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Abstract

As one of the fundamental infrastructures for cloud

computing, data center networks (DCN) have recently

been studied extensively. We currently use pure

software-based systems, FPGA based platforms, e.g.,

NetFPGA, or OpenFlow switches, to implement and

evaluate various DCN designs including topology de-

sign, control plane and routing, and congestion control.

However, software-based approaches suffer from high

CPU overhead and processing latency; FPGA based plat-

forms are difficult to program and incur high cost; and

OpenFlow focuses on control plane functions at present.

In this paper, we design a ServerSwitch to address the

above problems. ServerSwitch is motivated by the ob-

servation that commodity Ethernet switching chips are

becoming programmable and that the PCI-E interface

provides high throughput and low latency between the

server CPU and I/O subsystem. ServerSwitch uses a

commodity switching chip for various customized packet

forwarding, and leverages the server CPU for control and

data plane packet processing, due to the low latency and

high throughput between the switching chip and server

CPU.

We have built our ServerSwitch at low cost. Our ex-

periments demonstrate that ServerSwitch is fully pro-

grammable and achieves high performance. Specifically,

we have implemented various forwarding schemes in-

cluding source routing in hardware. Our in-network

caching experiment showed high throughput and flexi-

ble data processing. Our QCN (Quantized Congestion

Notification) implementation further demonstrated that

ServerSwitch can react to network congestions in 23us.
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†This work was performed when Zhiqiang Zhou was a visiting stu-

dent at Microsoft Research Asia.

1 Introduction

Data centers have been built around the world for var-

ious cloud computing services. Servers in data centers

are interconnected using data center networks. A large

data center network may connect hundreds of thousands

of servers. Due to the rise of cloud computing, data cen-

ter networking (DCN) is becoming an important area of

research. Many aspects of DCN, including topology de-

sign and routing [15, 5, 13, 11, 22], flow scheduling and

congestion control [7, 6], virtualization [14], application

support [26, 4], have been studied.

Since DCN is a relatively new exploration area, many

of the designs (e.g., [15, 5, 13, 22, 7, 14, 4]) have de-

parted from the traditional Ethernet/IP/TCP based packet

format, Internet-based single path routing (e.g., OSPF),

and TCP style congestion control. For example, Port-

land performs longest prefix matching (LPM) on destina-

tion MAC address, BCube advocates source routing, and

QCN (Quantized Congestion Notification) [7] uses rate-

based congestion control. Current Ethernet switches and

IP routers therefore cannot be used to implement these

designs.

To implement these designs, rich programmability

is required. There are approaches that provide this

programmability: pure software-based [17, 10, 16] or

FPGA-based systems (e.g., NetFPGA [23]). Software-

based systems can provide full programmability and as

recent progress [10, 16] has shown, may provide a rea-

sonable packet forwarding rate. But their forwarding rate

is still not comparable to commodity switching ASICs

(application specific integrated circuit), and the batch

processing used in their optimizations introduces high

latency which is critical for various control plane func-

tions such as signaling and congestion control [13, 22, 7].

Furthermore, the packet forwarding logics in DCN (e.g.,

[15, 13, 22, 14]) are generally simple and hence are

better implemented in silicon for cost and power sav-

ings. FPGA-based systems are fully programmable. But



the programmability is provided by hardware description

languages such as Verilog, which are not as easy to learn

and use as higher-level programming languages such as

C/C++. Furthermore, FPGAs are expensive and are diffi-

cult to use in large volumes in data center environments.

In this paper, we design a ServerSwitch platform,

which provides easy-to-use programmability, low la-

tency and high throughput, and low cost. ServerSwitch

is based on two observations as follows. First, we ob-

serve that commodity switching chips are becoming pro-

grammable. Though the programmability is not compa-

rable to general-purpose CPUs, it is powerful enough to

implement various packet forwarding schemes with dif-

ferent packet formats. Second, current standard PCI-E

interface provides microsecond level latency and tens of

Gb/s throughput between the I/O subsystem and server

CPU. ServerSwitch is then a commodity server plus a

commodity, programmable switching chip. These two

components are connected via the PCI-E interface.

We have designed and implemented ServerSwitch. We

have built a ServerSwitch card, which uses a merchan-

dise gigabit Broadcom switching chip. The card con-

nects to a commodity server using a PCI-E X4 interface.

Each ServerSwitch card costs less than 400$ when man-

ufactured in 100 pieces. We also have implemented a

software stack, which manages the card, and provides

support for control and data plane packet processing. We

evaluated ServerSwitch using micro benchmarks and real

DCN designs. We built a ServerSwitch based, 16-server

BCube [13] testbed. We compared the performance of

software-based packet forwarding and our ServerSwitch

based forwarding. The results showed that ServerSwitch

achieves high performance and zero CPU overhead for

packet forwarding. We also implemented a QCN con-

gestion control [7] using ServerSwitch. The experi-

ments showed stable queue dynamics and that Server-

Switch can react to congestion in 23us.

ServerSwitch explores the design space of combin-

ing a high performance ASIC switching chip with lim-

ited programmability with a fully programmable mul-

ticore commodity server. Our key findings are as fol-

lows: 1) ServerSwitch shows that various packet for-

warding schemes including source routing can be of-

floaded to the ASIC switching chip, hence resulting in

small forwarding latency and zero CPU overhead. 2)

With a low latency PCI-E interface, we can implement

latency sensitive schemes such as QCN congestion con-

trol, using server CPU with a pure software approach.

3) The rich programmability and high performance pro-

vided by ServerSwitch can further enable new DCN ser-

vices that need in-network data processing such as in-

network caching [4].

The rest of the paper is organized as follows. We elab-

orate the design goals in § 2. We then present the ar-

chitecture of ServerSwitch and our design choices in § 3.

We illustrate the software, hardware, and API implemen-

tations in § 4. § 5 discusses how we use ServerSwitch to

implement two real DCN designs, § 6 evaluates the plat-

form with micro benchmarks and real DCN implemen-

tations. We discuss ServerSwitch limitations and 10G

ServerSwitch in § 7. Finally, we present related work in

§ 8 and conclude in § 9.

2 Design Goals

As we have discussed in § 1, the goal of this paper is

to design and implement a programmable and high per-

formance DCN platform for existing and future DCN

designs. Specifically, we have following design goals.

First, on the data plane, the platform should provide a

packet forwarding engine that is both programmable and

achieves high-performance. Second, the platform needs

to support new routing and signaling, flow/congestion

control designs in the control plane. Third, the platform

enables new DCN services (e.g., in-network caching) by

providing advanced in-network packet processing. To

achieve these design goals, the platform needs to provide

flexible programmability and high performance in both

the data and control planes. It is highly desirable that the

platform be easy to use and implemented in pure com-

modity and low cost silicon, which will ease the adoption

of this platform in a real world product environment. We

elaborate on these goals in detail in what follows.

Programmable packet forwarding engine. Packet

forwarding is the basic service provided by a switch or

router. Forwarding rate (packet per second, or PPS) is

one of the most important metrics for network device

evaluation. Current Ethernet switches and IP routers can

offer line-rate forwarding for various packet sizes. How-

ever, recent DCN designs require a packet forwarding en-

gine that goes beyond traditional destination MAC or IP

address based forwarding. Many new DCN designs em-

bed network topology information into server addresses

and leverage this topology information for packet for-

warding and routing. For example, PortLand [22] codes

its fat-tree topology information into device MAC ad-

dresses and uses Longest Prefix Matching (LPM) over its

PMAC (physical MAC) for packet forwarding. BCube

uses source routing and introduces an NHI (Next Hop

Index, §7.1 of [13]) to reduce routing path length by

leveraging BCube structural information. We expect

that more DCN architectures and topologies will appear

in the near future. These new designs call for a pro-

grammable packet forwarding engine which can handle

various packet forwarding schemes and packet formats.

New routing and signaling, flow/congestion control

support. Besides the packet forwarding functions in the

data plane, new DCN designs also introduce new control
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and signaling protocols in the control plane. For exam-

ple, to support the new addressing scheme, switches in

PortLand need to intercept the ARP packets, and redi-

rect them to a Fabric Manager, which then replies with

the PMAC of the destination server. BCube uses adap-

tive routing. When a source server needs to communi-

cate with a destination server, the source server sends

probing packets to probe the available bandwidth of mul-

tiple edge-disjoint paths. It then selects the path with

the highest available bandwidth. The recent proposed

QCN switches sample the incoming packets and send

back queue and congestion information to the source

servers. The source servers then react to the conges-

tion information by increasing or decreasing the sending

rate. All these functionalities require the switches to be

able to filter and process these new control plane mes-

sages. Control plane signaling is time critical and sen-

sitive to latency. Hence switches have to process these

control plane messages in real time. Note that current

switches/routers do offer the ability to process the con-

trol plane messages with their embedded CPUs. How-

ever, their CPUs mainly focus on management functions

and are generally lack of the ability to process packets

with high throughput and low latency.

New DCN service support by enabling in-network

packet processing. Unlike the Internet which consists of

many ISPs owned by different organizations, data centers

are owned and administrated by a single operator. Hence

we expect that technology innovations will be adopted

faster in the data center environment. One such inno-

vation is to introduce more intelligence into data cen-

ter networks by enabling in-network traffic processing.

For example, CamCube [4] proposed a cache service by

introducing packet filtering, processing, and caching in

the network. We can also introduce switch-assisted reli-

able multicast [18, 8] in DCN, as discussed in [26]. For

an in-network packet processing based DCN service, we

need the programmability such as arbitrary packet mod-

ification, processing and caching, which is much more

than the programmability provided by the programmable

packet forwarding engine in our first design goal. More

importantly, we need low overhead, line-rate data pro-

cessing, which may reach several to tens of Gb/s.

The above design goals call for a platform which is

programmable for both data and control planes, and it

needs to achieve high throughput and low processing

latency. Besides the programmability and high perfor-

mance design goals, we have two additional require-

ments (or constraints) from the real world. First, the

programmability we provide should be easy to use. Sec-

ond, it is highly desirable that the platform is built from

(inexpensive) commodity components (e.g., merchan-

dise chips). We believe that a platform based on com-

modity components has a pricing advantage over non-

commodity, expensive ones. The easy-to-program re-

quirement ensures the platform is easy to use, and the

commodity constraint ensures the platform is amenable

to wide adoption.

Our study revealed that none of the existing plat-

forms meet all our design goals and the easy-to-program

and commodity constraints. The pure software based

approaches, e.g., Click, have full and easy-to-use pro-

grammability, but cannot provide low latency packet pro-

cessing and high packet forwarding rate. FPGA-based

systems, e.g., NetFPGA, are not as easy to program as

the commodity servers, and their prices are generally

high. For example, the price of Virtex-II Pro 50 used

in NetFPGA is 1,180$ per chip for 100+ chip quantum

listed on the Xilinx website. Openflow switches provide

certain programmability for both forwarding and control

functions. But due to the separation of switches and the

controller, it is unclear how Openflow can be extended to

support congestion control and in-network data process-

ing.

We design ServerSwitch to meet the three design goals

and the two practical constraints. ServerSwitch has a

hardware part and a software part. The hardware part

is a merchandise switching chip based NIC plus a com-

modity server. The ServerSwitch software manages the

hardware and provides APIs for developers to program

and control ServerSwitch. In the next section, we will de-

scribe the architecture of ServerSwitch, and how Server-

Switch meets the design goals and constraints.

3 Design

3.1 ServerSwitch Architecture

Our ServerSwitch architecture is influenced by progress

and trends in ASIC switching chip and server tech-

nologies. First, though commodity switches are black

boxes to their users, the switching chips inside (e.g.,

from Broadcom, Fulcrum, and Marvell) are becoming in-

creasingly programmable. They generally provide exact

matching (EM) based on MAC addresses or MPLS tags,

provide longest prefix matching (LPM) based on IP ad-

dresses, and have a TCAM (ternary content-addressable

memory) table. Using this TCAM table, they can pro-

vide arbitrary field matching. Of course, the width of the

arbitrary field is limited by the hardware, but is gener-

ally large enough for our purpose. For example, Broad-

com Enduro series chips have a maximum width of 32

bytes, and Fulcrum FM3000 can match up to 78 bytes

in the packet header [3]. Based on the matching re-

sult, the matched packets can then be programmed to

be forwarded, discarded, duplicated (e.g., for multicast

purpose), or mirrored. Though the programmability is

limited, we will show later that it is already enough for
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Figure 1: ServerSwitch architecture.

all packet forwarding functions in existing, and arguably,

many future DCN designs.

Second, commodity CPU (e.g., x86 and X64 CPUs)

based servers now have a high-speed, low latency inter-

face, i.e., PCI-E, to connect to I/O subsystems such as

a network interface card (NIC). Even PCI-E 1.0 X4 can

provide 20Gbps bidirectional throughput and microsec-

ond latency between the server CPU and NIC. Moreover,

commodity servers are arguably the best programmable

devices we currently have. It is very easy to write kernel

drivers and user applications for packet processing with

various development tools (e.g., C/C++).

ServerSwitch then takes advantage of both commod-

ity servers and merchandise switching chips to meet our

design goals. Fig. 1 shows its architecture. The hard-

ware part is an ASIC switching chip based NIC and a

commodity server. The NIC and server are connected by

PCI-E. From the figure, we can see there are two PCI-E

channels. One is for the server to control and program

the switching chip, the other is for data packet exchange

between the server and switching chip.

The software part has a kernel and an application

component, respectively. The kernel component has

a switching chip (SC) driver to manage the commod-

ity switching chip and an NIC driver for the NICs.

The central part of the kernel component is a Server-

Switch driver, which sends and receives control mes-

sages and data packets through the SC and NIC drivers.

The ServerSwitch driver is the place for various control

messages, routing, congestion control, and various in-

network packet processing. The application component

is for developers. Developers use the provided APIs to

interface with the ServerSwitch driver, and to program

and control the switching chip.

Our ServerSwitch nicely fulfills all our design goals

and meets the easy-to-program and commodity con-

straints. The switching chip provides a programmable

packet forwarding engine which can perform packet

matching based on flexible packet fields, and achieve

full line rate forwarding even for small packet sizes.

The ServerSwitch driver together with the PCI-E inter-

face achieves low latency communication between the

switching chip and server CPU. Hence various rout-

ing, signaling and flow/congestion controls can be well

supported. Furthermore, the switch chip can be pro-

grammed to select specific packets into the server CPU

for advanced processing (such as in-network caching)

with high throughput. The commodity constraint is di-

rectly met since we use only commodity, inexpensive

components in ServerSwitch. ServerSwitch is easy to

use since all programming is performed using standard

C/C++. When a developer introduces a new DCN de-

sign, he or she needs only to write an application to pro-

gram the switching chip, and add any needed functions

in the ServerSwitch driver.

The ability of our ServerSwitch is constrained by the

abilities of the switching chip, the PCI-E interface, and

the server system. For example, we may not be able to

handle packet fields which are beyond the TCAM width,

and we cannot further cut the latency between the switch-

ing chip and server CPU. In practice, however, we are

still able to meet our design goals with these constraints.

In the rest of this section, we will introduce the pro-

grammable packet forwarding engine, the software, and

the APIs in detail.

3.2 ASIC-based Programmable Packet

Forwarding Engine

In this section, we discuss how existing Ethernet switch-

ing chips can be programmed to support various packet

forwarding schemes.

There are three commonly used forwarding schemes

in current DCN designs, i.e., Destination Address (DA)

based, tag-based, and Source Routing (SR) based for-

warding. DA-based forwarding is widely adopted by

Ethernet and IP networks. Tag-based forwarding decou-

ples routing from forwarding which makes traffic engi-

neering easier. SR-based forwarding gives the source

server ultimate control of the forwarding path and sim-

plifies the functions in forwarding devices. Table 1 sum-

marizes the forwarding primitives and existing DCN de-

signs for these three forwarding schemes. There are

three basic primitives to forward a packet, i.e., lookup

key extraction, key matching, and header modification.

Note that the matching criteria is independent of the for-

warding schemes, i.e., a forwarding scheme can use any

matching criteria. In practice, two commonly used cri-
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Scheme
Primitives DCN

DesignExtract Match Modify

DA-based Direct Any No
Portland

DCell

Tag-based Direct Any

SWAP/

POP/

PUSH

-

SR-based

Direct Any POP VL2

Indirect Any
Change

Index
BCube

Table 1: Forwarding schemes and primitives.

teria are EM and LPM. Next, we describe the three for-

warding schemes in detail. We start from SR-based for-

warding.

3.2.1 Source Routing based Forwarding using

TCAM

For SR-based forwarding, there are two approaches de-

pending on how the lookup key is extracted: indexed and

non-indexed SR-based forwarding. In both approaches,

the source fills a series of intermediate addresses (IA) in

the packet header to define the packet forwarding path.

For the non-Indexed Source Routing (nISR), the for-

warding engine always uses the first IA for table lookup

and pops it before sending the packet. For Indexed

Source Routing (ISR), there is an index i to denote the

current hop. The engine first reads the index, then ex-

tracts IAi based on the index, and finally updates the in-

dex before sending the packet. We focus on ISR support

in the rest of this subsection. We will discuss nISR sup-

port in the next subsection since it can be implemented

as a form of tag-based forwarding.

ISR-based forwarding uses two steps for lookup key

extraction. It first gets the index from a fixed location,

and then extracts the key pointed by the index. However,

commodity switching chips rarely have the logic to per-

form this two-step indirect lookup key extraction. In this

paper, we design a novel solution by leveraging TCAM

and turning this two-step key extraction into a single step

key extraction. The TCAM table has many entries and

each entry has a value and a mask. The mask is to set the

masking bits (‘care’ and ‘do-not-care’ bits) for the value.

In our design, for each incoming packet, the forward

engine compares its index field and all IA fields against

the TCAM table. The TCAM table is set up as follows.

For each TCAM entry, the index field (i) and the IAi field

pointed by the index are ‘care’ fields. All other IA fields

are ‘do-not-care’ fields. Thus, a TCAM entry can simul-

taneously match both the index and the corresponding

IAi field. As both index and IAi may vary, we enumerate

all the possible combinations of index and IA values in

Index IA1 IA2 IA3

1 1

1 2

2 1

2 2

3 1

3 2

1

1

1

2

2

2

Output 

Port
TCAM Table

2 1 2 1

Incoming packet

Index IA1 IA2 IA3

Figure 2: Support indexed source routing using TCAM.

the TCAM table. When a packet comes in, it will match

one and only one TCAM entry. The action of that entry

determines the operation on that matched packet.

Fig. 2 illustrates how the procedure works. The in-

coming packet has one index field and three IA fields.

IA2 is the lookup key for this hop. In the TCAM table,

the white fields are the ‘care’ fields and the gray fields

are the ‘do-not-care’ fields. Suppose there are two pos-

sible IA addresses and the maximum value of the index

is three, there are 6 entries in the TCAM table. For this

incoming packet, it matches the 5th entry where Index=2

and IA2 = 2. The chip then directs the packet to output

port 2. In § 5.1, we will describe the exact packet format

based on our ServerSwitch.

This design makes a trade-off between the requirement

of extra ASIC logic and the TCAM space. When there

are n different IA values, the two-step indirect match-

ing method uses n lookup entries, while this one-step

method uses n×d entries where d is the maximum value

of the index. d is always less than or equal to the network

diameter. Modern switching chips have at least thou-

sands of TCAM entries, so this one-step method works

well in the DCN environment. For example, consider

a medium sized DCN such as a three-level fat-tree in

Portland. When using 48-port switches, there are 27,648

hosts. We can use 48 IA values to differentiate these 48

next hop ports. Since the diameter of the network is 6,

the number of TCAM entries is 48 × 6 = 288, which is

much smaller than the TCAM table size.

3.2.2 Destination and Tag-based Forwarding

As for the DA-based forwarding, the position of the

lookup key is fixed in the packet header and the forward-

ing engine reads the key directly from the packet header.

No lookup key modification is needed since the destina-

tion address is a globally unique id. However, the des-

tination address can be placed anywhere in the packet

header, so the engine must be able to perform matching

on arbitrary fields. For example, Portland requires the

switch to perform LPM on the destination MAC address,
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whereas DCell uses a self-defined header.

Tag-based routing also uses direct key extraction, but

the tag needs to be modified on a per-hop basis since

the tags have only local meaning. To support this

routing scheme, the forwarding engine must support

SWAP/POP/PUSH operations on tags.

Modern merchandise switching chips generally have

a programmable parser, which can be used to extract ar-

bitrary fields. The TCAM matching module is flexible

enough to implement EM, LPM [25], and range match-

ing. Hence, DA-based forwarding can be well supported.

For tag-based forwarding, many commodity switching

chips for Metro Ethernet Network already support MPLS

(multiple protocol label switching), which is the repre-

sentative tag-based forwarding technology. Those chips

support POP/PUSH/SWAP operations on the MPLS la-

bels in the packet header. Hence we can support tag-

based forwarding by selecting a switching chip with

MPLS support. Further, by using tag stacking and POP

operations, we can also support nISR-based forwarding.

In such nISR design, the source fills a stack of tags to de-

note the routing path and the intermediate switches use

the outermost tag for table lookup and then pops the tag

before forwarding the packet.

3.3 Server Software

3.3.1 Kernel Components

The ServerSwitch driver is the central hub that receives

all incoming traffic from the underlying ServerSwitch

card. The driver can process them itself or it can de-

liver them to the user space for further processing. Pro-

cessing them in the driver gives higher performance but

requires more effort to program and debug. Meanwhile,

processing these packets in user space is easy for devel-

opment but scarifies performance. Instead of making a

choice on behalf of users, ServerSwitch allows users to

decide which one to use. For low rate control plane traf-

fic where processing performance is not a major concern,

e.g., ARP packets, ServerSwitch can deliver them to user

space for applications to process them. Since the ap-

plications need to send control plane traffic too, Server-

Switch provides APIs to receive packets from user-space

applications to be sent down to the NIC chips. For those

control plane packets with low latency requirement and

high speed in-network processing traffic whose perfor-

mance is a major concern, e.g., QCN queue queries or

data cache traffic, we can process them in the Server-

Switch driver.

The SC and NIC drivers both act as the data channels

between the switching chip and the ServerSwitch driver.

They receive packets from the device and deliver them to

the ServerSwitch driver, and vice versa. The SC driver

also provides an interface for the user library and the

ServerSwitch to manipulate its registers directly, so both

applications and the ServerSwitch driver can control the

switching chip directly.

3.3.2 APIs

We design a set of APIs to control the switching chip and

send/receive packets. The APIs include five categories as

follows.

1. Set User Defined Lookup Key (UDLK): This API

configures the programmable parser in the switching

chip by setting the i-th UDLK. In this API, the UDLK

can be fields from the packet header as well as meta-

data, e.g., the incoming port of a packet. We use the most

generic form to define packet header fields, i.e., the byte

position of the desired fields. In the following example,

we set the destination MAC address (6 bytes, B0-5) as

the first UDLK. We can also combine meta-data (e.g.,

incoming port) and non-consecutive byte range to define

a UDLK, as shown in the second statement which is used

for BCube (§ 5.1).

API:

SetUDLK(int i, UDLK udlk)

Example:

SetUDLK(1, (B0-5))

SetUDLK(2, (INPORT, B30-33, B42-45))

2. Set Lookup Table: There are several lookup tables

in the switching chip, a general purpose TCAM table,

and protocol specific lookup tables for Ethernet, IP, and

MPLS. This API configures different lookup tables de-

noted by type, and sets the value, mask and action for

the i-th entry. The mask is NULL when the lookup ta-

ble is an EM table. The action is a structure that defines

the actions to be taken for the matched packets, e.g., di-

recting the packets to a specified output port, performing

pre-defined header modifications, etc. For example, for

MPLS the modification actions can be Swap/Pop/Push.

The iudlk is the index of UDLK to be compared. iudlk is

ignored for the tables that do not support UDLK.

In the following example, the statement sets the first

TCAM entry and compares the destination MAC address

(the first UDLK) with the value field (000001020001,

i.e., 00:00:01:02:00:01) using mask (FFFFFF000000).

This statement is used to perform LPM on dest MAC for

PortLand. Consequently, all matching packets are for-

warded to the third virtual interface.

API:

SetLookupTable(int type, int i,

int iudlk, char *value, char* mask,

ACTION *action)

Example:

SetLookupTable(TCAM, 1,

1, "000001020001", "FFFFFF000000",

{act=REDIRECT_VIF, vif=3})
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3. Set Virtual Interface Table: This API sets up the i-

th virtual interface entry which contains destination and

source MAC addresses as well as the output port. The

MAC addresses are used to replace the original MACs in

the packet when they are not NULL.

For example, the following command sets up the third

virtual interface to deliver packets to output port 2.

Meanwhile, the destination MAC is changed to the given

value (001F29D417E8) accordingly. The edge switches

in Portland need such functionality to change PMAC

back to the original MAC (§3.2 in [22]).

API:

SetVIfTable(int i, char *dmac,

char *smac, int oport)

Example:

SetVIfTable(3, "001F29D417E8", NULL, 2)

4. Read/Write Registers: There are many statistic reg-

isters in switching chip, e.g., queue length and packet

counters, and registers to configure the behaviors of the

switching chip, e.g., enable/disable L3 processing. This

API is to read and write those registers (specified by reg-

name). As an example, the following command returns

the queue length (in bytes) of output port 0.

API:

int ReadRegister (int regname)

int WriteRegister(int regname, int value)

Example:

ReadRegister(OUTPUT_QUEUE_BYTES_PORT0)

5. Send/Receive Packet: There are multiple NICs for

sending and receiving packets. We can use the first API

to send packet to a specific NIC port (oport). When we

receive a packet, the second API also provides the input

NIC port (iport) for the packet.

API:

int SendPacket(char *pkt, int oport)

int RecvPacket(char *pkt, int *iport)

4 Implementation

4.1 ServerSwitch Card

Fig. 3 shows the ServerSwitch card we designed. All

chips used on the card are merchandise ASICs. The

Broadcom switching chip BCM56338 has 8 Gigabit Eth-

ernet (GE) ports and two 10GE ports [1]. Four of the

GE ports connect externally and the other four GE ports

connect to two dual GE port Intel 82576EB NIC chips.

The two NIC chips are used to carry a maximum of

4Gb/s traffic between the switching chip and the server

since the bandwidth of the PCI-E interface on 56338 is

only 2Gb/s. The three chips connect to the server via

Intel

82576EB

BCM56338

PEX8617

BCM54664x1GE 2x10GE

Figure 3: ServerSwitch card.

a PCI-E switch PLX PEX8617. The effective band-

width from the PEX8617 to BCM56338, the two NIC

chips and the server are 2, 8, 8 and 8Gb/s (single direc-

tion). Since the maximum inbound or outbound traffic is

4Gb/s, PCI-E is not the bottleneck. The two 10GE XAUI

ports are designed for interconnecting multiple Server-

Switch cards in one server chassis to create a larger non-

blocking switching fabric with more ports. Each Server-

Switch card costs less than 400$ when manufactured in

100 pieces. We expect the price can be cut to 200$ for

a quantity of 10K. The power consumption of Server-

Switch is 15.4W when all 8 GE ports are idle, and is

15.7W when all of them carry full speed traffic.

Fig. 4 shows the packet processing pipeline of the

switching chip, which has three stages. First, when the

packets go into the switching chip, they are directed to

a programmable parser and a classifier. The classifier

then directs the packets to one of the protocol specific

header parsers. The Ethernet parser extracts the desti-

nation MAC address (DMAC), the IP parser extracts the

destination IP address (DIP), the MPLS parser extracts

the MPLS label and the Prog parser can generate two

different UDLKs. Each UDLK can contain any aligned

four 4-byte blocks from the first 128 bytes of the packet,

and some meta-data of the packet.

Next, the DMAC is sent to the EM(MAC) matching

module, the DIP to both the LPM and EM(IP) matching

modules, the MPLS label to the EM(MPLS) module, and

the UDLK to the TCAM. Each TCAM entry can select

one of the two UDLKs to match. The matchings are per-

formed in parallel. The three matching modules (EM,

LPM, TCAM) result in an index into the interface table,

which contains the output port, destination and source

MAC. When multiple lookup modules match, the prior-

ity of their results follows TCAM > EM > LPM.

Finally, the packet header is modified by the L3 and L2

modifiers accordingly. The L3 modifier changes the L3

header, e.g., IP TTL, IP checksum and MPLS label. The
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Figure 4: Packet processing pipeline in Broadcom

56338.

L2 modifier can use the MAC addresses in the interface

table to replace the original MAC addresses.

The size of EM tables for MAC, IPv4 and MPLS are

32K, 8K and 4K entries, respectively. The LPM for IPv4

and the TCAM table have 6144 and 2K entries, respec-

tively. The interface table has 4K entries. All these ta-

bles, the Prog Parser and the behaviors of the modifiers

are programmable.

4.2 Kernel Drivers

We have developed ServerSwitch kernel drivers for Win-

dows Server 2008 R2. As shown in Fig. 1, it has compo-

nents as follows.

Switching Chip Driver. We implemented a PCI-E

driver based on Broadcom’s Dev Kits. The driver has

2670 lines of C code. It allocates a DMA region and

maps the chip’s registers into memory address using

memory-mapped I/O (MMIO). The driver can deliver re-

ceived packets to the ServerSwitch driver, and send pack-

ets to hardware. The ServerSwitch driver and user library

can access the registers and thus control the switching

chip via this SC driver.

NIC Driver. We directly use the most recent Intel NIC

driver binaries.

ServerSwitch Driver. We implemented the Server-

Switch driver as a Windows NDIS MUX driver. It has

20719 lines of C code. The driver exports itself as a vir-

tual NIC. It binds the TCP/IP stack on its top and the In-

tel NIC driver and the SC driver at its bottom. The driver

uses IRP to send and receive packets from the user li-

brary. It can also deliver the packets to the TCP/IP stack.

The ServerSwitch driver provides a kernel framework for

developing various DCN designs.

4.3 User Library

The library is based on the Broadcom SDK. The SDK

has 3000K+ lines of C code and runs only on Linux and

Version HL Tos Total length

Identification Flags Fragment offset

TTL Protocol Header checksum

Source Address

Destination Address

NHA1 NHA2 NHA3 NHA4

NHA5 NHA6 NHA7 NHA8

PadBCube Protocol NH

B14-17

B18-21

B22-25

B26-29

B30-33

B34-37

B38-41

B42-45

Figure 5: BCube header on the ServerSwitch platform.

VxWorks. We ported this SDK to Subsystem for UNIX-

based Applications (SUA) on Windows Server 2008 [2].

At the bottom of the SDK, we added a library to interact

with our kernel driver. We then developed ServerSwitch

APIs over the SDK.

5 Building with the ServerSwitch Platform

In this section, we use ServerSwitch to implement sev-

eral representative DCN designs. First, we implement

BCube to illustrate how indexed source routing is sup-

ported in the switching chip of ServerSwitch. In our

BCube implementation, BCube packet forwarding is

purely carried out in hardware. Second, we show our

implementation of QCN congestion control. Our QCN

implementation demonstrates that our ServerSwitch can

generate low latency control messages using the server

CPU. We discuss how ServerSwitch can support other

DCN designs in the Appendix.

5.1 BCube

BCube is a server centric DCN architecture [13]. BCube

uses adaptive source routing. Source servers probe mul-

tiple paths and select the one with the highest available

bandwidth. BCube defines two types of control mes-

sages, for neighbor discovery (ND) and available band-

width query (ABQ) respectively. The first one is for

servers to maintain the forwarding table. The second one

is used to probe the available bandwidth of the multiple

parallel paths between the source and destination.

Our ServerSwitch is an ideal platform for implement-

ing BCube. For an intermediate server in BCube, our

ServerSwitch card can offload packet forwarding from

the server CPU. For source and destination servers, our

ServerSwitch card can achieve k:1 speedup using k NICs

connected by BCube topology. This is because in our

design the internal bandwidth between the server and the

NICs is equal to the external bandwidth provided by the

multiple NICs, as we show in Figure 1.

Fig. 5 shows the BCube header we use. It consists of

an IP header and a private header (gray fields). We use
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this private header to implement the BCube header. We

use an officially unassigned IP protocol number to dif-

ferentiate the packet from normal TCP/UDP packets. In

the private header, the BCube protocol is used to iden-

tify control plane messages. NH is the number of valid

NHA fields. It is used by a receiver to construct a reverse

path to the sender. There are 8 1-byte Next Hop Address

(NHA) fields, defined in BCube for indexed source rout-

ing. Different from NHA in the original BCube header

design, NHAs are filled in reverse order in our private

header. NHA1 is now the lookup key for the last hop.

This implementation adaption is to obtain an automatic

index counter by the hardware. We observe that for a

normal IP packet, its TTL is automatically decreased af-

ter one hop. Therefore, we overload the TTL field in the

IP header as the index field for NHAs. This is the reason

why we store NHAs in reverse order.

We implemented a BCube kernel module in the

ServerSwitch driver and a BCube agent at the user-level.

The kernel module implements data plane functionali-

ties. On the receiving direction, it delivers all received

control messages to the user-level agent for processing.

For any received data packets, it removes their BCube

headers and delivers them to the TCP/IP stack. On the

sending direction, it adds the BCube header for the pack-

ets from the TCP/IP stack and sends them to the NICs.

The BCube agent implements all control plane func-

tionalities. It first sets up the ISR-based forwarding rules

and the packet filter rules in the switching chip. Then,

it processes the control messages. When it receives

an ND message, it updates the interface table using

SetVIfTable. It periodically uses ReadRegister

to obtain traffic volume from the switching chip and cal-

culates the available bandwidth for each port. When it

receives an ABQ message, it encodes the available band-

width in the ABQ message, and sends it to the next hop.

Fig. 6 shows the procedure to initialize the switch-

ing chip for BCube, using the ServerSwitch API. Line

1 sets a 12-byte UDLK1 for source routing, including

TTL (B22) and the NHA fields (B34-41). Line 2 sets

another 9-byte UDLK2 for packet filtering, including in-

coming port number (INPORT), IP destination address

(B30-33) and BCube protocol (B42). The INPORT oc-

cupies 1-byte field. Lines 5-18 set the ISR-based TCAM

table. Since every NHA denotes a neighbor node with a

destination MAC and corresponding output port, line 8

sets up one interface entry for one NHA value. Lines 13-

16 sets up a TCAM entry to match the TTL and its corre-

sponding NHA in UDLK1. Since the switch discards the

IP packets whose TTL ≤ 1, we use TTL = 2 to denote

NHA1. Lines 21-38 filter packets to the server. Since the

switching chip has four external (0-3) and four internal

ports (4-7), we filter the traffic of an external port to a

corresponding internal port, i.e., port 0→4, 1→5, 2→6
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Figure 6: Pseudo TCAM setup code for BCube.

and 3→7. Line 23 sets action to direct the packets to

port 4 ∼ 7 respectively. Lines 27-29 match those packets

whose destination BCube address equals the local BCube

address in UDLK2. Lines 32-37 match BCube control

plane messages, i.e., ND and ABQ, in UDLK2. In our

switching chip, when a packet matches multiple TCAM

entries, the entry with the highest index will win. There-

fore, in our BCube implementation, entries for control

plane messages have higher priority than the other ones.

5.2 Quantized Congestion Control (QCN)

QCN is a rate-based congestion control algorithm for the

Ethernet environment [7]. The algorithm has two parts.

The Switch or Congestion Point (CP) adaptively samples

incoming packets and generates feedback messages ad-

dressed to the source of the sampled packets. The feed-

back message contains congestion information at the CP.

The Source or Reaction Point (RP) then reacts based on

the feedback from the CP. See [7] for QCN details. The

previous studies of QCN are based on simulation or hard-

ware implementation.

We implemented QCN on the ServerSwitch platform

as shown in Fig. 7. The switching chip we use cannot
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Figure 7: QCN on the ServerSwitch platform.

adaptively sample packets based on the queue length, so

we let the source mark packets adaptively and let the

ServerSwitch switching chip mirror the marked packets

to the ServerSwitch CPU. When the ServerSwitch CPU

receives the marked packets, it immediately reads the

queue length from the switching chip and sends the Con-

gestion Notification (CN) back to the source. When the

source receives the CN message, it adjusts its sending

rate and marking probability.

We implemented the CP and RP algorithms in Server-

Switch and end-host respectively based on the most re-

cent QCN Pseudo code V2.3 [24]. In order to minimize

the response delay, the CP module is implemented in the

ServerSwitch driver. The CP module sets up a TCAM

entry to filter marked packets to the CPU. On the end-

host, we implemented a token bucket rate limiter in the

kernel to control the traffic sending rate at the source.

6 Evaluation

Our evaluation has two parts. In the first part, we show

micro benchmarks for our ServerSwitch. We evaluate its

performance on packet forwarding, register read/write,

and in-network caching. For micro benchmark evalua-

tion, we connect our ServerSwitch to a NetFPGA card

and use NetFPGA to generate traffic. In the second part,

we implement two DCN designs, namely BCube and

QCN, using ServerSwitch. We build a 16-server BCube1
network to run BCube and QCN experiments. We cur-

rently build only two ServerSwitch cards. As shown in

Fig. 8, the two gray nodes are equipped with Server-

Switch cards, they use an ASUS motherboard with Intel

Quad Core i7 2.8GHz CPU. The other 14 servers are Dell

Optiplex 755 with 2.4Ghz dual core CPU. The switches

are 8-port DLink DGS-1008D GE switches.

6.1 Micro Benchmarks

We directly connect the four GE ports of one Server-

Switch to the four GE ports of one NetFPGA, and use

00 01

<0,0>

02 03 10 11

<0,1>

12 13 20 21

<0,2>

22 23 30 31

<0,3>

32 33

<1,0> <1,1> <1,2> <1,3>
Level 1

Switch

Level 0

Switch

Server

Figure 8: BCube1 testbed.

the NetFPGA-based packet generator to generate line-

rate traffic to evaluate the packet forwarding performance

of ServerSwitch. We record the packet send and re-

ceive time using NetFPGA to measure the forwarding

latency of ServerSwitch. The precision of the timestamp

recorded by NetFPGA is 8ns.

Forwarding Performance. Fig. 9 compares the for-

warding performance of our ServerSwitch card and a

software-based BCube implementation using an ASUS

quad core server. In the evaluation, we use NetFPGA to

generate 4GE traffic. The software implementation of the

BCube packet forwarding is very simple. It uses NHA as

an index to get the output port. (See §7.2 in [13] for more

details) As we can see, there is a very huge performance

gap between these two approaches. For ServerSwitch,

there is no packet drop for any packet sizes, and the for-

warding delay is small. The delays for 64 bytes and 1514

bytes are 4.3us and 15.6us respectively, and it grows lin-

early with the packet size. The slope is 7.7ns per byte,

which is very close to the transmission delay of one byte

over a GE link. The curve suggests the forwarding de-

lay is a 4.2us fixed processing delay plus the transmis-

sion delay. For software forwarding, the maximum PPS

achieved is 1.73Mpps and packets get dropped when the

packet size is less than or equal to 512 bytes. The CPU

utilization for 1514 byte is already 65.6%. Moreover, the

forwarding delay is also much larger than that of Server-

Switch. This experiment suggests that a switching chip

does a much better job for packet forwarding, and that

using software for ‘simple’ packet forwarding is not effi-

cient.

Register Read/Write Performance. Certain applica-

tions need to read and write registers of the switching

chip frequently. For example, our software-based QCN

needs to frequently read queue length from the switch-

ing chip. In this test, we continuously read/write a 32-

bit register 1,000,000 times, and the average R/W la-

tency of one R/W operation is 6.94/4.61us. We note

that the latency is larger than what has been reported be-

fore (around 1us) [20]. This is because [20] measured

the latency of a single MMIO R/W operation, whereas

our registers are not mapped but are accessed indirectly

via several mapped registers. In our case, a read opera-

tion consists of four MMIO write and three MMIO read
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Figure 9: Packet forwarding performance.

operations. We note that the transmission delay of one

1514-bytes packet over 1GE link is 12us, so the read op-

eration of our ServerSwitch can be finished within the

transmission time of one packet.

In-network Caching Performance. We show that

ServerSwitch can be used to support in-network caching.

In this experiment, ServerSwitch uses two GbE ports

to connect to NetFPGA A and the other two ports to

NetFPGA B. NetFPGA A sends request packets to B via

ServerSwitch. When B receives one request, it replies

with one data packet. The sizes of request and reply are

128 and 1514 bytes, respectively. Every request or reply

packet carries a unique ID in its packet header. When

ServerSwitch receives a request from A, the switching

chip performs an exact matching on the ID of the request.

A match indicates that the ServerSwitch has already

cached the response packet. The request is then for-

warded to the server CPU which sends back the cached

copy to A. When there is no match, the request is for-

warded to B, and B sends back the response data. Server-

Switch also oversees the response data and tries to cache

a local copy. The request rate per link is 85.8Mb/s, so

the response rate per link between ServerSwitch and A is

966Mb/s. Since one NetFPGA has 4 ports, we use one

NetFPGA to act as both A and B in the experiment.

We vary the cache hit ratio at ServerSwitch and mea-

sure the CPU overhead of the ServerSwitch. In-network

caching increases CPU usage at ServerSwitch, but saves

bandwidth between B and ServerSwitch. In our toy

network setup, a x% cache hit rate directly results in

x% bandwidth saving between B and ServerSwitch (as

shown in Fig. 10). In a real network environment, we

expect the savings will be more significant since we can

save more bandwidth for multi-hop cases.

Fig. 10 also shows the CPU overhead of the Server-

Switch for different cache hit ratios. Of course, the

higher the cache hit ratio, the more bandwidth we can
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Figure 10: CPU utilization for in-network caching.

save and the more CPU usage we need to pay. Note that

in Fig. 10, even when the cache hit ratio is 0, we still have

a cost of 14% CPU usage. This is because ServerSwitch

needs to do caching for the 1.9Gbps response traffic from

B to ServerSwitch. Fig. 10 also includes the CPU over-

head of a pure software-based caching implementation.

Our result clearly shows that our ServerSwitch signifi-

cantly outperforms pure software-based caching.

6.2 ServerSwitch based BCube

In this experiment, we set up two TCP connections C1

and C2 between servers 01 and 10. The two connections

use two parallel paths, P1 {01, 00, 10} for C1 and P2

{01, 11, 10} for C2, respectively. We run this experiment

twice. First, we configure 00 and 11 to use the Server-

Switch cards for packet forwarding. Next, we configure

them to use software forwarding. In both cases, the total

throughput is 1.7Gbps and is split equally into the two

parallel paths. When using ServerSwitch for forward-

ing, both 00 and 11 use zero CPU cycles. When using

software forwarding, both servers use 15% CPU cycles.

Since both servers have a quad core CPU, 15% CPU us-

age equals 60% for one core.

6.3 ServerSwitch based QCN

In this experiment, we configure server 00 to act as a

QCN-enabled node. We use iperf to send UDP traffic

from server 01 to 10 via 00. The sending rate of iperf

is limited by the traffic shaper at 01. When there is con-

gestion on level-1 port of 00, 00 sends CN to 01. We use

the QCN baseline parameters [7] in this experiment.

Fig. 11 shows the throughput of the UDP traffic and

the output queue length at server 00. When we start the

UDP traffic, level 1 port is 1Gb/s. There is no conges-

tion and the output queue length is zero. At time 20s, we
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limit level 1 port at 00 to 200Mb/s, the queue immedi-

ately builds up and causes 00 to send CN to the source.

The source starts to use the QCN algorithm to adjust its

traffic rate in order to maintain the queue length around

Q EQ which is 50KB in this experiment. We can see that

the sending rate decreases to 200Mb/s very fast. And

then we increase the bandwidth by 200Mb/s every 20

seconds. Similarly, the source adapts quickly to the new

bandwidth. As shown in the figure, the queue length fluc-

tuates around Q EQ. This shows that this software-based

implementation performs good congestion control. The

rate of queue query packets processed by node 00 is very

low during the experiment, with maximum and mean val-

ues of 801 and 173 pps. Hence QCN message processing

introduces very little additional CPU overhead. The to-

tal CPU utilization is smaller than 5%. Besides, there is

no packet drop in the experiment, even at the point when

we decrease the bandwidth to 200Mb/s. QCN therefore

achieves lossless packet delivery. We have varied the

Q EQ from 25KB to 200KB and the results are similar.

The extra delay introduced by our software approach

to generate a QCN queue reply message consists of three

parts: directing the QCN queue query to the CPU, read-

ing the queue register, and sending back the QCN queue

reply. To measure this delay, we first measure time

RTT1 between the QCN query and reply at 01. Then

we configure the switching chip to simply bounce the

QCN query back to the source assuming zero delay re-

sponse for hardware implementation. We measure the

time RTT2 between sending and receiving a QCN query

at 01. RTT1 - RTT2 reflects the extra delay introduced

by software. The packet sizes of the queue query and

reply are both 64 bytes in this measurement. The aver-

age values of RTT1 and RTT2 are 41us and 18us based

on 10,000 measurements. Our software introduces only

23us delay. This extra delay is tolerable since it is com-

parable to or smaller than the packet transmission delay

for one single 1500-bytes in a multi-hop environment.

7 Discussion

Limitations of ServerSwitch. The current version of

ServerSwitch has the following limitations: 1) Limited

hardware forwarding programmability. The switching

chip we use has limited programmability on header field

modification. It supports only standard header modifi-

cations of supported protocols (e.g., changing Ethernet

MAC addresses, decreasing IP TTL, changing IP DSCP,

adding/removing IP tunnel header, modifying MPLS

header). Due to the hardware limitation, our implemen-

tation of index-based source routing has to re-interpret

the IP TTL field. 2) Relatively high packet processing la-

tency due to switching chip to CPU communication. For

the packets that require ‘real’ per-packet processing such
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Figure 11: Throughput and queue dynamics during band-

width change.

as congestion information calculation in XCP protocol,

the switching chip must deliver them to the CPU for pro-

cessing, which leads to higher latency. Hence Server-

Switch is not suitable for protocols that need real time

per-packet processing such as XCP. 3) Restricted form

factor and relatively low speed. At present, a Server-

Switch card provides only 4 GbE ports. Though it can be

directly used for server-centric or hybrid designs, e.g.,

BCube, DCell, and CamCube, we do not expect that

the current ServerSwitch can be directly used for archi-

tectures that need a large number of switch ports (48-

ports or more), e.g., fat-tree and VL2. However, since

4 ServerSwitch cards can be connected together to pro-

vide 16 ports, we believe ServerSwitch is still a viable

platform for system prototyping for such architectures.

10GE ServerSwitch. Using the same hardware archi-

tecture, we can build a 10GE ServerSwitch. We need to

upgrade the Ethernet switching chip, the PCI-E switch-

ing chip and the NIC chips. As for the Ethernet switch-

ing chip, 10GbE switching chips with 24x10GbE ports or

more are already available from Broadcom, Fulcrum or

Marvell. We can use two dual 10GbE Ethernet controller

chips to provide a 40Gb/s data channel between the card

and server CPU. Since we do not expect all traffic to be

delivered to the CPU for processing, the internal band-

width between the card and the server does not need to

match the total external bandwidth. In this case, the num-

ber of external 10GE ports can be larger than four. We

also need to upgrade the PCI-E switching chip to provide

an upstream link with 40Gb/s bandwidth, which requires

PCI-E Gen2 x8. Since the signal rate on the board is 10x

faster than that in the current ServerSwitch, more hard-

ware engineering effort will be needed to guarantee the
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Signal Integrity (SI).

All the chips discussed above are readily available in

the market. The major cost of such a 10GbE card comes

from the 10GbE Ethernet switching chip, which has a

much higher price than the 8xGbE switching chip. For

example, a chip with 24 10GbE ports may cost about 10x

that of the current one. The NIC chip and PCI-E switch-

ing chip cost about 2x∼3x than current ones. Overall,

we expect the 10GE version card to be about 5x more

expensive than the current 1GE version.

8 Related Work

OpenFlow defines an architecture for a central controller

to manage OpenFlow switches over a secure channel,

usually via TCP/IP. It defines a specification to manage

the flow table inside the switches. Both OpenFlow and

ServerSwitch aim towards a more programmable net-

working platform. Aiming to provide both programma-

bility and high performance, ServerSwitch uses multiple

PCI-E lanes to interconnect the switching chip and the

server. The low latency and high speed of the channel en-

ables us to harness the resources in a commodity server

to provide both programmable control and data planes.

With Openflow, however, it is hard to achieve similar

functionalities due to the higher latency and lower band-

width between switches and the controller.

Orphal provides a common API for proprietary

switching hardware [21], which is similar to our APIs.

Specifically, they also designed a set of APIs to manage

the TCAM table. Our work is more than API design. We

introduce a novel TCAM table based method for index-

based source routing. We also leverage the resources of

a commodity server to provide extra programmability.

Flowstream uses commodity switches to direct traf-

fic to commodity servers for in-network processing [12].

The switch and the server are loosely coupled, i.e., the

server cannot directly control the switching chip. In

ServerSwitch, the server and the switching chip are

tightly coupled, which enables ServerSwitch to provide

new functions such as software-defined congestion con-

trol which requires low-latency communication between

the server and the switching chip.

Recently, high performance software routers, e.g.,

RouteBricks [10] and PacketShader [16] have been de-

signed and implemented. By leveraging multi-cores,

they can achieve tens of Gb/s throughput. ServerSwitch

is complementary to these efforts in that ServerSwitch

tries to offload certain packet forwarding tasks from the

CPU to a modern switching chip. ServerSwitch also tries

to optimize its software to process low latency pack-

ets such as congestion control messages. At present,

due to hardware limitations, ServerSwitch only provides

4x1GE ports. RouteBricks or PacketShader can certainly

leverage a future 10GE ServerSwitch card to provide a

higher throughput system, with a portion of traffic for-

warded by the switching chip.

Commercial switches generally have an embedded

CPU for switch management. More recently, Arista’s

7100 series introduces the use of dual-core x86 CPU

and provides APIs for programmable management plane

processing. ServerSwitch differs from existing com-

modity switches in two ways: (1) The CPUs in com-

modity switches mainly focus on management functions,

whereas ServerSwitch explores a way to combine the

switching chip with the most advanced CPUs and server

architecture. On this platform, the CPUs can process

forwarding/control/management plane packets with high

throughput and low latency. The host interface on the

switching chip usually has limited bandwidth since the

interface is designed for carrying control/management

messages. ServerSwitch overcomes this limitation by in-

troducing additional NIC chips for a high bandwidth, yet

low latency channel between the switching chip and the

server; (2) ServerSwitch tries to provide a common set

of APIs to program the switch chip. The APIs are de-

signed to be as universal as possible. Ideally, the API is

the same no matter what kind of switching chip is used.

Ripcord [9] mainly focuses on the DCN control plane.

It currently uses OpenFlow switches as its data plane.

Our work is orthogonal to their work. We envision that

they can also use ServerSwitch to support new DCN such

as BCube, and to support more routing schemes such as

source routing and tag-based routing.

9 Conclusion

We have presented the design and implementation of

ServerSwitch, a programmable and high performance

platform for data center networks. ServerSwitch ex-

plores the design space of integrating a high perfor-

mance, limited programmable ASIC switching chip with

a powerful, fully programmable multicore commodity

server.

ServerSwitch achieves easy-to-use programmability

by using the server system to program and control the

switching chip. The switching chip can be programmed

to support a flexible packet header format and various

user defined packet forwarding designs with line-rate

without the server CPU intervening. By leveraging the

low latency PCI-E interface and efficient server software

design, we can implement software defined signaling and

congestion control in the server CPU with low CPU over-

head. The rich programmability provided by Server-

Switch can further enable new DCN services that need

in-network data processing such as in-network caching.

We have built a ServerSwitch card and a whole Server-

Switch software stack. Our implementation experiences
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demonstrate that ServerSwitch can be fully constructed

from commodity, inexpensive components. Our develop-

ment experiences further show that ServerSwitch is easy

to program, using the standard C/C++ language and de-

velopment tool chains. We have used our ServerSwitch

platform to construct several recently proposed DCN de-

signs, including new DCN architectures BCube and Port-

Land, congestion control algorithm QCN, and DCN in-

network caching service.

Our software API currently focuses on lookup table

programmability and queue information query. Current

switching chips also provide advanced features such as

queue and buffer management, access control, and pri-

ority and fair queueing scheduling. We plan to extend

our API to cover these features in our future work. We

also plan to upgrade the current 1GE hardware to 10G in

the next version. We expect that ServerSwitch may be

used for networking research beyond DCN (e.g., enter-

prise networking). We plan to release both the Server-

Switch card and the software package to the networking

research community in the future.
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In Portland [22], the edge switches intercept the ARP

request and respond with PMAC. The switches use LPM

on PMAC to forward the packet. The last hop switches
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convert the PMAC to AMAC. ServerSwitch can intercept

ARP by matching its Ethernet type field and deliver it

to the CPU for processing. It can also use TCAM to

perform LPM on the destination MAC address.

In fat-tree [5], the switches perform two-level lookup

on IP destination address. The paper describes an imple-

mentation of this lookup algorithm using TCAM. Thus,

using ServerSwitch to implement fat-tree is straightfor-

ward.

DCell [15] uses a self-defined header between the Eth-

ernet and IP header. Servers use a 32-bit destination

DCell address to forward the packet. Similar to BCube,

we can use the IP header on our platform and put the

DCell address into the destination IP address. The DCell

address is hierarchical but its subnet size is not exactly

2
k, so we can join multiple smaller LPM entries to match

a single DCell subnet. The DCell header has a Proxy

Flag bit. When it is set, the server should use the Proxy

DCell address to forward the packet. We can create a

TCAM entry to match both the Proxy Flag and the Proxy

DCell address. When both of them match, the chip over-

rides the decision based on the destination address and

forwards the packet based on this TCAM entry.

These three extra examples show the generality and

flexibility of the ServerSwitch packet forwarding en-

gine.
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