows the memory demand dis-
tribution, across all applications running on July 15th, 2019.
We present three curves drawn from the memory data: 1st

percentile, average, and maximum allocated memory for the
application. We also plot a reasonably good Burr distribution
fit (with parameters c = 11.652, k = 0.221, and λ = 107.083)
for the average. Allocated memory is the amount of virtual

USENIX Association 2020 USENIX Annual Technical Conference    209



0.00

0.10

0.25

0.50

0.75

0.90

1.00

10 100 1000

Allocated Memory (MB)

C
D

F

1st Percentile

Average

Maximum

Burr Fit

Figure 8: Distribution of allocated memory per application.

memory reserved for the application, and may not necessarily
be all resident in physical memory. Here, we use the 1st per-
centile because there was a problem with the measurement of
the minimum, which made that data not usable. Despite the
short duration of each function execution, applications tend
to remain resident for longer. The distributions for other days
in the dataset are very similar.

Looking at the distribution of the maximum allocated
memory, 90% of the applications never consume more than
400MB, and 50% of the applications allocate at most 170MB.
Overall, there is a 4× variation in the first 90% of applica-
tions, meaning that memory is an important factor in warmup,
allocation, and keep-alive decisions for FaaS.
Potential correlations. We found no strong correlation be-
tween invocation frequency and memory allocation or be-
tween memory allocation and function execution times.

3.6 Main Takeaways

From the point of view of cold starts and resource allocation,
we now reiterate our three main observations. First, the vast
majority of functions execute on the order of a few seconds –
75% of them have a maximum execution time of 10 seconds –
so execution times are on the same order as the time it takes to
start functions cold. Thus, it is critical to reduce the number of
cold starts or make cold starts substantially faster. Eliminating
a cold start is the same as making it infinitely fast.

Second, the vast majority of applications are invoked infre-
quently – 81% of them average at most one invocation per
minute. At the same time, less than 20% of the applications
are responsible for 99.6% of all invocations. Thus, it is expen-
sive, in terms of memory footprint, to keep the applications
that receive infrequent invocations resident at all times.

Third, many applications show wide variability in their
IATs – 40% of them have a CV of their IATs higher than 1 – so
the task of predicting the next invocation can be challenging,
especially for applications that are invoked infrequently.

4 Managing Cold Starts in FaaS

We use insights from our characterization to design an adap-
tive resource management policy, called hybrid histogram

policy. The goal is to reduce the number of cold start invoca-
tions with minimum resource waste. We refer to a policy as a
set of rules that govern two parameters for each application:
— Pre-warming window. The time the policy waits, since the
last execution, before it loads the application image expecting
the next invocation. A pre-warming window = 0 means that
the policy does not unload the application after one of its
functions executes. Aggressive pre-warming (a large window)
reduces resource usage but may also cause cold starts, in case
the next invocation occurs sooner than expected.
— Keep-alive window. The time during which an application’s
image is kept alive after (1) it has been loaded to memory
(pre-warming window ≥ 0) or (2) a function execution (pre-
warming window = 0). (Note that our definition for this win-
dow differs from the keep-alive parameter in fixed keep-alive
policies, which is the same for all applications and only starts
at the end of function executions.) Longer windows have the
potential to reduce cold starts by increasing the chances of
an invocation falling into this window. However, this may
also waste resources, i.e. leave them idle, in case the next
invocation does not happen soon after loading.

A no-unloading policy would keep every application image
loaded in memory all the time (i.e., infinite keep-alive window
and pre-warming window = 0). This policy would get no cold
starts but would be too expensive to operate.

4.1 Design Challenges

Designing a practical policy poses several challenges:
1. Hard-to-predict invocations. As Figure 3 shows, many
applications are triggered by timers. A timer-aware policy
could leverage this information to pre-warm applications right
before the next invocation. However, predicting the next invo-
cation is challenging for other triggers.
2. Heterogeneous applications. As Figure 5 shows, the in-
vocation frequency and pattern vary substantially across appli-
cations. A one-size-fits-all fixed policy is certain to be a poor
choice for many applications. A better policy should adapt to
each application dynamically.
3. Applications with infrequent invocations. Some appli-
cations are invoked very infrequently, so an adaptive policy
would take some time to learn their invocation patterns. The
same applies for applications that it sees for the first time.
4. Tracking overhead. Adapting the policy to each applica-
tion means tracking each application individually. For this
reason, the cost to track the information for each application
should be small. For example, we need to consider the size of
the data structures that will keep this state.
5. Execution overhead. Since function executions can be
very short (i.e., more than 50% of executions take less than
1 second), running the policy and updating its state need
to be fast. This is especially critical considering providers
charge users only during their function execution times (e.g.,
based on CPU, memory). For instance, we cannot take 100
ms to update a policy for each 10 ms-long execution. Due
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Figure 9: Timelines showing a warm start with keep alives
and no pre-warming (top); a warm start following a pre-warm
(middle); and two cold starts, before a pre-warm, and after a
keep alive (bottom).

to these overheads, expensive prediction techniques, such as
time-series analysis, cannot be used for all applications.

4.2 Hybrid Histogram Policy

Overview. Our hybrid histogram policy addresses all the
above challenges. To address challenges #1 and #2, our pol-
icy adjusts to the invocation frequencies and patterns of each
individual application. It identifies the application’s invoca-
tion pattern, removes/unloads the application right after each
function execution ends, reloads/pre-warms the application
right before a potential next invocation (after a “pre-warming
window” elapses), and keeps it alive for a period (until a “keep-
alive window” elapses). The pre-warming window starts after
each function execution, and the keep-alive window starts af-
ter each pre-warming. If the pre-warming window is 0, we do
not unload the application after an execution, and the end of
the execution still starts a new keep-alive window. We explain
how exactly we compute the length of these windows below.

Figure 9 shows the pre-warming and keep-alive windows in
three scenarios. In the top scenario, the pre-warming window
is 0, and an invocation that happens before the keep-alive
window ends is a warm start. The end of the execution starts a
new keep-alive window. In the middle, the next invocation is a
warm start, as the application is re-loaded after a pre-warming
window. The end of the execution starts a new pre-warming
window. In the bottom scenario, there are two cold starts:
the first resulting from an invocation arriving before the pre-
warming window elapsed, and the second from an invocation
arriving after the keep-alive period elapsed.

The policy comprises three main components: (1) a range-
limited histogram for capturing each application’s “idle” times
(ITs); (2) a standard keep-alive approach for when the his-
togram is not representative, i.e. there are too few ITs or the IT
behavior is changing (again, note that this differs from a fixed
keep-alive policy); and (3) a time-series forecast component
for when the histogram does not capture most ITs. Figure 10
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Figure 10: Overview of the hybrid histogram policy.
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Figure 11: Example application idle time (IT) distribution
used to select pre-warming times and keep-alive windows.

overviews our policy and its components. Ultimately, the pol-
icy defines the pre-warming and keep-alive windows for each
application. Next, we describe each component in turn.
Range-limited histogram. To address challenges #4 and #5,
the centerpiece of our policy is a compact histogram data
structure that tracks the IT distribution for each application.
Each entry/bin of the histogram counts the number of ITs of
the corresponding length that have occurred. We use 1-minute
bins, which strikes a good balance between metadata size
and the resolution needed for policy actions. Keep-alive time
scales are in orders of minutes for FaaS platforms. We use the
same scale for pre-warming. In addition, the histogram tracks
ITs of up to a configurable duration (e.g., 4 hours). Any ITs
longer than this are considered “out of bounds” (OOBs).

Given the ITs that are within bounds, our policy identifies
the head and tail of the IT distribution. We use the head to
select the pre-warming window for the application, and the
tail to select the keep-alive window. To exclude outliers, we
set the head and tail by default to the 5th- and 99th-percentiles
of the IT distribution. (When one of these percentiles falls
within a bin, we “round” it to the next lower value for the head
or the next higher value for the tail.) These two configurable
thresholds strike a balance between managing cold starts and
resource costs. Figure 11 shows the histogram for a sample
application, and the head and tail markers. To give the policy a
little room for error, our implementation uses a 10% “margin”
by default, i.e. it reduces the pre-warming window by 10%
and increases the keep-alive window by 10%.

Figure 12 shows nine real IT distributions over a week. The
three histograms in the left column show cases where both
head and tail cutoffs are easy to identify. These distributions
produce the ideal situation: long pre-warm windows and short
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Figure 12: Nine normalized IT distributions from real FaaS
workloads over a week.

keep-alive windows. The center cases show no head cutoff
as the head marker rounded down to 0. In these cases, the
pre-warming window is 0 and the policy does not kill the
application after a function execution.
Standard keep-alive when the pattern is uncertain. The
histogram might not be representative of an application’s be-
havior when (1) it has not observed enough ITs for the applica-
tion, or (2) when the application is transitioning to a different
IT regime (e.g., change from a consistent pattern to an entirely
new one). When the histogram is not representative, we revert
to a standard keep-alive approach: pre-warming window =
0 and keep-alive window = range of the histogram (e.g., 4
hours). This conservative choice of keep-alive window seeks
to minimize the number of cold starts while the histogram is
learning a new pattern. Our policy reverts back to using the
histogram when it becomes representative (again).

We decide whether a histogram is representative by com-
puting the CV of its bin counts. A histogram that has a single
bin with a high count and all others 0 would have a high
CV, whereas a histogram where all bins have the same value
would have CV = 0. The histogram is most effective in the for-
mer case, where there is a large concentration of ITs (left and
center of Figure 12). It is not as effective when ITs are spread
widely (right of Figure 12). Thus, if the CV is lower than a
threshold, we use the standard keep-alive approach. To track
the CV efficiently, we use Welford’s online algorithm [45].
Time-series analysis when histogram is not large enough.

A compact histogram cannot represent ITs larger than its
range. Thus, applications with very infrequent invocations
(challenge #3) may exhibit many out-of-bounds ITs. For these
applications, our policy uses time-series analysis to predict
the next IT. Specifically, we use ARIMA modeling [11].

With an IT prediction, our policy sets the pre-warm window
to elapse just before the next invocation and a short keep-alive
window. In more detail, we used the auto_arima implemen-
tation from the pmdarima package [2], which automatically

searches for the ARIMA parameters (p,d,q) that produce the
best fit. As applications using ARIMA are invoked very in-
frequently, we update the model for each of them after every
invocation. To give the prediction some room more inaccu-
racy, we include a (configurable) margin of 15%. For example,
if the predicted IT is 5 hours, we set the pre-warming window
to 4.25 hours (5 hours minus 15%) and the keep-alive window
to 1.5 hours (15% of 5 hours in each side of the IT prediction).
Justification. Like other FaaS cold start policies, our policy
eagerly frees up memory when it is not needed. An alternative
would have been to leverage standard (lazy) caching policies,
which free up cache space only on-demand. Section 7 explains
the differences between these types of policies that justify our
approach. Our policy uses a standard keep-alive with a long
window, when it does not have accurate IT data about the
application, to conservatively prevent cold starts. A shorter
window would lower cost but would incur more cold starts.
We prefer our approach because it often quickly reduces mem-
ory usage greatly, after the histogram becomes active for the
application. Instead of using a histogram, we could attempt
to predict the next invocation or idle time using time-series
analysis or other prediction models. We experimented with
some models, including ARIMA, but found them to be inac-
curate or excessively expensive for the bulk of invocations.
The histogram is accurate, compact, and fast to update. So,
we rely on ARIMA only for the applications that cannot be
represented with a compact histogram. Producing an ARIMA
model is expensive, but can be off the critical path. Moreover,
these applications involve only a small percentage of invoca-
tions, so computation needs are kept small. Nevertheless, we
can easily replace ARIMA with another model.

4.3 Implementation in Apache OpenWhisk

We implement our policy in Apache OpenWhisk [34], which
is the open-source FaaS platform that powers IBM’s Cloud
Functions [21]. It is written in Scala.
OpenWhisk architecture. Figure 13 shows the architecture
of OpenWhisk [35]. It exposes a REST interface (imple-
mented using Nginx) for users to interact with the FaaS plat-
form. A user can create new functions (actions in OpenWhisk
terminology), submit new invocations (activations in Open-
Whisk terminology), or query their status. Here, we focus on
function invocation and container management. Invocation
requests are forwarded to the Controller component, who de-
cides which Invoker should execute each function instance.
This logic is implemented in the Load Balancer, which con-
siders the health and available capacity of the Invokers, as
well as the history of prior executions. The Controller sends
the function invocation request to the selected Invoker via the
distributed messaging component (implemented using Kafka).
The Invoker receives the invocation request, starts the function
in a Docker container, and manages its runtime (including
when to stop the container). By default, each Invoker imple-
ments a fixed 10-minute keep-alive policy, and informs the
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Figure 13: OpenWhisk architecture.

Controller when it unloads a container.
Implementing our policy. We modify the following Open-
Whisk components to implement the hybrid policy:
1. Controller: Since all invocations pass through the Load
Balancer, it is the ideal place to manage histograms and other
metadata required for the hybrid policy. We add new logic
to the Load Balancer to implement the hybrid policy and to
update the keep-alive and pre-warm parameters after each
invocation. We also modify the Load Balancer to publish the
pre-warming messages.
2. API: We send the latest keep-alive parameter for a function
to the corresponding Invoker alongside the invocation request.
To do this, we add a field to the ActivationMessage API,
specifying the keep-alive duration in minutes.
3. Invoker: The Invoker unloads Docker containers that have
timed-out in the ContainerProxy module. We modify this
module to unload containers based on the keep-alive parame-
ter received from ActivationMessage.

5 Evaluation

5.1 Methodology

Simulator. Evaluating our policy requires (1) long executions
to assess applications with infrequent invocations, and (2) ex-
ploring a large space of configurations. To limit the evaluation
time, we use simulations. We build a simulator that allows us
to compare various policies using real invocation traces.

The simulator generates an array of invocation times for
each unique application. It then infers whether each invoca-
tion would be a cold start. By default, the first invocation is
always assumed to be a cold start. The simulator keeps track
of when each application image is loaded and aggregates the
wasted memory time for the application, i.e. the time when
the application’s image was kept in memory without actually
executing any functions. We conservatively simulate function
execution times equal to 0 to quantify the worst-case wasted
resource time. We do not have memory usage data for all
applications, so we also simulate that applications use the
same amount and focus on the wasted memory time.
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Figure 14: Cold start behavior of the fixed keep-alive policy,
as a function of the keep-alive length.

Real experiments. To show that our policy can be easily im-
plemented in real systems with minimal overheads, we use
our OpenWhisk implementation (Section 4.3). Our setup con-
sists of 19 VMs. One VM with 8 cores and 8GB of memory
hosts containers for the Controller and other main compo-
nents, including Nginx and Kafka. Each of the remaining 18
VMs has 2 cores and 4GB of memory, hosting an Invoker to
actually run the functions in Docker containers.
Workloads. As input to our simulations, we use the first week
of the trace from Section 3. For the real experiments, we
use a scaled-down version of the trace. We randomly select
applications with mid-range popularity. As we run the full
system, we limit each OpenWhisk execution to only 8 hours.
As we show in Section 5.3, the experimental and simulation

results show the same trends in both cold start and memory

consumption behaviors.

5.2 Simulation Results

Understanding the fixed keep-alive policy. We start evalu-
ating the policy used by most providers: the fixed keep-alive
policy. We first assess how the length of the keep-alive af-
fects the cold starts. Figure 14 shows the distribution of cold
start percentage experienced by all applications for various
lengths. For comparison, we also include a No unloading pol-
icy, which corresponds to each application only experiencing
the initial cold start. Even the No unloading policy has ∼3.5%
of applications with 100% cold starts; these applications have
only one invocation in the entire week.

We see significant cold start reduction going from a 10-
minute keep-alive to 1-hour. The 75th-percentile application
experiences cold starts 50.3% of the time for the 10-minute
keep-alive. This number goes down to 25% for 1-hour. The
cold start improvement is more pronounced in the last quartile
of the distribution, since applications with infrequent invoca-
tions are those that benefit the most. From now on, we will
focus on this metric (i.e., 75th-percentile) to report cold starts.

While a longer keep-alive reduces cold starts significantly,
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Figure 15: Trade-off between cold starts and wasted memory
time for the fixed keep-alive policy and our hybrid policy.

it also increases the resources wasted significantly. The red
markers in Figure 15 show the trade-off between cold starts
and memory wasted, where we normalize the wasted memory
time to the 10-minute keep-alive. The red curve near the red
markers approximates the Pareto curve. The figure shows, for
example, that a fixed 2-hour keep-alive has almost 30% higher
wasted memory time than the 10-minute baseline. An optimal
policy would deliver the lowest cold starts with minimum cost.
We rely on these Pareto curves to evaluate the policies.
Impact of using a histogram. We now start to evaluate our
hybrid policy with the impact of the histogram and its range.
The green markers in Figure 15 show the cold start percentage
and wasted memory time of our histogram for various ranges.
The figure shows how our policy reduces the cold starts sig-
nificantly with lower memory waste. In fact, the 10-minute
fixed keep-alive policy involves ∼2.5x more cold starts at the
75th-percentile while using the same amount of memory as
our histogram with a range of 4 hours. From a different per-
spective, the fixed 2-hour keep-alive policy provides roughly
the same percentage of cold starts as the 4-hour histogram
range, but consumes about 50% more resources. Overall, the
hybrid policies form a parallel, more optimal Pareto frontier
(green curve) than the fixed policies (red curve).
Impact of the histogram cutoff percentiles. Our policy uses
two cutoff percentiles to exclude outliers in the head and tail
of the IT distribution. Figure 16 shows the sensitivity study
that we used to determine suitable cutoff values. The figure
shows that, by setting the head and tail cutoffs to the 5th- and
99th-percentiles of the IT distribution (labeled Hybrid[5,99]

in the figure), the cold start percentage does not degrade no-
ticeably whereas the wasted memory time goes down by 15%,
compared to the case with no cutoff (Hybrid[0,100]).

Impact of unloading and pre-warming. Complementing
our adaptive keep-alive with pre-warming allows unloading
of an application right after execution and pre-warming right
before the next invocation. This reduces the wasted memory
time of application images. Figure 17 shows this, where using
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Figure 16: Wasted memory time can be significantly reduced
by excluding outliers from the IT distribution.
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Figure 17: Pre-warming reduces the wasted memory time
significantly. The cost is slight increase in cold starts.
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Figure 18: Trade-off between cold starts and memory wasted,
as a function of the CV threshold, using a 4-hour range.

similar keep-alive (KA) configurations with and without pre-
warming (PW) has significantly different wasted memory
time. The cost, however, is adding a small number of cold
starts from unexpected invocations. We can control this trade-
off by adjusting the histogram head cutoff percentile.
Impact of checking the histogram representativeness. Our
policy checks whether the histogram is representative before
using it. If the histogram is not representative (i.e., the CV
of its bin counts is lower than a threshold), it uses a standard
keep-alive approach where applications stay loaded for the
same length as the histogram range. We study the impact of
different CV thresholds in Figure 18. The figure shows the ap-
plication cold start distributions (left) and the Pareto frontier
(right). We see significant gains using a small CV threshold
larger than 0. We opt for CV=2 as our default threshold. In-
creasing the CV further has negligible cold start reduction
with higher resource costs.
Impact of using time-series analysis. Another feature of
our hybrid policy is to use ARIMA modeling for applications
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Figure 19: Percentage of applications that always experience
cold starts, as a function of policy.

that have many ITs outside the range of the histogram. To
evaluate its impact, we now focus on the percentage of ap-
plications that show 100% cold starts. Figure 19 shows this
percentage when using (1) the fixed keep-alive policy, (2) the
hybrid policy without ARIMA, and (3) the full hybrid policy
(including ARIMA). All of them use 4 hours for the fixed
keep-alive and the histogram range. During the week-long
simulation window, 0.64% of invocations were handled by
ARIMA, and 9.3% of applications used ARIMA at least once.
Using ARIMA reduces the percentage of applications that
experience 100% cold starts by about 50%, i.e. from 10.5% to
5.2% of all applications. A significant portion of these applica-
tions have only one invocation during the entire week and no
predictive model can help them. Excluding these applications,
the same reduction becomes 75%, i.e. from 6.9% to 1.7% of
all applications. This shows that ARIMA provides benefits
for applications that cannot benefit from a fixed keep-alive or
a histogram-based policy.
Summary. Our hybrid policy can reduce the number of cold
starts significantly while minimizing the memory cost. We
achieve these positive results despite having deliberately de-
signed our policy for simplicity and practicality: (1) histogram
bins have a resolution of 1-minute, (2) histograms have a max-
imum range, (3) they do not require any pre-processing or
complicated model updates, and (4) when the histogram does
not work well, we resort to simple and effective alternatives.

5.3 Experimental results

We ran two experiments with 68 randomly selected mid-range
popularity applications from our workload on our 19-VM
OpenWhisk deployment: one experiment with the default 10-
minute fixed keep-alive policy of OpenWhisk, and another
with our hybrid policy and a 4-hour histogram range. Each
experiment ran for 8 hours. During the 8-hour period, there are
a total of 12,383 function invocations. We use FaaSProfiler [1,
38] to automate trace replay and result analysis.

Figure 20 compares the cold start behavior of the hybrid
and 10-minute fixed keep-alive policies. The significant cold
start reductions follow the same trend as our simulations

(left graph of Figure 16). On average and across the 18 In-
voker VMs, the hybrid policy reduced memory consumption
of worker containers by 15.6%, which is also consistent with

our simulation results (right graph of Figure 16). Moreover,
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Figure 20: Cold start behavior of fixed keep-alive and hybrid
policies in OpenWhisk.

the hybrid policy reduced the average and 99-percentile func-
tion execution time 32.5% and 82.4%, respectively. This is
due to a secondary effect in OpenWhisk, where the language
runtime bootstrap time is eliminated for warm containers.
Policy overhead. We measure the (1) additional latency in-
duced by our implementation and (2) the impact of our policy
on the scalability of the OpenWhisk controller. The Scala
code that implements our policy in the Controller adds an av-
erage of only 835.7µs (σ = 245.5µs) to the end-to-end latency.
This overhead is negligible compared to the existing latency of
OpenWhisk components: the (in-memory) language runtime
initiation takes O(10ms) and the container initiation takes
O(100ms) for cold containers [38]. For the uncommon cases
where ARIMA is required (0.7% of invocations), the initial
forecast involves building the model, which takes an aver-
age of 26.9ms, whereas subsequent forecasts take an average
of 5.3ms. Since ARIMA works for applications that would
normally experience cold starts, these overheads represent a
relatively small cost compared to the cold start overhead.

In terms of scalability, CPU utilization is the limiting fac-
tor for the Controller. Our policy adds only a 4-6% higher
utilization for a range of benchmarking request rates (10rps
to 300rps), compared to OpenWhisk’s default policy.

6 Production Implementation

We have implemented our policy in Azure Functions for
HTTP-triggered applications; its main elements will be rolling
out to production in stages starting this month. Here, we
overview the implementation.

Azure Functions has a controller that communicates with
function-execution workers through HTTP, and a database
for persisting system state. The controller gets asynchronous
updates from the workers at fixed intervals; we use these to
populate the histogram. We keep the histogram in memory
(bucket of 240 integers per application, or 960 bytes) and do
hourly backups to the database. We start a new histogram per
day in the database so we can track changes in application’s
invocation pattern, and remove histograms older than 2 weeks.
We can potentially use these daily histograms in a weighted
fashion to give more importance to recent records.
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When an application changes state from executing to idle,
we use the aggregated histogram to compute its pre-warm in-
terval and schedule an event for that time (minus 90 seconds).
Pre-warming loads function dependencies and performs JIT
where applicable. Some steps, like JIT of the function code,
happen when the actual invocation comes in as the function’s
code cannot be executed as part of warmup to preserve execu-
tion semantics. Each worker maintains the keep-alive duration
separately, depending on how long it has been idle for. We
make all policy decisions asynchronously, off the critical path
to minimize the latency impact on the invocation. This in-
cludes updating the in-memory histogram, backing up the
histogram to the database, scheduling pre-warming events,
and controlling the workers’ keep alive intervals.

7 Related Work

There is a fast-increasing number of studies on different as-
pects of serverless computing. The most relevant for our paper
are those that characterize FaaS platforms and applications,
and those that propose and optimize FaaS serving systems.
FaaS characterization. A few studies [7,15,24–26,44] have
characterized the main commercial FaaS providers, but only

from the perspective of external users. They typically reverse-
engineer aspects of FaaS offerings, by running benchmark
functions to collect various externally visible metrics. Our
characterization is orthogonal to these works, as we provide
a longitudinal characterization of the entire workload of a
large cloud provider from the provider’s perspective. Our

characterization is the first of its kind.

Another class of studies looks at the ways developers are
using FaaS offerings, by looking at public application reposi-
tories [41]. While valuable, this approach cannot offer insights
on the aggregate workload seen by a provider.
Optimizing FaaS serving. Another set of relevant work con-
siders optimizing different aspects of FaaS systems. Van Eyk
et al. [42] identify performance-related challenges, including
scheduling policies that minimize cold starts. They also iden-
tify the lack of execution traces from real FaaS platforms as a
major obstacle to addressing the challenges they identified.

For optimizing each cold start, Mohan et al. [32] find that
pre-allocating virtual network interfaces that are later bound
to new function containers can significantly reduce cold start
times. SOCK [33] proposes to optimize the loading of Python
functions in OpenLambda by smart caching of sets of libraries,
and by using lightweight isolation mechanisms for functions.
SAND [3] uses application-level sandboxing to prevent the
cold start latency for subsequent function invocations within
an application. Azure Functions warms all functions within
an application together; thus this was not a concern for us. Re-
playable Execution [43] proposes checkpointing and sharing
of memory among containers to speed up the startup times
of a JVM-based FaaS system. Kaffes et al. [22] propose a
centralized core-granular scheduler. Our work on reducing

the number of cold starts and resource usage by predicting

function invocations is orthogonal to these improvements.

Other studies also use prediction to optimize different as-
pects. Work in [19, 20] proposes a policy for deciding on
function multi-tenancy, based on a predictive model of re-
source demands of each function. Without discussing design
details, EMARS [37] proposes using predictive modeling for
allocation of memory to serverless functions. Kesidis [23]
proposes to use the prediction of the resource demands of
functions to enable the provider to overbook functions on
containers. In contrast, we track invocation patterns and use
this knowledge to reduce cold starts and memory waste.
Cache management. Finally, one might think that the prob-
lem of managing cold starts is similar to managing caches
of variable-sized objects, such as Web page caches and oth-
ers [4, 8, 36]. However, there are two fundamental differences.
First, FaaS frameworks are often implemented on top of ser-
vices that charge by the time resources are allocated (e.g.,
each application is packaged as a container and deployed to a
container service). Thus, cold start policies proactively unload
applications/functions from memory, instead of waiting for
other applications/functions to need the space. Our policy is
closest to a class of TTL-based caches where new accesses
reset the TTL [9, 10]. These works did not consider tem-
poral prefetching, the equivalent of our pre-warming. Other
caching work did consider it, but with capacity-based replace-
ments [46]. Second, most caching algorithms to date have
focused on aggregate performance metrics [13, 14], such as
the weighted sum or average of per-object miss ratios. In con-
trast, we tailor our cold start management to each application
to maximize individual customer satisfaction.

8 Conclusion

In this paper, we characterized the entire production FaaS
workload of Azure Functions. The characterization unearthed
several key observations for cold start and resource manage-
ment. Based on them, we proposed a practical policy for
reducing the number of cold starts at a low resource cost. We
evaluated the policy using both simulations and a real imple-
mentation, and real workload traces. Our results showed that
the policy can achieve the same number of cold starts at much
lower resource cost, or keep the same resource cost but reduce
the number of cold starts significantly. Finally, we overviewed
our policy’s implementation in Azure Functions. We released
sanitized traces from our characterization data at [31].
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