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Abstract— In this paper we study the ‘service capacity’ of peer
to peer (P2P) file sharing applications. We begin by considering a
transient regime which is key to capturing the ability of such sys-
tems to handle bursty traffic, e.g., flash crowds. In this context our
models, based on age dependent branching processes, exhibit ex-
ponential growth in service capacity, and permit the study of sen-
sitivity of this growth to system policies and parameters. Then we
consider a model for such systems in steady state and show how the
average delay seen by peers would scale in the offered load and rate
at which peers exit the system. We find that the average delays scale
well in the offered load. In particular the delays are upper bounded
by some constant given any offered load and even decrease in the
offered load if peers exit the system slowly. We validate many of
our findings by analyzing traces obtained from a second generation
P2P application called BitTorrent.

Index Terms— system design, network measurements, peer to
peer applications, flash crowds, service capacity, performance eval-
uation, mathematical modeling

I. INTRODUCTION

Peer-to-peer (P2P) architectures for file sharing among ad hoc,
possibly dynamic, collections of hosts are generating an increas-
ing fraction of the traffic on today’s Internet and are reshaping
the way new network applications are designed. The idea is to
have hosts participate in an application level overlay network
enabling signaling, routing, and searching among participating
hosts. Once a host locates the document(s) of interest, direct
connections are established to mediate their transfer. The key
principle is to allow, and in fact encourage, participating hosts to
play dual roles as servers and clients – thus hosts are considered
peers.

P2P file sharing applications first became prominent with the
introduction of Napster, which allowed users to share MP3 for-
matted music files. In February 2001, Napster boasted a peak
of 1.5 million simultaneous users[1], but subsequently suffered
legal setbacks. However new P2P file sharing applications such
as Gnutella, KaZaA, Morpheus, eDonkey and BitTorrent con-
tinue emerging and the number of users is growing faster than
ever[2]. Indeed, in March 2002 2.9 million simultaneous online
users were reported [3], and 6.2 million users in January 2003,
see http://www.slyck.com. According to the SD–NAP trace [3],
the dominant traffic type observed by Internet service providers
(ISPs) is associated with P2P file sharing applications. Per-
haps driven by the growth in broadband services, e.g., cable and
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ADSL, the average document size exchanged on P2P networks is
growing, e.g., enabling the sharing of video files. Thus it is rea-
sonable to expect the predominance of P2P traffic on the Internet
to grow further. In addition to file sharing, P2P overlays have
also been proposed as part of solutions to handle Internet ‘flash
crowds,’ i.e., unexpected rapid increases in the demand for par-
ticular objects, which challenge content delivery network infras-
tructure such as Akamai[4]. Indeed many researchers, including
[5], [6], [7] have proposed the use of P2P overlay networks on
top of online clients as supplementary means for providing web
content in order to alleviate the traffic burden on content servers
and smooth/balance traffic on networks when flash crowds oc-
cur. In fact researchers are developing a broader framework
called “grid computing” which enables distributed content deliv-
ery, storage, computation and file sharing over overlay networks,
for example UC Berkeley’s OceanStore project[8] and HP Lab’s
Digital Media Grid project[9].

A. What is the service capacity of a P2P system?

In addition to enabling the sharing of CPU, storage and band-
width resources, P2P architectures excel in serving bursty re-
quests. For example, if a host has a popular file and many peers
are requesting it they are likely to see poor performance. How-
ever, as soon as one of the downloading hosts finishes, the sys-
tem has two ‘servers’, with which it can serve other peers. As
this process evolves it is easy to see that the number of servers in
the system grows exponentially and the throughput seen by peers
improves. When the number of servers becomes large enough
to serve the intensity of requests, the system enters a ‘steady
state’ where the throughput performance of each peer is stable.
These two phases are exhibited in the representative trace shown
in Fig.1. It begins with the addition of a new document to a P2P
system. The solid line tracks an exponential growth in service
capacity corresponding to a transient period, and the dotted line
corresponds to fluctuations in a steady state. Note that during the
‘steady state’ the request rate need not be stationary. Indeed, not
shown in Fig.1, the offered load may fluctuate yet the average
performance per peer is fairly stable. As will discussed in the
sequel, during the steady state period the service capacity tends
to scale with the offered load.

This example exhibits a desirable exponential growth, and
subsequent self-scaling (based on popularity) of a P2P system’s
service capacity for a given document. Ignoring heterogeneity in
the upload bandwidth and computing capacity of peers, in both
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Fig. 1. Two-phases in the evolution of the average throughput per peer versus
time for a single document introduced into a P2P network.

cases the number of peers willing to serve the document is the
driver. Yet service capacity should be viewed in two regimes: the
‘transient’ and ‘steady state’. In the transient regime one might
wish to assess how quickly a P2P network starting with a limited
number of servers can grow its service capacity to meet the load
associated with a burst of demands. While in the steady state
regime, one might wish to assess the average throughput/delay
performance seen by a typical peer. Note that in the transient
regime, the system is server constrained, i.e., requests are back-
logged and hence the service capacity increases exponentially
fast with a rate that reflects the system’s intrinsic ability to lever-
age its resources to share limited service capacity. By contrast, in
steady state the service capacity depends and/or adapts to fluctu-
ations in demand; in this regime the service capacity is demand
constrained.

The service capacity in these two regimes depends on a num-
ber of factors:

• data management: a document may be partitioned into vari-
ous parts permitting concurrent downloading from multiple
peers; the granularity and placement of these is critical;

• peer selection: the mechanism whereby a peer is selected as
a server may take into account load balancing, bandwidth
availability, and differentiate among peers who contribute
more to the community;

• admission and scheduling policy: limiting the number of
concurrent downloaders and/or scheduling to provide dif-
ferentiation/priority among them;

• traffic: the request processes for documents along with the
dynamics of how peers stay online and/or delete docu-
ments.

These factors are interrelated in complex ways. For exam-
ple, a good peer selection scheme may favor peers that are likely
to subsequently stay as servers for the document and thus con-
tribute to the system’s service capacity. Multi-part downloads
can increase the rate at which files get duplicated while at the
same time allowing users to serve as peers for parts they have
already obtained prior to completing downloads. Allowing large
numbers of peers to download from one another may increase
the subsequent potential service capacity for a document but may
increase delays. Spatial clustering of peers may impact the ser-
vice capacity of a P2P system in subtle ways, since serving a

peer which is far away and may have low bandwidth, may sub-
sequently help to quickly serve an entire neighborhood of inter-
ested peers. Recognizing some of these relationships new P2P
applications attempt to use simple credit based systems so as to
provide incentives for peers to stay online and ‘open’ their up-
load bandwidth to serve other peers. This is often done by keep-
ing peers’ credit history and based on their behavior give them
different priority in transfers or access. Such mechanisms are
geared at modifying user behavior and thus the offered load. As
we will see in the sequel their impact on performance may be
subtle. These complex relationships motivate the need for a sys-
tematic study of these factors and tradeoffs on a P2P system’s
transient as well as its stationary service capacity which is the
starting point for our work.

B. Related Work

Most research on P2P systems so far has emphasized design,
traffic measurement and workload analysis but not performance
evaluation. Early work by [10][11][12] studied traces of P2P
applications like Gnutella and Napster. They focused on char-
acterizing the overall P2P system, e.g., request patterns, traffic
volume, traffic categorization and properties of shared online
content as well P2P structure and dynamics, e.g., connectivity
and peer/host behaviors. More recent research in the direction
of evaluating P2P systems has focused on performance. Peer
selection schemes were evaluated in [13], where measurements
are used to optimize the selection of good peers and improve
the overall system performance. A few researchers have used
analytical models to study the performance of P2P networks.
For example, [14] constructed a model for signaling messages in
the Gnutella network and concluded that signaling might signifi-
cantly compromise performance. The work in [15] is among the
first to model a general P2P system and evaluate its performance.
Their model, a closed queuing system, provides basic insights on
the stationary performance of a P2P system; among these, the
dependence of performance on parameters like the peer request
rate and number of peers in the system.

C. Our Contributions

In this paper we study the performance characteristics of 2nd
generation P2P applications, e.g., BitTorrent (BT), which im-
plement various performance optimizations, via both trace mea-
surement and analysis. We believe that policies aimed at im-
proving system performance are crucial to building viable P2P
applications. Our measurement work is also unique in that we
consider performance as a function of time at the granularity of
a single P2P transfer session. These measurements highlight the
need for performance analysis focusing on both user experience
in steady state and system performance in the transient regime.

With this in mind we study two measures for the service ca-
pacity of a P2P system. We model the transient service capacity
of a P2P network by a branching process. Based on this model,
we consider how to optimize service policies in order to maxi-
mize the service capacity growth rate. We are not aware of any
previous work that has analyzed the transient capacity of a P2P
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system. In addition to our transient model, we propose a sim-
ple steady state model, which captures the impact of peer depar-
tures or document deletions on the stationary service capacity of
such systems. Our analytical results and measurements suggest
how various mechanisms might be designed to make a P2P sys-
tem suitable for handling very bursty and large volume demands
and/or provide users good performance when the P2P network
membership is dynamic and possibly heterogeneous.

D. Organization of this paper

The rest of the paper is organized as follows. We propose
a transient model for P2P systems in Section II and consider
how various policies would impact the speed at which the service
capacity grows, i.e., catches up with demands. In Section III we
propose a model and study the performance of a P2P system in
steady state. We perform a detailed trace analysis of the BT P2P
application in Section IV which supports in part the validity of
our models for P2P networks in a more complex environment.
Finally we conclude our work in Section V.

II. TRANSIENT ANALYSIS OF SERVICE CAPACITY

The purpose of our transient analysis to investigate how
quickly the service capacity of a P2P system can catch up with
a burst of demands. This is crucial since popular files are often
introduced by a single peer, and may be subject to large bursts of
requests far exceeding the available service capacity. Our goal is
thus to ensure a document is disseminated as quickly as possible
to interested peers until the system reaches a steady state where
the service capacity is commensurate with demands.

A. Deterministic model

Let us first consider a simple model for file sharing in the tran-
sient regime. Suppose that n− 1 users wish to acquire a docu-
ment which is initially available at one peer. To make deriva-
tions simple let n = 2k. Assume that each peer has a limited
upload capacity but the network capacity is otherwise uncon-
strained. More specifically, each peer has an upload bandwidth

Fig. 2. File sharing in a P2P system.

of b bps, and can serve a document only once it has been fully
downloaded. Suppose the document has size s bits. Thus to
serve n− 1 requests (n− 1)s bits will need to be exchanged. It
should be clear that a good strategy is to first serve one user at
rate b, at which point the service capacity grows to 2b, and then
have these two peers serve additional users, until the n−1 users
are served. As shown in Fig.2, under this idealized strategy peers
will complete service every τ = s/b seconds, at which point the

number of peers that can serve the document doubles, leading
to an exponential growth of 2t/τ in the “service capacity”, i.e.,
the number of peers available to serve the document. This deter-
ministic model exhibits the great potential of a P2P framework
to support large bursts of requests in a decentralized manner.

Under the proposed strategy the n−1 peers will be served by
time τ log2(n+1) = τk. During this transient regime the average
delay d̄ experienced by peers can be computed as follows. Let d j

denote the delay experienced by the jth peer and note that 2i−kn
peers complete service at time (i + 1)τ. Assume the peer who
initially has the file experiences zero delay. Thus,

d̄ =
1
n

n

∑
j=1

d j =
k−1

∑
i=0

2i−kτ(i+1) = kτ− n−1
n

τ

= τ
(

log2 n− n−1
n

) ≈ τ log2 n.

Hence although the system sees an initial burst of n requests the
average delay seen by peers scales as log2 n which is favorable
relative to a linear scaling expected for a server-client model with
a fixed set of servers.

Next let us consider multi-part downloads. Suppose the file
is divided into m chunks with identical size. Now instead of
waiting to finish downloading the whole file, as soon as a peer
finishes downloading a file chunk, it can start to serve it. In-
tuitively by dividing the download process into smaller chunks,
transfers can be pipelined among participating peers so perfor-
mance should be significantly improved. To illustrate this idea
consider the following idealized strategy. We shall track service
completions in time slots of size s

bm = τ
m . Suppose the source

of the file sends Chunk 1 to a peer, Chunk 2 to another peer,
and so on until it finishes delivering the last Chunk m on slot m.
Meanwhile each chunk i is being duplicated in the system. To
optimize dissemination, when possible, a peer which currently
has a chunk serves another that has not yet obtained any chunk;
this can be done until time slot k at which time every peer in the
system has a chunk of the file. As shown in Fig.3(a), at time k
slots, the n peers can be partitioned into k sets Ai, i = 1, . . . ,k,
with |Ai| = 2k−i and Ai corresponds to peers which have only
received the ith chunk. Now consider the (k + 1)th time slot.
Suppose the peers in A1 transfer Chunk 1 to the n/2 peers that
have not yet received it. Meanwhile the peers in Ai, i > 1, trans-
fer chunk i to a node in A1 choosing a peer that has at this point
only received Chunk 1. Hence, as shown in Fig.3(b), after the
(k +1)th time slot, all peers have Chunk 1, n

2 peers have Chunk
2 and similarly n

2i−1 peers have chunk i. Continuing this pro-
cess, all chunks are eventually delivered to all users by time slot
k +m = τ

m (log2(n−1)+m). This corresponds to a reduction by
a factor of m versus the scheme without multi-part downloads.
We can compute the average delay d̄(m) seen by peers in this
multi-part download scenario as follows. Since half the peers
have received all chunks when Chunk m−1 completes duplica-
tion across all peers at time slot k +m−1 and the rest peers will
receive chunk m during the last time slot k + m, the average de-

lay experienced by peers can be computed as follows. Let d(m)
j
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Fig. 3. Concurrent multi-part downloads among a set of n peers.

denote the delay for the jth peer in the multi-part download, then

d̄(m) =
1
n

n

∑
j=1

d(m)
j =

1
2
((k +m−1)+(k +m))

τ
m

=
τ
m

(
log2 n+

2m−1
2

) ≈ τ
m

log2 n.

Thus a large m, i.e., small chunk size, leads to a factor of m im-
provement in average delay for this transient regime. In practice,
however, we must also take into account overheads associated
with signaling and or coordinating chunk availability informa-
tion and realizing the various exchanges. Thus one would expect
P2P systems with multi-part downloading to see less aggressive
gains in m.

The models in this section provide the basic intuition for the
benefits of P2P systems during the transient regime. However
our models are somewhat idealized. We have assumed there
is no congestion in the system, i.e, the upload bandwidth of a
peer is not shared by peers requesting different documents, the
network is not bottle-necked, and idealized scheduling and peer
selection per chunk. This motivates us to consider a stochastic
model that captures the variability in serving peers due to con-
gestion as well as some other aspects of real P2P systems, e.g.,
speed at which peers leave the system.

B. Branching process model

In this section, we propose a branching process model for a
P2P system in the transient regime. Our objective is to study the
sensitivity of the exponential growth rate to system parameters
or peer behavior.

1) Basic branching process model: Let Nd(t) denote the
number of peers available to serve document d at time t. Note
that the system’s service capacity for d should be proportional to
Nd(t), see e.g., [15]. The proportionality constant might only de-
pend on the heterogeneity of the upload/server capacity among
peers assuming the network is not the bottleneck. We assume
that initially there is but one copy of the document d in the net-
work, i.e., Nd(0) = 1 with probability 1, and a large number of
interested peers. Fig. 4 shows a typical evolution of the file shar-
ing process assuming each peer serves one other peer at a time.
Thus, initially Peer 0 shares its file with Peer 1. After a ran-
dom service time T0, this process completes, and Peers 0 and 1
can now serve other peers. As shown in the figure Peer 01 and
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Fig. 4. Branching process model for file replication across as P2P system.

Peer 11 now download from Peer 0 and Peer 1 respectively and
complete this process after some random times T1 and T2 respec-
tively. This replication process continues to evolve over time, as
long as there are peers still requesting the document. Suppose
the times to realize a transfer between peers Ti, i = 0,1, . . . can be
modeled as independent random variables with a common dis-
tribution, i.e., Ti ∼ T where FT (t) = P(T ≤ t) and E[T ] = τ = 1

µ .
This distribution captures variability in the transfer time due to
congestion, heterogeneity of upload bandwidth, round trip de-
lays etc.

The model we have described corresponds to a standard age-
dependent branching process with a fixed family size v = 2 at
each new generation. General results for the evolution of the
mean population, i.e., service capacity of our P2P model, can be
found in [16] Section 10.4.22 and [17] Chapter IV Theorem.3A.
The following is a restatement of the basic result for a branching
process with i.i.d. family sizes with the same distribution as a
random variable V .

Theorem II.1: In the super critical case where the mean fam-
ily size per generation satisfies E[V ] = v > 1 and FT is non-
lattice, the expected population of an age dependent branching
process for large t is approximately given by

m(t) ∼ δeβt , (1)

where β > 0 is such that dF̃(x) = ve−βxdFT (x) is a probability
distribution function, i.e.,

∫ ∞
0 ve−βx fT (x)dx = 1 whose mean we

denote by m̃ and where δ = v−1
m̃βv .

Thus for the P2P model in Fig.4 the mean service capacity fol-
lows

E[Nd(t)] = δeβt , (2)

with β and δ as defined in Theorem.II.1 and where v = 2.
As expected the service capacity will on average increase ex-

ponentially as long as there are sufficient demands in the system.
As with the simple deterministic model considered earlier one
would expect that the average delay to serve a large burst of de-
mands n would scale in the logarithm of n. The two parameters
β and δ capture the growth characteristics of the service capac-
ity, and depend on the distribution of the transfer times T . For
example, if T is exponentially distributed, then β = µ and δ = 1;
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by contrast1, as shown in the previous subsection if T is deter-
ministic β = µ ln2 and δ = 1, leading to an exponential growth
2t/τ.

Consider two branching processes with different generation
time distributions, i.e., T (1) and T (2) such that E[T (1)] = E[T (2)]
and there is an increasing convex ordering (I.C.X.) on T (1) and
T (2), i.e., T (1) ≤icx T (2)[18]. In this case one can show that
β(1) < β(2). Indeed since β has to solve the integral equation in
Theorem.II.1, in which the left hand side can be interpreted as an
expectation of the convex function e−βx, it follows that I.C.X. or-

dering ensures that given a β, E[e−βT (1)
] ≤ E[e−βT (2)

] and hence
the relation β(1) < β(2) has to be true to ensure both of them to
solve the integral equation. Also note that with T (1) ≤icx T (2) and
E[T (1)] = E[T (2)], it then follows that Var(T (1)) ≤ Var(T (2)).
Thus we see that for a fixed mean, variability in generation times
improves the growth exponent β, e.g., in the exponential case
β = µ and in deterministic case β = µ ln2 < µ.

2) Modeling parallel uploads when v > 2: Most P2P appli-
cations allow nodes to simultaneously serve a number, say v−1,
of peers interested in the same document. Thus in a saturated
network, peers may compete for upload bandwidth or CPU re-
sources resulting in longer service times. As a simple model
for systems allowing parallel uploads, consider our branching
process model, with a fixed family size v > 2. Suppose the dis-
tribution for transfer time between two peers is slowed down by
a factor v− 1 causing the mean download to increase by v− 1
times. On one hand, this process will have longer regeneration
times. Yet on the other hand each time it regenerates, a larger
number v− 1 of peers will become available. Thus one might
ask whether parallel uploading with v > 2 would lead to faster
growth rates.

With the proposed re-scaling of the transfer times density, i.e.,
1

v−1 fT ( t
v−1 ), according to Theorem.II.1 the growth rate β must

satisfy
∫ ∞

0
ve−βxdFT (

x
v−1

) = 1.

For the case where download times are exponentially dis-
tributed, when v > 2, one can show that β = µ and δ = 1. Thus, in
this case the expected service capacity E[Nd(t)] = eµt = e

t
τ , does

not depend on v. For the case of deterministic download times,
one need only modify the model in Section II-A by reducing the
regeneration time to τ

v−1 and increasing the number at each re-

generation to v. This gives the exponential growth of v
t

(v−1)τ , i.e.,
β = lnv

v−1 µ and δ = 1. This indicates that the growth exponent
β, decreases with v. The deterministic transfer time for a par-
ticular file is perhaps closer to practice to P2P systems, which
see upload bandwidth constraints and limit the number of con-
current peers. This result suggests that the growth rate β might
decrease, albeit moderately, if v is large. Moreover, considering
the overheads associated with each transfer and non-linearities
in performance degradation when v > 2, the actual performance
with parallel uploading could be even worse. Thus it may make

1Note that deterministic time does not satisfy the conditions of Theorem.II.1,
but growth rates are easily computed

sense to limit the number of peers that any server will serve con-
currently.

3) Uncooperative peers under a parallel uploading scenario:
We have concluded that the growth rate in service capacity for

a P2P network in the transient regime might be highest when
a peer serves a limited number of other ones at a time. How-
ever, in practice peers that have completed a transfer may leave
the system or delete the file. In this section we will show that
when peers exhibit such uncooperative behavior parallel upload-
ing may help achieve higher growth rates.

Consider once again our branching process model, where each
peer serves v−1 others at a time. Upon completing their down-
loads, each peer independently determines whether it stays in
the system and with probability 1− ζ exits the system. Thus
the family size is in fact a random variable with mean vζ. Un-
der these dynamics our branching process may become ‘extinct’,
i.e., eventually no peers are available to serve the document. In
fact, standard results, see [17] Chapter IV, show the process will
become extinct with probability 1 if vζ < 1. Hence if our goal is
to maximize the growth rate and avoid extinction it is desirable
to select a family size satisfying vζ > 1.

Assuming vζ > 1, let us consider the growth rates that would
be achieved. Again based on Theorem.II.1, but incorporating
uncooperative peers, and the transfer time re-scaling associated
with v− 1 parallel uploads the new growth rate β′ and constant
δ′ satisfy

∫ ∞

0
vζF(

x
v−1

)β′e−β′xdx = 1 and δ′ =
1

m̃′β′ [1−
1
vζ

].

In this case it is no longer the case that the maximal growth rate is
achieved when v is as small as possible. For example, as shown
earlier assuming exponential peer to peer transfer times, β = µ
and δ = 1, i.e., the growth rates do not depend on v. Now con-
sidering the peer departure dynamics modeled by ζ, the new pa-
rameters for the growth process are given by

β′ = (ζ− 1−ζ
v−1

)µ and δ′ = 1+
1−ζ
vζ−1

.

Note that the growth exponent β′ increases, albeit slowly, in
v. Fig. 5 shows different mean growth trajectories for various
choices of v when ζ = 0.6 and µ = 1. When v = 2, the service
capacity has the smallest growth exponent β′. When v > 2, β′
still increases in v but not significantly. Thus when some frac-
tion of peers exit the system upon completion of their download,
allowing parallel uploads may help assure document availabil-
ity and improve the overall exponential growth of the system’s
service capacity.

4) Role of multi-part downloads on transient capacity: Ear-
lier, based on our idealized deterministic model, we showed that
multi-part downloads will help further speed up growth and thus
delays by a linear factor m. A similar benefit also exists for our
branching process model.

Suppose a file is partitioned into m identical sized chunks, and
assume that the number of requesting peers is large. As a simple
model for service capacity growth under multi-part downloading
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Fig. 5. Mean growth in service capacity in a system with uncooperative peers
and parallel uploading: various choices of v are shown for ζ = 0.6 and µ = 1
fixed.

suppose that after a finite time each chunk has a distinct source
peer and subsequently the m chunks are duplicated over m inde-
pendent branching trees. We can modify our original branching
process model to account for chunk size by re-scaling the dis-
tribution for downloads by a factor of 1

m . Thus the growth in

service capacity for a given chunk N(m)
d (t) can be related to our

original model Nd(t), as follows

E[N(m)
d (t)] = E[Nd(mt)] = δemβt ,

i.e., growth rate increases from β to βm. Given a burst of de-
mands q, the time to complete q jobs is roughly 1

βm ln( qm
δ ). Thus,

we again observe that using a multi-part download scheme re-
duces delay roughly by a factor of 1

m . Note that the above multi-
part model is quite optimistic since it assumes peers will not be
serving multiple chunks at the same time. Such concurrency
would slow down file sharing.

5) Discussions: Optimizing P2P systems to deal with flash-
crowds: When a P2P system is subject to a flash crowd it is de-
sirable that its service capacity grows as quickly as possible, i.e.,
β be high. Thus our models suggest that P2P systems enabling
multi-part downloads will achieve significantly better perfor-
mance. As will be observed in the trace analysis in Section IV,
steady state performance also improves although sub-linearly in
the number of chunks m, perhaps due to signaling/transfer over-
heads associated with realizing multi-part schemes.

The benefit of allowing parallel uploads is not clear unless
peers tend to be uncooperative. Our models suggest that in a
structured application like a media grid, in which peers are al-
ways available, parallel uploads may not improve the overall
performance. However in file sharing applications where peers
can freely leave the system, allowing parallel uploads may en-
able higher accessibility and better growth rates in the service
capacity during transients.

User behavior is hard to control yet may be influenced by im-
plementing service policies. For example many P2P applications
use a credit system to reward peers that contribute well to the
overall system. Such a policy might increase a peer’s download
volume/rate based on the peer’s measured upload volume/rate.

This may have two positive impacts on system performance.
First, it may give better delivery rates to peers that are likely
to continue serving others and thus increase the overall transient
growth rates in service capacity. Second, it may encourage peers
to increase their upload bandwidth and participate more aggres-
sively in sharing. This obviously encourages peers to be more
friendly and cooperative.

Interestingly, in the transient regime bursty demands help the
system handle the traffic better, since, particularly under a multi-
part P2P design, the system will be able to leverage the service
capacity of the peers while they are downloading the document
leading to fast growth in the service capacity. In this sense, a
significant amount of a P2P system’s service capacity, in both
the transient but also the stationary regime may be derived from
leveraging the service capacity of peers which are concurrently
downloading the same document, before they leave the system.

III. STEADY STATE ANALYSIS OF AVERAGE DELAYS

Next we consider a steady state analysis for P2P service ca-
pacity based on a Markov chain model. Our goal is to analyze
how parameters such as the offered load and rate at which peers
exit the system impact the average delay to service requests.

A. Markov chain model

We shall consider all peers in a P2P system which are inter-
ested in, or serving, a particular document and assume that there
will always be at least one peer serving the document. Suppose
new requests follow a Poisson process with rate λ. The system’s
state is pair (x,y) ∈N×N+, where x denotes the number of peer
requests currently in progress or queued and y denotes the num-
ber of peers that have finished downloading and still remain in
the system, i.e., contributing to the system’s service capacity. We
further assume that the file is partitioned into chunks, allowing
multi-part downloading, thus peers which are in the process of
downloading, but already have part of a file, can serve this part
to other peers. Thus, a downloading peer also contributes to the
system’s service capacity, but its contribution is only a fraction η
of that of a peer who has already downloaded the full document.
The total service capacity in the system is thus proportional to
the effective number of servers in the system, we denote it by
µ(ηx + y), where µ denotes the service rate for a request at a
peer which can serve the document in full. Each time a peer
completes downloading the document it becomes a server in the
system, but each such peer may leave the system at rate γ. Thus,
in this model the service time for a request at a single peer and
the time until a peer having completed a download leaves the
system are independent and exponentially distributed with rates
µ and γ. The evolution for the state of this system can be de-
scribed by a continuous time Markov chain with a rate transition
matrix Q over the state space N×N+ given by :

q
(
(x,y),(x+1,y)

)
= λ new request

q
(
(x,y),(x−1,y+1)

)
= µ(ηx+ y) service a peer

q
(
(x,y),(x,y−1)

)
= γy exit system.
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Fig. 6. Performance in steady state, with η = 0.5

We numerically computed the stationary distribution for this
Markov chain by truncating the state space appropriately, and
calculated the mean number of jobs, servers, and delay for this
system. We do this for a range of parameters; specifically we let
µ = 4.0, η = 0.5 and varied the values of λ and γ from 4.0 to
12.0 and 2.0 to 8.0, respectively. Our performance metrics actu-
ally depend only on the ratios λ

µ the offered load, and γ
µ the rate

at which peers exit the system, as long as delays are measured
in the units of holding times µ−1. Thus we rescaled our results
to provide better insight. As shown in Fig.6 the mean number of
queued jobs increases sub-linearly in the offered load; the mean
number of servers in the system is roughly linear in the offered
load; and the mean delay decreases in the offered load as long as
the exit rate is less than 1.75 and increases otherwise. This last
observation is perhaps the most interesting. It suggest that in a
P2P system where nodes exit slowly the average delay seen by
peers might improve in the offered load. The intuition here, is
that service capacity (number of servers plus a fraction of down-
loaders) is increasing linearly in the offered load. Note even
if peers exit the system at a higher rate, e.g., for our example
γ
µ > 1.75, the average performance seen by each peer degrades
slowly to a constant as the offered load increases.

Note that in the limiting regime where γ → ∞, i.e., nodes
immediately exit the system, one can show the average delay
per peer increases slowly with the offered load converging to
roughly 1

ηµ , as might be expected from a M/G/∞ queue, with

mean service times 1
ηµ . In summary, as was the case in tran-

sient regime considered in Section II by providing incentives for
peers stay and share documents, i.e, decrease the parameter γ/µ,
the average delay can be reduced, and in some scenarios even
made to scale favorably in the offered load.

B. Estimating effective throughputs realized by peers

In the above model we optimistically assumed that the full ser-
vice capacity of the y peers in the system who have completed
downloading a file is available to the x peers for which down-
loads are in progress – we refer to these as seeds and download-

ers respectively. Further we modeled the capacity that can be
leveraged from one of the x downloaders as a fraction η of that
made available by a seed. Thus assuming the state of the sys-
tem is (x,y) then the total aggregate throughput exchanged in
the system would be

agg. throughput = (ηµs) · x+(µs) · y ≈ udl · x+useed · y (3)

where s denotes the size of the file under consideration and µ
is the mean service time to upload the entire file from a seed.
In a practical system due to the mechanisms and heterogene-
ity involved for searching and exchanging documents, or parts
thereof, each downloader and seed can be thought of as realizing
an effective upload throughput which we will denote by udl and
useed respectively. Thus the parameter η can roughly be thought
of as the ratio between the effective throughput of a downloader
versus that of a seed. Ideally a system with a high η is one which
is effective at leveraging the capacity of concurrent downloaders,
and thus likely to be excellent at tracking bursty offered loads.

In the sequel we will make use of this simple linear model
to attempt to estimate the effective throughputs udl and useed in
downloading activities associated with P2P systems sharing doc-
uments of different sizes. We will assume that if the offered load
high enough these parameters are fairly insensitive to offered
load. Indeed, as shown in Fig.6 the marginal change of system
performance is fairly small when the offered load is high. How-
ever, udl and useed are likely to depend on the file size s. Indeed
we would expect that the ability of a seed and downloader to con-
tribute will depend on various aspects. For example if a file is
large, downloading will take longer, and thus information about
partial availability of parts associated with a larger file will have
time to propagate through the system and be leveraged by other
downloaders. Thus one might expect the overheads to disperse
and process information about the availability of parts of a file
may be high for small files, and preclude an effective utilization
of all available resources. In SectionIV, we use trace measure-
ment to study the effective upload contributed by peers in detail
to find that our empirical results support these observations.
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IV. TRACE MEASUREMENTS AND TRAFFIC

CHARACTERIZATION

In this section we will analyze several traces obtained on the
BitTorrent(BT) P2P application. Our purpose is to study sys-
tem performance and validate, in part, some of the results and
observations in Sections II and III.

A. BitTorrent P2P application and measurement setup

We sampled system data on BT P2P over a period of several
days. Information on this open-source project can be found at
http://bitconjurer.org/BitTorrent/. Many aspects of BT’s archi-
tecture are captured by the models we have been discussing.
Specifically a document is introduced by a single peer which
is encouraged to stay in system for a long period of time, i.e.,
even after subsequent peers have successfully downloaded the
document. BT supports multi-part downloads with a chunk size
of roughly 220 bytes, allowing peers to do parallel uploading on
a fairly fine granularity. A credit system in BT keeps track of
upload and download volumes among peers and tries to achieve
fairness in service such that upload and download volumes are
equalized.

We collected a trace of network performance reports gener-
ated by a program called BT tracker, which has the format ex-
hibited in Table.I. Here # seeds refers to the number of peers
with complete replicas of a document that are currently on line;
# downloaders is the number of peers currently downloading the
document; # finished is the number of completed downloads so
far; TX vol is the cumulative data volume transferred associated
with the given document; throughput is the sum of the through-
puts seen by peers currently downloading a document; and life is
the time that has elapsed since the document was first introduced
in the system. This data is updated approximately every 5 min-
utes. The system simultaneously tracks about 150–200 files that
have been recently inserted. Thus a trace permits one to evaluate
how the system capacity for an individual file evolves over time.

B. Methodology

1) Service capacity: Since BT uses multi-part downloads
service capacity must be carefully defined. We estimate the ser-
vice capacity as

effective # of servers =
“total storage space shared”

size
,

i.e., the effective number of replicas available in the system, in-
cluding partial downloads. Since peers may exit or delete a file
upon completing a download, we can estimate service capacity
based on the following formula

TX vol− (# finished−# seeds+1)× size
size

.

2) Throughput and delay of each peer: We estimate the av-
erage instantaneous throughput seen by each peer as follows

avg throughput per peer =
throughput

# downloaders
,

and we define the KByte transmission delay for each peer as

1
avg throughput per peer

=
# downloaders

throughput
.

This is roughly the current average (across peers) delay to trans-
fer 1KByte of data, which is but a rough estimate for average
transfer delays seen by peers.

3) Estimating effective throughputs for seeds and download-
ers: As discussed in Section III-B we let udl and useed denote
the effective upload throughputs realized by typical download-
ers and seeds respectively. Based on the measurements we were
able to directly collect estimates for the peer upload throughputs.
To circumvent problem we sampled the file sharing dynamics
associated with particular files to obtained multiple triples com-
prising the # seeds, # downloaders, and (aggregate) throughput
exchanged by peers over time. We then did a least squares fit to
this data to the linear model presented earlier, see Eq.(3). This
essentially corresponds to performing a two-dimensional regres-
sion to obtain the sensitivity of throughput to number of seeds
and downloaders correspond to udl and useed .

This study was conducted for sets of peers sharing popular
files, i.e., typically involving more than 100 concurrent down-
loaders and associated with file sizes ranged from 200MB to
2GB. The objective was to study the relative values of udl and
useed and their sensitivities to file size.

C. Is there an exponential growth in the transient service capac-
ity and average throughput per peer?
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Fig. 7. Total throughput, number of seeds, and downloaders associated with a
file in the BT system.

Fig.7, shows the total throughput, number of seeds and num-
ber of downloads (demands) for a representative (popular) docu-
ment of size 1310 MBytes over time. We note that in the first 200
minutes or so, the number of seeds stays fixed at 1, although the
total throughput increases exponentially. This clearly exhibits
how fast increases in service capacity in the initial transient
mode are enabled by multi-part downloading, i.e., downloading
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insert time file name size #seeds #downloaders #finished TX vol throughput life

6.24.2003.10:45 F1 challenge 678MB 2 8 104 75.05GB 265.31KB/s 3 10:43

TABLE I
FORMAT OF BT TRACE FILE
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peers are making significant contributions to the service capac-
ity. We note that at around 500 minutes the number of seeds in
the system peaks, and subsequently decreases to a steady state
of roughly 20 seeds so uncooperative peers are exiting the sys-
tem quickly. Meanwhile the number of peers downloading the
document increases in bursts from 50 to 75 to about 125. The
total throughput in the system continues increasing after an ini-
tial exponential growth although it tracks the bursty increases in
number of downloaders ( e.g. the upsurge mentioned at time 500
minutes) slowly instead of exponentially fast. This suggests that
the ability of the system to leverage the dynamic service capac-
ity offered by a large number of concurrently downloading peers
may not scale as effectively as it did at the start. We suspect this
is due to the impact of the credit system as mentioned in Section
I. In particular it would give priority to peers that have been in
the system and downloading for quite sometime at the expense of
new peers (with low credit) and thus reduce the growth rate. This
might also due to the signaling overheads among larger number
of peers scaling poorly.

Fig.8 shows the average throughput per peer and service ca-
pacity of the system as a function of time. The exponential
growth of throughput per peer is remarkable during the first 300
minutes. Thereafter the individual peer’s throughputs track the
service capacity fairly well. The drop at time 600 minutes seems
to be associated with a sharp drop in the number of seeds with a
concurrent large increase in the number of downloaders.
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Fig. 9. The KByte transmission delay versus offered load(estimated by sum-
ming over download + seed) of files in BT system.

D. How does the offered load impact average throughput per-
formance per peer?

The data shown in Fig.9 corresponds to a sample of 500 files
with file sizes ranging from 400MBytes to 1.1GBytes, for which
the system capacity appeared to be in the steady state, i.e., one to
four days have elapsed since these documents were introduced
to the system and the service capacity and throughput per peer
should be representative of their popularity/offered loads. For
each file, we plot the KByte transmission delay, i.e., inverse of
the average throughput per peer (in KByte/sec), versus the num-
ber of seeds and downloaders participating in the system. The
number of participants is roughly linear in the offered load for
a each file, i.e., a proxy for the popularity of the document. For
files with less than 50 peers participating in the system, i.e., not
very popular, the performance is seen to be quite unpredictable.
Intuitively, this big variance is due to the fact that the number
of peers is small and heterogeneity among peers is reflected in
differences in performance. However, for files that are very pop-
ular, the performance improves, albeit slowly, in the number of
participants. This matches our analytical results very well, i.e.,
average delays might go down in the offered load. For example,
as marked in Fig.9, when number of peers is 200, the average
throughput per peer is roughly 40KBytes/sec, i.e., the delay to
transmit 1Kbyte is 0.025sec and when peer number is 100 the
average throughput per peer is only about 25Kbyte/sec, i.e., a
delay of 0.04sec per 1Kbyte. This improvement as the number
of peers grows, is less significant when the number of peers ex-
ceeds 200, possibly due to TCP flow control. Comparing this
performance characteristics with those for the model shown in
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Fig.6(c), we noted that the average delay performance gets bet-
ter in the offered load but the marginal gains decrease.

E. Impact of file size on the per seed and downloader’s effective
throughput?

Let us first consider the dependence of the effective upload
useed and udl on the file size. Fig.10(a) shows estimated param-
eters for files of various sizes. It should be clear that both useed

and udl improve with the increasing file size, which, as expected,
is due to the improved capability of peers to leveraging service
capacity via multi-part downloading if the file being exchanged
is large. Also, as shown in Fig.10(b), the average per peer down-
load throughput also improves with the increasing file size. In-
deed since downloaders can share the service capacity leverage
from both downloaders and seeds, it is natural to observe that the
average download throughput per peer, which is roughly udl plus
a fraction of useed , mostly lies above udl . We note however, that
this data is intended to only show rough trends, and the reliabil-
ity of the collected data would not warrant a conclusive claim on
the precise trend, i.e., linear or sub-linear. In particular the 95%
confidence intervals on the point estimates shown in Fig.10(a)
range from ±32 KByte/sec to ±227 KByte/sec. A detailed in-
vestigation of our data sets revealed the presence of outliers that
we believe are due to resetting of BitTorrent trackers. Further-
more the simple linear model we are using to capture the sys-
tem’s performance may be a crude approximation. Indeed it is
possible that offered loads to seeds versus downloaders depend
on the relative quantities of these, i.e., useed and udl might de-
pend on the ratio of y/x and thus change the model. For this
reason the data shown in the figure is associated with files and
samples having roughly the same orders of magnitude for x,y.

F. Discussion

To summarize we have observed two different stages of the
dynamics of P2P systems. First an initial transient flash crowd
phase wherein the overall service capacity is low but quickly
catches up with the demands leveraging peers that are down-
loading a multi-part file to serve others. This is clearly a regime
where the system’s service capacity is limited yet can quickly
benefit from the crowd to bootstrap its ability to serve peers.
In a second regime, a steady state, the overall service capacity
increases slowly and fluctuates along with demands with an av-
erage throughput per peer remaining fairly stable. The steady
state performance seen by peers improves in the popularity of
the file, i.e., number of participating peers. However we noted
an example where subsequent burst of demands does not lead
to a dramatic exponential growth in the aggregate throughput,
in fact it looks more like a linear response. As explained ear-
lier, we conjecture that this may be due to either a lack scalabil-
ity, perhaps signaling overheads or be the result of a credit sys-
tem geared at favoring some peers, versus increasing the rate of
growth. We leave this conjecture to further research, but suggest
that in steady state, when the number of peers is already large,
a credit system may be biased against peers who just enter and
penalize the ability of a P2P system to catch up exponentially

further upsurges in demands. Finally we observed that multi-part
downloading allows significant improvement in the performance
as the file size increase.

V. CONCLUSION

In this paper, we have modeled the service capacity of a P2P
system in two regimes. One is the transient phase in which the
system tries to catch up bursty demands (flash crowd). Both our
analytical model and trace measurements exhibit the exponen-
tial growth of service capacity during the transient phase. In the
second regime, the steady state, we show that the service capac-
ity of a P2P system will scale with and track the offered loads,
so individual user’s performance will not degrade significantly.
Moreover, both our analysis and empirical data suggest that at
higher offered loads and with cooperative users the system per-
formance might improve. These characteristics are particularly
desirable in systems designed to handle exceedingly bursty de-
mands.

In addition, we studied various techniques that might help im-
prove P2P performance. Multi-part combined with parallel up-
loading when properly optimized will generally improve system
performance, particularly when peers exit the system at a high
rate. A credit system might help provide peers incentives to
share and thus improve performance. Yet even a simple credit
system based on ‘short term’ history of peer’s upload down-
load volume may limit the system’s capability to deal with flash
crowds above and beyond an established steady state.
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