

Tilburg University

Service components for managing the life-cycle of service compositions

Yang, J.; Papazoglou, M.

Published in:
Information Systems

Publication date:
2004

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Yang, J., & Papazoglou, M. (2004). Service components for managing the life-cycle of service compositions.
Information Systems, 29(2), 97-125.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. aug.. 2022

https://research.tilburguniversity.edu/en/publications/cb59f486-e797-4eb1-a07e-3436a2da0475

Service Components for Managing the Life-Cycle of Service
Compositions 1

Jian Yang and Mike. P. Papazoglou
Tilburg University, INFOLAB,

Dept. of Information Systems and Management,
PO Box 90153

5000 LE, Tilburg
Netherlands

{jian,mikep}@uvt.nl

Abstract

Web services are becoming the prominent paradigm for distributed computing and electronic

business. This has raised the opportunity for service providers and application developers to

develop value-added services by combining existing web services. However, current web ser-

vice composition solutions do not address software engineering principles for raising the level

of abstraction in web-services by providing facilities for packaging, re-using, specializing and

customizing service compositions.

In this paper we propose the concept of service component that packages together complex

services and presents their interfaces and operations in a consistent and uniform manner in the

form of an abstract class definition. Service components are internally synthesized out of reused,

specialized, or extended complex web services and just like normal web services are published

and can thus be invoked by any service-based application. In addition, we present an integrated

framework and prototype system that manage the entire life-cycle of service components ranging

from abstract service component definition, scheduling, and construction to execution.

Keywords: web services, service scheduling and execution, service composition life-cycle, compo-

sition logic, service components, service reusability.

1 Introduction

The Web has become the means for organizations to deliver goods and services and for customers

to search and retrieve services that match their needs. Web services are self-contained, Internet-

enabled applications capable not only of performing business activities on their own, but also

possessing the ability to engage other web services in order to complete higher-order business

transactions. Simple web services may provide simple functions such as credit checking and au-

thorization, inventory status checking, or weather reporting, while complex services may appropri-

ately unify disparate business functionality to provide a whole range of automated processes such

as insurance brokering, travel planning, insurance liability services or package tracking. Several

software vendors and consortia are providing platforms (such as IBM’s WebSphere, or Microsoft’s

.NET), languages and description models for service representation and discovery such as WSDL
1Part of this work has been funded by the Telematica Institute under the project PIEC.

1

and UDDI, which offer uniform representation of and access to web services, respectively. The

platform neutral nature of web services creates the opportunity for building composite services by

combining existing elementary or complex services, possibly offered by different enterprizes. For

example, a travel plan service can be developed by combining several elementary services such as

hotel reservation, ticket booking, car rental, sightseeing package, etc., based on their

WSDL description [27]. We use the term composite service to signify a service that employs and

synthesizes other services. The services that are used in the context of a composite service are

called its constituent services.

The current standard web service definition language is WSDL [27]. WSDL consists of the

following main constructs: messages, portTypes, bindings, ports. portTypes define the in-

terface of a web service in terms of operations and their input and output messages. Bindings

provide the implementation of a web service by specifying the protocol(s) used for service invoca-

tion, e.g., they can be SOAP binding, HTTP GET/POST binding, or MIME binding. Messages

define the structures and types of the inputs and outputs of operations. A service consists of a set

of ports that define the bindings used in the service.

Web service applications developed in terms of WSDL alone are isolated and opaque and more-

over, cannot be inter-linked to express the business semantics of web services. Breaking this isola-

tion requires connecting web services and specifying how collections of web services work jointly to

realize more complex functionality typified by business processes.

The recently proposed standard Business Process Execution Language for Web Services

(BPEL4WS or BPEL for short) [31] (which suprceeds both WSFL and XLANG specifications)

is an XML-based specification language that addresses the above problem by supporting the def-

inition of a new web service in terms of compositions of existing (constituent) services. BPEL

models the actual behaviour of a participant in a business interaction as well as the visible message

exchange behaviour of each of the parties involved in the business protocol. A BPEL process is de-

fined ”in the abstract” by referencing and inter-linking portTypes specified in the WSDL definitions

of the web services involved in a process.

Web service design and composition is a distributed programming activity. It requires in ad-

dition to BPEL specifications software engineering principles and technology support for service

reuse, extension, specialization and inheritance such as those used, for example, in component

based software development [23]. Despite the fact that web service technology offers the poten-

tial for deriving new services and applications on the basis of service extension, specialization and

parameterization, to this date there is little research initiative in this area.

Currently, the web service application space, even for applications developed on the basis of

BPEL, is rather unstructured and flat. The reason being that services are composed in a rather

ad hoc and opportunistic manner by simply combining their operations and input and output

messages. For example, in order to obtain contextual information, e.g., all services relating to a

2

complex service called travel plan, all relevant service APIs need to be appropriately inter-linked.

This service inter-linking is particular to the logic of the application using the travel plan service.

If, for instance, the requirements of the application change or need to be adjusted, then a service

like travel plan will have to be re-specified and recreated by possibly inter-linking additional or

modified service interfaces. This approach leads to a proliferation of service APIs and results in

unmanageable and cluttered solutions.

To address this limitation of web service technology, we introduce in this paper the concept of

service component. Aim of a service component is to raise the level of abstraction in web services

by modularising synthesized service functionality and by facilitating web service reuse, extension,

specialization and service inheritance. Service components represent modularized service-based

applications that package and wire together service interfaces with associated business logic into

a single cohesive conceptual module. These modules can be extended, specialized, parameterised,

customized, and generally inherited, to assist in the creation of new applications. Service compo-

nents package together a number of related service messages and functionality, provided by diverse

service providers, into a self-contained software module (called the service component class). This

module exposes a well-defined interface and contains the business (or composition) logic that is

responsible for inter-linking the service message and operation interfaces of the disparate services

contained in it. In contrast to the service component interface that is public, the business logic

that helps inter-link the services contained in a service component is private. Therefore, service

components can be encapsulated (made discrete) and can be connected together to create more

complex, highly-functional applications by means of reuse, extension, restriction, parameterization

or specialization.

The paper is organized as follows. Section 2 presents the concept of service component while

section 3 presents a framework for service composition that supports the phases of service com-

position and facilitates the development of applications and composite services in terms of service

components. Section 4 discusses the different aspects of service composition, explains how basic

composition logic can be derived, and introduces the Service Composition Specification Language

(SCSL) that provides an XML-based implementation script for service component classes. Section

5 outlines the features of the Service Scheduling Language (SSL) and Service Composition Execu-

tion Graph (SCEG) that are used for managing the scheduling and execution of service activities,

respectively. In section 6 we describe how SCSL, SSL and SCEG work together to fulfil the ser-

vice life-cycle phases of definition, scheduling, construction and execution. Prototype development

activities are discussed in Section 7, while Section 8 presents related research work and summa-

rizes our main contributions. Finally, section 9 concludes the paper and presents future research

directions.

3

2 Service components

Normally composite services are developed by hard-coding business logic into application programs.

The development of business applications would be greatly facilitated if methodologies and tools

for supporting the development and delivery of composite services in a coordinated and effectively

reusable manner were to be devised. Some preliminary work has been conducted in the area of

service composition, mostly in aspects of composition modelling and workflow- like service inte-

gration [5], service conversation [15], and B2B protocol definition [4]. However, these approaches

are either not flexible or too limited as they lack proper support for reusability, extensibility, and

specialization.

2.1 General Characteristics

Services should be capable of combination at different levels of granularity. Furthermore, composite

services should be able rely on facilities that provide support for service synthesis and orchestration

on the basis of constituent service reuse, inheritance and specialization. Therefore, before complex

applications can be built out of composite services, we need to address a fundamental aspect of

service composition: composition logic. Composition logic dictates how the component services

can be combined, synchronized, and co-ordinated. Composition logic forms a sound basis for

expressing the business logic that underlies business applications. In current web service standards

and implementations, e.g., the BPEL, composition logic is kept apart from its associated service

interface specifications.

In the service component framework we present in this paper, we remedy this situation: process

structure, partner roles, portTypes, etc, which are all specified in BPEL, are encapsulated as

composition logic and together with their associated service interface specifications are uniformly

represented as an abstract service component class. The interface is used to specify the publicly

accessible behaviour of the service component. The service component interface is a set of operations

offered to the service component invokers. The service component interface is constructed out of

existing constituent service interfaces or extensions/specializations thereof. A service component

can thus be viewed as a high-level self-contained composite service that presents a public interface

and includes a private part comprised of the composition constructs and logic that are required

for its manifestation. The public interface definition provided by a service component describes its

messages and operations. The service component messages and operations can be published and

then searched, discovered, and used just like any normal web service. The encapsulated composition

logic and construction scripts that administer the combination of distributed web service messages

and operations into a unique service composition class are private (internal and thus non-visible)

to a service component.

A delivered service component can be specialized or extended to accommodate new desirable

4

functionality or to allow selective modification of already existing functionality. This concept is

known as dynamic inheritance [12]. In summary, in contrast to conventional web services, a service

component follows object-oriented principles such as encapsulation (for a business concept, be it

entity or process), instantiation, generalization and specialization (not currently supported by web

service technology) and plugs into an environment that provides a compatible ”socket”.

2.2 Representing service components as abstract classes

Service components are a packaging mechanism for developing web service based distributed ap-

plications in terms of combining existing (published) web services. Service components have a

recursive nature in that they can be composed of published web services while in turn they are also

considered to be themselves web services (albeit complex in nature).

To be able to reuse, specialize, and extend services, we rely on the definition of a service

component class. A service component can be specified in two isomorphic forms: the definition of

an abstract service component class and an equivalent XML version that corresponds and conforms

to the class definition of a service component. WDSL/BPEL compliant service components are

defined in terms of an XML-based sub-language, which we name Service Composition Specification

Language (SCSL).

The SCSL version of a service component is used to describe in XML/WSDL concrete service

components, mappings to and between constituent services contained in service components and,

in general, implementing executable processes out of abstract class definitions. These issues are

of no concern to an application developer who wishes to see and use a high-level abstract speci-

fication of services and processes free of mapping and implementation details. Consequently, the

abstract service component class definition is used for reuse, extension, specialization, and version-

ing purposes, whereas its corresponding XML/WSDL, form, viz. SCSL, is used for construction

purposes, distributed message exchange, remote service invocation and execution, as well as for

communication across the network.

The abstract class definition of a service component takes the following form:

ServiceComponentclass ServiceComponentName {

Definition

** message and operation definitions **

Construction

** how activities are scheduled **

PortType

** link activities with portType specified in WSDL **

MessageHandling

** define how messages are decomposed, composed, and mapped **

Provider

5

** link portTypes with service providers **

}

The class definition for a service component provides five ingredients that can be seen as the

basis for expressing service reuse and specialization. These are: Definition, Construction,

PortType, Provider, and MessageHandling. With the concept of service component, the process

of developing web service compositions becomes a matter of reusing, specializing, extending and

possibly customizing available service components. This enables a great deal of flexibility and

reusability of service compositions and delivers highly-functional applications.

Service components normally comprise two inter-related parts. They comprise a typical business

process that operates on specific entity (data) components in a particular business domain. A

business process is a set of logically related tasks performed to achieve a well defined business

outcome [22]. An automated business process is a precisely choreographed sequence of activities

systematically directed towards performing a certain business task to completion. For example,

processing a credit claim, ordering goods from a supplier, creating a marketing plan, processing and

paying an insurance claim, and so on, are all examples of typical business processes. An activity,

which coincides with service portTypes and operations in a web service, is an element that performs

a specific function within a process. Activities can be as simple as sending or receiving a message,

or as complex as coordinating the execution of other processes and activities. Entity components

provide entity services - often eminently re-usable data elements in different processes. An entity

component may ”own” a specific set of logical database tables, so separating the enterprize data

and its schemas from the process business logic. Aside from providing read and update services

to processes, they can also manage validation of data related to themselves. Entity components

provide private data services to service components, and thus are not visible as an external web

service. The advantage of this approach is that it separates concerns between process and entity. For

example, a Sales Order entity component manages all the data aspects of a sales order, including

data validation, while a Sales Order service component is all about providing services to manage

and process sales orders. This not only reduces dependencies, but also reduces the complexity of

process service components. In addition, complex entity components become eminently re-usable

at run-time, so reducing maintenance and testing when service components need to be updated.

In the following we will concentrate only on the process nature of service components as the

data handling part follows well-known practises from the object-oriented world. In particular, in

this paper we will concentrate on how service components are used for composite service definition

and construction. The contribution of this paper is three-fold:

• it proposes the concept of a service component for creating composite services via reuse,

specialization, and extension;

• it introduces an XML-based light-weighted specification language and class definition for

6

service components that can be used for service component definition, construction, and

execution. The specification language is conformant with BPEL;

• Finally, it provides an integratedframework for web service composition development, which

manages the entire life-cycle of service composition, viz. definition, scheduling and execution.

Service component classes and SCSL are revisited in section-4 where we explain how services

are materialized.

3 Service composition: An overview

With the rapid expansion of web service related applications in fields such as e-business, e-government

and e-health, there is a clear need for infrastructures and frameworks that can be used to develop

applications on the basis of web service compositions. In this section we first analyze the nature

of service composition and introduce a framework for service composition and application devel-

opment based on web services. Subsequently, we illustrate the characteristics of composition logic

that lays the foundation for creating service components.

3.1 Service composition categories

It is obvious that service composition is far more than merely an interoperability problem. The real

challenge in service composition lies in how to provide a complete solution. This means developing

a toolset that manages the entire life cycle of service composition. This comes in contrast to

solutions provided by classical workflow integration practices, where service composition is pre-

predetermined and pre-specified, has narrow applicability and is almost impossible to specialize

and extend.

Web service composition falls under three major categories:

• Explorative composition: This category requires that service compositions are generated on

the fly on the basis of a request expressed by a client (application developer). The client

specifies the desired service functionality in a high-level request language and the ensuing

services are then compared with potentially matching UDDI published constituent service

specifications. The matching process may generate a series of feasible service composition

alternatives. These alternative service compositions can be ranked or can be chosen by service

clients on the basis of non-functional criteria such as availability, cost or performance. This

type of service composition requires that the composite service is dynamically orchestrated

out of constituent services.

• Semi-fixed composition: Semi-fixed compositions require that the entire service composition

is specified statically but the actual service bindings are decided at run time. When a com-

7

posite service is invoked, the actual composition specification is generated on the basis of a

matching between the constituent services that are specified in the composition and possibly

available services. In this case, the definition of the composite service is registered in a service

composition repository, and can then be used just as any other normal service i.e., it can be

searched, selected, and combined with other web services.

• Fixed composition: A fixed composite service requires that its constituent services be syn-

thesized in a fixed (pre-specified) manner. The composition structure and the component

services are statically bound. Requests to such composite services are performed by sending

sub-requests to its constituent services.

3.2 Service composition life-cycle

This paper advocates a phased approach to service composition. The activities in this phased

approach are collectively referred to as the service composition life-cycle. The purpose of these

activities, or phases, is to first describe services in the abstract and then to generate executable

service processes from these abstract specifications. Abstract service descriptions can be either

derived from a request specified in a high-level language (explorative compositions) or by a client

specified service definition (semi-fixed and fixed compositions). Hence, the service composition

life-cycle spans all three modes of service composition and is characterized by the following five

phases:

1. Planning phase: the planning phase assists in determining the series of service operations

(or planned activities) that need to be retrieved and aggregated in order to satisfy a given

user supplied service request. A service request language provides for a formal means of

describing desired service attributes and functionality, including temporal and non-temporal

constraints between services, and scheduling service preferences. Service requests and planned

activities are executed on the basis of information supplied by a domain model. Each vertical

marketplace domain model includes [1]:

• A standard business processes that formally describe business interactions between or-

ganizations. In the world of web services business processes are published via directories

such as the UDDI.

• A document model for defining structured XML business documents exchanged between

trading partners or service requesters and providers over the Internet. This includes

request (input) and reply (output) business documents for business actions that are

part of standard business processes.

The planning phase is used only in conjunction with explorative compositions.

8

UDDI

Enquiry
API

service fingerprint
& binding info.

find_tModel()
get_tModel()

service return
details

Definer

•Check domain model
•Match request
•Sequence planned activities

•Abstract specification of
composite services

•Service execution

Executor

Selected service
compositions

•Service composability assessment
•Service synchronization
•Service prioritization
•Construction of concrete services

Planner

Scheduler

Service composition
alternatives

Service
component
repository

Service
request Domain Model

XML
domain

schemas

Business
Process

specification

XML
return

schemas

Input & return parameters,
activity sequences

WSDL & BPEL
definitions

Published service
compositions

Figure 1: Phases involved in an explorative service composition.

2. Definition phase: the definition phase allows defining abstractly composite services. Com-

posite service definitions employ WSDL in conjunction with a language that allows defining

business processes by orchestrating web services, viz., BPEL. In the case of service compo-

nents, abstract service component classes can be employed during this phase.

3. Scheduling phase: the scheduling phase is responsible for determining how and when services

will run and preparing them for execution. Its main purpose is to give concrete definitions to

the constructs supplied by the definition phase by composing abstract services, by assessing

their composability and conformance capabilities, by correlating messages and operations, and

then by synchronizing and prioritizing the execution of constituent web services according to

their definition. During this phase alternative composition schedules may be generated and

proposed to the application developer for choice.

4. Construction phase: The outcome of this phase is the construction of a concrete and unam-

biguous composition of services – out of a set of desirable or potentially available/matching

constituent services – that are ready for execution.

9

5. Execution phase: the execution phase implements composite service bindings on the basis of

the scheduled service composition specifications and executes the services in question.

UDDI

Enquiry
API

service fingerprint
& binding info.

find_tModel()
get_tModel()

service return
details

Definer

•Service execution

Executor

Selected service
compositions

Scheduler

Service composition
alternatives

Service
component
repository

Abstract service component
class definitions

WSDL & BPEL
definitions

Published service
compositions

•Abstract specification of
composite services

•Service composability assessment
•Service synchronization
•Service prioritization
•Construction of concrete services

Figure 2: Phases involved in semi-fixed and fixed service composition.

Figure 1 depicts the service life-cycle phases required for an explorative service composition.

We assume that this procedure is initiated by a client who is aware of the format of the input

and the output parameters defined in the XML schemas (document model) and the standard

business process specifications for a particular domain. The planner module checks the consistency

of the request with respect to the business process specification by finding appropriate paths of

activities (service operations) potentially satisfying the client request. If the request is consistent

with the domain model specifications, a set of activities is returned for further processing. The

planner returns activity paths along with the business process specification that could potentially

satisfy the client request. Subsequently, the service definition (definer) module constructs abstract

WSDL and BPEL service definitions for the planned activity sequences. These are then passed

to the scheduler module. The scheduler needs to interact first with the service providers to be

able invoke the service operations specified in the abstract definitions. The scheduler makes the

10

abstract definitions concrete by first appropriately invoking the UDDI enquiry API. For this purpose

the scheduler calls the enquiry UDDI operations to find and get detail of the UDDI API to

retrieve detailed information about the service port-types, elements and bindings of the services.

The scheduler searches the UDDI for the services required and uses the information found in

the UDDI registry to establish the particular invocation pattern needed for the specific service

being employed. Subsequently, the scheduler correlates the constituent services and checks for

compatibility. Alternative service compositions, based on non-functional service characteristics,

such as performance, security and pricing models, are then proposed to the client for selection

and approval. Finally, once the selected services are made concrete, they are stored in a service

repository for future use and passed to the executor module for execution.

Figure 2 depicts the phases required for semi-fixed and fixed service composition that are the

two service composition schemes used in conjunction with service components. Semi-fixed and fixed

service composition is a much simpler affair when compared explorative service composition. Semi-

fixed and fixed service composition does not require any planning activities as the client provides

composite service definitions in the form of abstract service component classes that are further

processed by the scheduler.

Explorative service composition and service composition planning has been studied in [1]. In

this paper we concentrate on how service components can be used in the context of semi-fixed and

fixed service compositions.

3.3 Composition logic

Service components are used as building blocks for generating web applications based on packaging

together composed service functionality. Consequently, the process of web service composition

becomes a matter of reusing, specializing, and extending the available service components. This

enables a great deal of flexibility and reusability of service compositions. To understand this

procedure we need to examine the inner structure and inner workings of a service component.

Figure 3 depicts the ingredients of a service component. It illustrates that a service component

presents a single public interface to the outside world that is constructed in terms of a uniform

representation of the operation signatures, message types, and portTypes of its constituent services.

A service component contains a composition logic part that specifies internally how it is constructed

out of constituent web services in terms of composition type and message dependency constructs.

Composition logic refers to the manner according to which a service component is constructed in

terms of its constituent services. Here, we assume that all publicly available services are described

in WSDL. Composition logic comprises the following two constructs:

• Composition type: this construct signifies the nature of the composition, which can take one

of two forms:

11

– Order: this construct indicates whether the constituent services in a composition are

executed in a serial or parallel manner.

– Alternative service execution: this construct indicates whether alternative services can

be invoked in a given service composition. Alternative services can be tried out either

in a sequential or in a parallel fashion.

• Message dependency: this construct signifies the types of message dependency between con-

structs of the constituent services within a service component as well as message dependencies

between constructs of the constituent services and those of their surrounding service com-

ponent. We distinguish between three types of message dependency handling mechanisms

necessary for service composition:

– message synthesis: this construct combines the output messages of constituent services

to form the output message of a composite service.

– message decomposition: this construct decomposes the input message of the composite

service to generate the input messages of its constituent services;

– message mapping: this construct specifies input/output mappings between its con-

stituent services. For example, the output message of one constituent service could

be the input message of another service.

Examples of message dependency are given in section-4.3 and Figure 6.

At this stage what remains to be examined are the core service component constructs for

expressing composition logic, how they are defined and how they can be reused and specialized.

These issues are addressed in the following section.

4 Materialization of service components

In this section, we first present the basic constructs for expressing composition logic and then

demonstrate how service components are specified in terms of abstract service component classes

and their equivalent SCSL version.

4.1 Basic constructs for service composition

The following basic composition types have been identified to serve as a sound basis for representing

service compositions [29]:

1. Sequential service composition (sequ): With this type the constituent services are in-

voked successively. The execution of a constituent service depends on its preceding service,

i.e., a new service cannot begin unless its preceding service has committed. For example,

12

Service Service ComponentComponent

Interface specificationInterface specification

Composition logicComposition logic

Construction SpecificationConstruction Specification

Composition
Type

Message
Dependency

Web ApplicationsWeb Applications

Service
Component
Repository
(Library)

Service
Component
Repository
(Library)

Figure 3: Service component ingredients.

when a composite service such as travel plan - composed of an ticket booking service,

a hotel booking service, and a car rental service - suggests a travel plan to a customer,

the execution order should be ticket booking, hotel booking, and car rental. The in-

vocation of the hotel booking service dependents on a successful execution of the ticket

booking service because without a successful ticket booking, a hotel booking can not go

ahead.

2. Sequential alternative composition (seqAlt). This type indicates that alternative ser-

vices could be part of the composition and that these are ordered according to some criterion

(e.g., cost, time, etc). Alternative services are attempted in succession until one of them

succeeds.

3. Parallel service composition. In this situation, all the component services may execute

independently. Here, two types of scenarios may prevail:

(a) Parallel with result synchronization (paraWithSyn). This situation arises when

the constituent services can run concurrently, however, the results of their execution need

to be combined. For example, the services restaurantReservation and sightseeingBooking

can be executed in parallel; however, they need to execute to completion and their results

need to be combined in order to obtain a valid itinerary for the day.

13

messageSynthesis messageDecomposition messageMapping
sequ X X X

seqAlt X
paraWithSyn X X X

paraAlt X
condition X
while do X

Table 1: Message handling constructs for service composition.

(b) Parallel alternative composition (paraAlt). With this type of composition alter-

native services are pursued in parallel until one service is chosen. As soon as a service

succeeds the remainder are discarded.

Although the above basic types of composition are adequate for representing the most common

features of service composition, two ancillary control constructs are required to make the composi-

tion logic complete: condition and while do. The former is used to decide which execution path

to take while the latter is a conventional iteration construct.

The various composition types may result in different message dependencies and hence require

different message handling capabilities. Table 1 summarizes the message dependency handling

constructs required for the different types of service composition.

The basic composition types in conjunction with message dependency handling constructs pro-

vide a sound basis for developing the composition logic in a service component.

Similar basic routing mechanisms such as sequential and parallel for use in distributed compu-

tations and workflows can be found in [21]. The main difference between this publication and the

work reported herein is that this publication discusses basic constructs for control flow execution,

whereas in this paper the basic routing constructs are used as part of the abstraction mechanism

for realizing the composition logic for service components.

4.2 The service component class library

Service component classes are abstract classes used as a mechanism for packaging, reusing, special-

izing, extending and versioning web services by converting a published WSDL specification into an

equivalent object-oriented notation. Any kind of web service (composite or not) can be represented

as a service component class advertised by a given service provider and can thus be used in the

development of distributed service applications.

In Figure 4 we define a service component class for a composite service named TravelPlan that

describes ticketBooking and hotelBooking activities. The Definition construct defines the

two messages tripOrderMsg and tripResMsg and one public operation travelPlanning. The two

messages are input and output of the operation travelPlanning. The statement Construction

specifies the manner in which the two activities are composed. The construct PortType specifies

14

ServiceComponentClass TravelPlan {

Definition

TripOrderMessage tripOrderMsg

TripResultMessage tripResDetails

TravelPlanning (in tripOrderMsg, out tripResDetails)

Construction

sequ(ticketBooking, hotelBooking)

PortType

ticketBookingPT.makeRes ticketBooking

hotelBookingPT.makeBooking hotelBooking

Provider

TicketBookingProvider ticketBookingPT

HotelBookingProvider hotelBookingPT

MessageHandling

messageDecomposition(TravelPlanning.tripOrderMsg,

ticketBookingPT.makeRes.ticketBookingMsg,

hotelBookingPT.makeBooking.hotelBookingMsg)

messageSynthesis(ticketBookingPT.makeRes.e-ticket,

hotelBookingPT.makeBooking.hotelBookingDetails,

TravelPlanning.tripResDetails)

}

Figure 4: A service component class definition.

the port types and operations that the activities refer to. In this example, operation makeBooking

of PortType hotelBookingPT and operation makeRes of PortType ticketBookingPT are used for

the activities hotelBooking and ticketBooking, respectively. The construct Provider defines

the web service providers that provide these service activities. The construct MessageHandling

defines a message dependency among the service component operations and their constituent activ-

ities. For example, the construct messageDecomposition decomposes the message tripOrderMsg

of operation TravelPlanning into two input messages hotelBookingMsg and ticketBookingMsg

of hotelBookingPT.makeBooking and ticketBookingPT.makeRes, respectively. Note that the

input/output message of port type operations are defined in WSDL.

Using the class definition of a service component, we can reuse and specialize it much in the

same way that object oriented systems do. For example, if we need to provide an additional activity

sightseeing that runs after the two existing activities ticketBooking and hotelBooking, we can

define a new service component NewTravelPlan as a subclass of the existing TravelPlan service

component as follows:

ServiceComponentClass NewTravelPlan SubclassOf TravelPlan {

Construction

sequ(ticketBooking, hotelBooking, sightseeing}

PortType

sightseeingPT.sightseeing sightseeing

Provider

sightseeingProvider sightseeingPT

MessageHandling

messageDecomposition(TravelPlanning.tripOrderMsg,

15

ticketBookingPT.makeRes.ticketBookingMsg,

hotelBookingPT.makeBooking.hotelBookingMsg,

sightseeingPT.sightseeing.sightseeingBMsg)

messageSynthesis(ticketBookingPT.makeRes.e-ticket,

hotelBookingPT.makeBooking.hotelBookingDetails,

sightseeingPT.sightseeing.sightseeingRes

TravelPlanning.tripResDetails)

}

In this example, the constructs Construction and MessageHandling are refined in the subclass

NewTravelPlan while the constructs PortType and Provider are extended. More details about

how service components can be reused and specialized can be found in [30].

Service Component
class

<<uses>> <<uses>>

isa

Service Component
construction class

Service Component
creation class

Service Component
application class

<<uses>>

Sequ SeqAlt ParaWithSyn ParaAlt If_then_else While_do

Figure 5: Primitive class constructs.

The service component class library is a collection of general purpose and customized service

component classes, e.g., TravelPlan, that are used in the context of service component based

applications. These classes employ the primitives and constructs discussed in the previous section.

The service component library also contains a set of primitive classes that act as abstract data types

i.e., they cannot be instantiated. These primitive classes provide basic constructs and functionality

that can be further specialized according to the needs of an application resulting thus in highly-

functional web-service based applications. A distributed web application can be build by re-using,

specializing, and customizing the service component library classes. The primitive classes of the

service component library include the following constructs:

16

• service component creation class: this primitive class is used for creating service component

classes out of WSDL/XML specifications. Service component classes for registered web ser-

vices defined in WSDL/XML are created by using construction classes. This implies that

Definitions, Construction, PortType, MessageHandling, and Providers will be gen-

erated for the service component classes.

• service component construction classes: this class provides the semantics and functions to

implement the composition constructs discussed in the previous section. These primitive

classes are: sequ, seqAlt, paraWithSyn, paraAlt, if then else, and while do. The

construction classes are used for building new service components.

• service component application class: this class is used as a basis for developing distributed

application programs that employ service components. As application program classes are

essentially service components, they can also be reused, specialized, and extended.

The example illustrated in Figure 4 is a service component application class. The primitive

class constructs and their relationships are summarized in Figure 5.

Interacting service components and services (across the network) can only communicate on the

basis of exchanging XML Web service specifications and SOAP messages. Thus although service

component classes serve as a means for specification and reusability they need to be converted to

an equivalent XML representation in order to be transmitted over the network. For this purpose

we use the SCSL version of a service component class, which is presented in the next section.

4.3 Service component specification in XML

There are two parts in an SCSL definition: the interface of the composite service specified in its defn

part and the construction of the composition logic is specified in its construct part, (see Figure 6).

These are isomorphic to the Definition and Construction parts of a service component shown

in Figure 4. The construct part of an SCSL definition consists of a compositionType, a series of

activities, and message handling constructs. Activities are internal (non-visible) elementary tasks

that need to be performed to attain a certain service component operation. These are executed

remotely in the web sites hosting the web service constituents. The composition type in SCSL

specifies the nature of activity execution according to the discussion presented in section-4.1, while

message handling specifies how service and activity messages are processed.

SCSL is designed to comply with the web service standards. In other words, we adopt the same

conventions as WSDL [27], e.g., the SCSL construct PortType coincides with the WSDL construct

portType and is used for grouping operations. Operations represent a single unit of work for the

service being described. The example of travelPlan illustrated in Figure 6 is an WSDL/XML

equivalent of the service component class illustrated in Figure 4 and provides a single PortType

17

<webService name="travelPlan">

<!--== Message definition ==-->

<definition>

<message name="tripOrderMsg">

<part name="ticketBookingMsg" element="ticketBooking"/>

<part name="hotelBookingMsg" element="hotelBooking"/>

</message>

<message name="tripResDetailsMsg">

<part name="e-ticketMsg" element="e-ticket"/>

<part name="hotelBookingDetailsMsg" element="hotelBookingDetails"/>

</message>

</definition>

<!-== The composite service interface definition ==-->

<defn>

<portType name="travelPlaner">

<operation name="travelPlanning">

<input message="tripOrderMsg"/>

<output message="tripResDetails"/>

</operation>

</portType>

</defn>

<!--== The composite service implementation details ==-->

<construct>

<composition type="sequ">

<activity name="ticketBooking">

<input message="ticketBookingMsg"/>

<output message="e-ticket"/>

<performedBy serviceProvider="Disney Land"/>

<use portType="ticketBookingPT" operation="makeRes"/>

</activity>

<activity name="hotelBooking">

<input message="hotelBookingMsg"/>

<output message="hotelBookingDetails"/>

<performedBy serviceProvider="Paradise"/>

<use portType="hotelBookingPT" operation="makeBooking"/>

</activity>

<messageHandling>

<messageDecomposition>

<source message="tripOrderMsg"/>

<target message="hotelBookingMsg" query="Query1"/>

<target message="ticketBookingMsg" query="Query2"/>

</messageDecomposition>

<messageSynthesis>

<source message="hotelBookingDetailsMsg"/>

<source message="e-ticketMsg"/>

<target message="tripBookingDetailsMsg" query="Query3"/>

</messageSynthesis>

</messageHandling>

</composition>

</construct>

</webService>

Figure 6: Service composition specification language of class in Figure 4.

18

named travelPlaner with one operation travelPlanning. The activity hotelBooking uses the

operation makeBooking of port type hotelBookingPT, while the activity ticketBooking uses the

operation makeRes of port type ticketBookingPT.

We also specify how input and output messages of constituent service operations are linked from

(to) those of the composite service. Here we provide the three message handling types: (1) message

synthesis, (2) message decomposition, and (3) message mapping. For example, the input mes-

sage of the composite service travelPlan called tripOrderMsg is decomposed into two messages:

the input message hotelBookingMsg of constituent operation of makeBooking and input message

ticketBookingMsg of constituent operation makeRes. The output message hotelBookingDetails

of the constituent operation makeBooking and the output message e-ticket of the constituent op-

eration makeRes are composed into the output message tripResDetails of the composite service

travelPlan in the messageSynthesis part.

To guarantee consistent handling of messages and operations between distributed web services

provided by diverse providers, standard naming schemes and business processes must be employed.

This is common practise in vertical e-marketplaces, such as chemicals, travel industry, pharmaceu-

tical, semiconductors, etc, where service components can be deployed. For instance, in the business

domain of e-travelling the open travel agency (OTA, www.opentravel.org), has specified a common

naming scheme (ontology) and a set of standard business processes for searching for availability

and booking a reservation in the airline, hotel and car rental industry, as well as the purchase of

travel insurance in conjunction with these services. OTA specifications use XML for structured

data messages to be exchanged over the Internet. In this paper we adopt a similar philosophy and

assume that all message and operation names as well as process specifications are standard and

OTA conformant.

In order to be able to specify how messages between service components and their constituent

services are mapped to each other, the following three queries, based on XQuery syntax [28], are

used:

Query1:

<hotelBooking>

for $hb in (document($tripOrder.xml)//hotelBooking)

return

$hb

</hotelBooking>

Query2:

<ticketBooking>

for $tr in (document($tripOrder.xml)//ticketRes)

return $tr

</ticketBooking>

Query3:

<tripResDetails>

for $hbd in (document($hotelDetails.xml))

19

return $hbd

</tripResDetails>

<e-ticket>

for $et in (document($e-ticket.xml))

return $et

</e-ticket>

In each query specification, an input document must conform to a source message type in an

SCSL definition. In addition, a return document must conform to a target message type in an

SCSL definition. For instance, in Query1, the document variable tripOrder.xml is of message type

tripOrderMsg, and the result document must be of message type hotelBookingMsg.

A similar idea is also used in [17]. This publication discusses how a data-centric service can

be integrated by means of input schema decompositions and output schema compositions. In this

paper, an integrated input XML schema is constructed from any constituent (data) service input

schema or from the sequential composition of these input schemas. Each output XML schema is

synthesized out of the output schemas of the constituent services and is specified in a template

based on XML-QL syntax [9].

The BPEL standard also follows a similar philosophy. In BPEL specifications, data mappings

and correspondence among services are specified in XPath based queries.

Although the above example is based on sequential composition, other types of service compo-

sitions can be specified in a similar fashion. Note that the code snippet in Figure 6 is a simplified

version of the SCSL and serves only for illustration purposes. Binding specifications are not in-

cluded in this figure. The complete XML schema of SCSL can be found in Appendix-A.

5 Service composition scheduling and execution

As already explained in section-3.1, service compositions in a service component need be scheduled

and generated according to a client provided abstract definition. This means that the abstract

SCSL definitions in Figure 6 need to be converted into an intermediate representation that can

be handled by the scheduler, (see Figure 2). With this in mind, we have developed a Service

Scheduling Language (SSL) that specifies how a service component is built up in terms of its

constituent services by considering how they are inter-related, for instance, by taking into account

their execution order and dependencies. Concrete service component definitions specified in SSL

result in a service execution structure represented in the form of a Service Composition Execution

Graph (SCEG). The SGEC is then passed to and executed by the executor module in Figure 2. In

the following, we will first introduce the concepts underlying the SSL and SCEG by means of our

running example and then we will present their formal characteristics.

Figure 7 illustrates how a composite service called HolidayPlan can be scheduled in SSL by

combining three component services hotelBooking, restaurantReservation, and sightseeing.

20

In this example, we specify that hotelBooking and restaurantReservation have to run sequen-

tially, and there is data dependency between them, i.e., the location of the hotel determines the

location of the restaurant, while Sightseeing can run in parallel with the two services.

Composition holidayPlanning

C1: sequ (hotelBooking, restaurantReservation)

mapping (hotelBooking.location = restaurantReservation.location)

C2: paraWithSyn (C1, sightseeing)

Figure 7: Service Scheduling

hotelBooking restaurantReservation

sightseeing

C1: seqWithInteraction
restaurantReservation.location =
hotelReservation.location

holidayPlan:
paraWithSyn

Figure 8: The Service Composition Execution Graph

SSL provides a simple light-weight but powerful mechanism for service composition nesting and

substitution, composition extension, and dynamic service selection. The formal syntax specification

of SSL in BNF can be found in Figure 9.

There are two aspects of SSL which make it flexible and extensible: (1) a labelling system

that can be used to label any composition. The labels can be used in any place where services

(operations) are required. We can build a composition schedule recursively by labelling existing

compositions; (2) variables and macros that can be used in the place where the service (operation)

and composition types (such as sequential, paraWithSyn etc) are required. This second (and

conventional) aspect SSL of is not discussed in this paper due to space limitations.

21

<SSL> ::= <statement>+

<statement> ::= <label> ":" <planExpr>

<planExpr> ::= <compositionType> "(" <compositionPara> ")"

<mappingExpr>

<compositionType> ::= "seqNoInteraction" | "seqWithInteraction" |

"seqAlt" | "paraWithSyn" | "paraAlt" |

"condition" | "while_do" | variables

<compositionPara> ::= <paraExpr> "," <paraExpr>*

<paraExpr> ::= <label> | <planExpr> | <serviceIdentifier>

<mappingExpr> ::= "mapping" "(" <mappingElem> "," <mappingElem>*

")"

<mappingElem> ::= <message>+ "->" <message>+

<label> ::= string_literal

<variables> ::= string_literal

<serviceIdentifier> ::= the existing service identifier

Figure 9: The formal syntax specification of SSL

SCEG is generated on the basis of an SSL specification. Figure 8 depicts the SCEG representa-

tion corresponding to the SSL specification in Figure 7. Formally speaking, an SCEG is a labelled

DAG P =< N,A, spe > where N is a set of vertices, A is a set of arcs over N , such that

• for every service used in SSL, we create a vertex;

• for v ∈ V , spe(v) represents the type of composition and the mapping specification;

• for u, v ∈ V , if u is used in v for composition, we introduce an arc u → v.

6 Service composition: a complete picture

In this section, we explain how the SCSL, the SSL and the SCEG work together to create service

compositions. Recall that as already stated in section-3.1, we will concentrate on service component

definition, scheduling, construction and execution.

6.1 Definition and scheduling

The definition and scheduling phases involve abstract service definition, service discovery, compos-

ability and compatibility checking, and synchronization. The output of these two phases is a series

of concrete service composition alternatives specified in SSL for user selection and approval.

To exemplify these two phases we assume that we are dealing with an abstract service component

class definition called holiday plan that is similar to, but slightly more complicated than the class

22

travel plan illustrated in Figure 4. We also assume that its isomorphic SCSL version has been

derived and has the following simplified form:

<HolidayPlan>

<input message="holidayBookingMsg>

<output message="holidayBookingDetails>

<paraWithSyn>

<sequ>

<activity name="ticket booking"/>

<activity name="hotel booking"/>

<activity name="restaurant reservation"/>

<mapping="ticketBooking.date=hotelBooking.date">

<mapping="restarurantReservation.location=hotelBooking.location">

</sequ>

<activity name="sightseeing"/>

<synthesis="holidayBookingDetails=ticketBookingRes

+restarurantReservationRes+sightseeingRes">

</paraWithSyn>

</Holiday Plan>

This definition can realized provided that we find the services that match the required activities.

For service discovery, it is important to find an appropriate service with the right capability. Service

discovery relies on the following steps:

• Semantic relatedness: during this step, the requested service is compared against service

descriptions found in a repository (UDDI or service component library) to determine how

closely related they are. Services with a high degree of relatedness will be selected as relevant

services for subsequent capability checking.

• Capability analysis: the capabilities of the services selected from the previous step are checked

in terms of the functionality they provide to determine whether they can accomplish com-

pletely or partially the tasks of the requested service.

• Syntactic analysis: matching services have their syntax of their interfaces checked to deter-

mine how they can be combined to achieve the requested higher-order service component

functionality.

Currently, service discovery is conducted by interacting with UDDI to find details regarding the

technical capabilities of the required services. For this purpose the find and get Detail operations

of the UDDI enquiry API are used. These operations are used to discover and retrieve the technical

fingerprint that can be used to recognize a web-service that implements a particular behaviour or

its programming interface. This procedure is described in section-3.1. If UDDI and WSDL are used

together, the overviewDoc element of the tModel, that is used to provide an overview description

of the tModel and its intended use, is a WSDL service interface definition.

23

In addition the service component repository is checked to ascertain whether there exist service

components that can form the basis for reuse or extension in the composition. In this way we avoid

developing service compositions from scratch as much as possible.

Once a candidate service is found on the basis of the first two steps discussed above, the

ensuing web services (or service components), which can be used to perform the actions specified

by scheduler, need to be analyzed to determine their syntactic compatibility and their conformance.

To understand service conformance and compatibility issues we first need to give a formal definition

of web services, which is given below.

A web service (S) can be represented as a triple: < C,A, P > where C, A, P stand for

contents, activities (capabilities), and properties, respectively. Contents refer to what the service

is about. Activities are a set of operations the service provides. Properties refer to some end point

information about the service such as payment methods, cost, etc. C is used in conjunction with

semantic relatedness checks, A is used in capability and syntax check, while P is used for selecting

alternative composition plans.

We can identify two types of checking depending on the nature of composition: compatibility

checking and conformance checking. Service S1 is compatible with S2 when S1 is at least as capable

as S2 and S1 can substitute S2. Service S conforms to S′ when S and S′ can be combined in a

way that the output of S can be taken as the input of S′. Here, we introduce two symbols: �
for ”compatibility” and . for ”conformance”. As P does not play an important role in service

discovery, we only consider C and A for the purpose of syntactic checking.

A service can be represented as S =< C,A, P >, where ∀a ∈ A, we define a =< op, I, O >, where

op, I, and O stand for operation, inputs and outputs, respectively.

For input, we have I =< p1, . . . , pm >, and for output, we have O =< q1, . . . , qn >.,

where every pi (i = 1 . . .m) and qj (j = 1 . . . n), takes the form < name >:< type >.

Definition-1

Service S′ is compatible with S (S′ � S) if the contents of S are a subset those of S′ (S.C ⊂ S′.C)

and the activities of S′ are compatible with those of S (S′.A � S.A). This is given in definition-2.

Definition-2

Activities in Service S′ are compatible with the activities in service S (S′.A �S.A) when ∀a ∈ S.A,

if we can find an operation a′ ∈ S′.A such that a′ � a.

Definition-3

Operations a′ � a if

(1) the pre-condition and the post-condition of a′.op are equivalent to a.op,

(2) the inputs a′.I � a.I and

(3) the outputs a.O � a′.O.

In the context of web services, inputs and outputs are specified in XML schemas. We can then

24

say that an input/output XML schema schema-1 is compatible with another schema-2 if and only

if schema-1 is a supertype of schema-2. This relates to work on XML schema subtyping that can

be found in [19, 16].

Definition-4

S′ conforms to S (S′ . S) if:

(1) the contents S′C and S.C are overlapping and

(2) ∃a′ ∈ S′.A,∃a ∈ S.A such that a′.O � a.I.

To exemplify these issues, we assume that we can choose between two schedules specifying

candidate services in SSL after conformance and compatibility checking has been successfully com-

pleted. For this purpose we use the definition of the service component HolidayPlan that was

given earlier in this subsection. These two schedules are named HolidayPlan1 and HolidayPlan2.

HolidayPlan1

C1: sequential(ticketBooking, hotelBooking, restaurantReservation)

Mapping (ticketBooking.arrive_date=hotelBooking.date,

restarurantReservation.location=hotelBooking.location)

C2: paraWithSyn (C1, sightseeing)

Sythesis (holidayPlanning.schedule=C1.schedule+sightseeing.schedule)

holidayPlan2

C1: sequential (travelPlan, restaurantReservation)

Mapping (restarurantReservation.location=hotelBooking.location)

C2: paraWithSyn (c1, sightseeing)

Sythesis (holidayPlanning.schedule=C1.schedule+sightseeing.schedule)

The schedule HolidayPlan1 contains three services and defines two mappings. The first map-

ping indicates that the arrival date must be the same as the hotel check-in date. The second

mapping indicates that the restaurant and the hotel must be located at the same place. The sched-

ule HolidayPlan2 contains two services one of which is a composite service defined and constructed

as shown in Figure 6. The mapping ticketBooking.arrive date=hotelBooking.date is assumed

to be accomplished by the composite service travelPlan.

Related work on compatibility can be found in the areas of capability matching in software

agents [25] and more importantly in software component compatibility assessment [32, 2, 3]. In [25]

the authors introduce the agent capability description language LARKS and how it can be used

in matching processes. In the area of software component compatibility representative research

results can be found in [32]. This work is strictly based on syntactic specification and relates

the comparability issue to simple subtyping checks. Recent trends in this area use a declarative

language and develop a reasoning mechanisms to check component comparability [2, 3].

In this paper we use simple conventional compatibility and conformance mechanisms found

mostly in the theory of programming languages. These mechanisms can be substantially improved

by combining them with recent results in the area of software component comparability checking

25

ServiceComponentClass HolidayPlan1 subcalssof sequ, parawithSyn {

Definition

HolidaySchedule holidaySchedule;

... //public operations

Construction

parawithSyn(sequ(TicketBooking, HotelBooking, RestaurantReservation), Sightseeing);

PortType

...

Provider

...

MessageHandling

messageMapping(TicketBooking.date, HotelBooking.date);

messageMapping(RestaurantReservation.location,

HotelBooking.location);

messageSynthesizing(HolidayPackaging.holidaySchedule,

C1.TravelSchedule, Sightseeing.Schedule);

}

Figure 10: Constructing the service component class HolidayPlan1.

that appear to be particularly promising for application to the context of web services. However,

before this is accomplished further research is required.

6.2 Construction of concrete service component classes

To choose among alternative composition schedules generated by the scheduling phase, the end

point properties of the candidate constituent services (such as cost, performance, binding require-

ments) need to be assessed. Suppose that the schedule holidayPlan1 in section-6.1 is selected.

In this schedule the primitive classes sequ and paraWithSyn, see Figure 5, are then used in con-

junction to define and construct the composition and the ensuing service component class in an

incremental fashion.

Firstly services ticketBooking, hotelBooking, restarurantReservation are combined by

employing the primitive class sequ and are further extended with the necessary message types and

operations. Subsequently, the result is combined with the service sightseeing by employing the

primitive class paraWithSynto generate the application program class called holidayPlan1. The

code in Figure 10 illustrates how the concrete service component class holidayPlan1 is constructed

and defined. This concrete class definition is internally represented in SCSL.

6.3 Execution

To execute a composite service, an SCEG graph is generated. As already stated in Section 4,

the SCEG is a labelled DAG. Every node in this graph is a composite service with its children

representing constituent services. The root node denotes an entire application under execution.

The type of composition and the message dependencies are indicated in the label of the node. The

26

node in the SCEG bind to and execute web services at different sites while the overall control is

situated at the site which launches the application.

The algorithm for SCEG execution has been developed on the basis of the depth-first search.

The process of construction and execution of composite services is illustrated in Figure 11.

7 Implementation

The service component framework has been implemented into a prototype system called Service-

Com. The current prototype version is implemented in Java. It is based upon a set of widely

accepted standards: (1) WSDL [27], the implementation from IBM is used to read and write

WSDL files. (2) SOAP, an implementation from Sun is used to create and send SOAP messages.

(3) DOM, the DOM implementation from Apache is used to read and write XML files. This

implementation is part of the Java XML package, incorporated into the JDK version 1.4.

Figure 12 shows the main window of the Service-Com prototype system. The toolbar provides

access to the major functionalities of the tool. In the File menu options are provided to start with

a new web service composition, load an existing web service composition or save a created web

service composition. The Options menu enables the user to modify the settings for the tool as well

as maintaining an error log. In the Build menu the functionalities are offered with regard to the

definition, scheduling and invocation (execution) of a web service composition. The main window

itself shows the dialogue interface for creating and editing a web service composition. The general

properties of the composition can be specified, activities (service operations and portTypes) can

be added, edited or removed, and condition(s) can be specified.

For the specification and editing of an activity in a web service composition the tool provides

the activity dialogue illustrated in Figure 13. In the activity dialogue the user can specify the

general characteristics of the activity as well as its binding type, which can be either dynamic or

fixed. The dialog in Figure 13 shows an activity with a fixed binding type. In this case the user can

specify which web service is to be used. This can be done by clicking the Select WSDL interface

description file button.

This results in the opening of the view WSDL dialog, which provides an overview of the services

offered by the selected web service provider. Additional information concerning a web service, its

ports and its operations can be viewed.

Once the composition specification is created, the next step is to assemble the specified composi-

tion. During this step, a set of files are generated, which function together as a stub for composition

invocation. These files include: a SCSL file for the composition specification, Java source and bi-

nary files for the composition for each activity, and the WSDL file for the composite service. These

files can be re-used and extended for the same or similar type of composition. During the service

assembly, service inter-linking is conducted internally in terms of SSL.

27

Let G represent the graph, L(v) denote the set of children notes of v,

let spe(v).type be the type of the composition,

and let spe(v).M be the mapping specifications of the composition.

begin

for each vertex u ∈ G.V

mark(u) := ”unvisited”;

endfor;

for each vertex u ∈ G.V

if mark(u) = ”unvisited”;

DFSE(u);

endif;

endfor;

endbegin;

Procedure DFSE(v: vertex)

begin

mark(v) := ”visiting”;

for each w ∈ L(v)

if mark(w) = ”unvisited”

DFSE(w);

endif;

endfor;

mark(v) := ”visited”;

case spe(v).type = sequ

call route(sequ);

call mapping(spe(v).M);

case ... // all primitive class constructs shown in

// Figure-4 are tested and handled here.

endcase;

endbegin;

Figure 11: The Algorithm for execution of service components.

28

Figure 12: The main window of Service-Com.

The final part of the prototype deals with the invocation (execution) of a web service composi-

tion and the corresponding result handling. This part of the prototype system traverses the SCEG

paths specified for service component construction. Two Java dialogs are generated in the schedul-

ing phase, which can be used to respectively invoke a composition and display the invocation’s

results.

At this stage the prototype system provides for service component definition, scheduling, con-

struction and execution on the basis of relatively simple service reuse, and revision (restriction

and extension) mechanisms. No explicit support is provided service inheritance and specialization.

These features are currently under implementation together with an XQuery extension that handles

message mappings.

8 Related work

Most of the work in service composition has focussed on using work flows either as a engine for dis-

tributed activity coordination or as a tool to model and define service composition. Representative

work is described in [6] where the authors discuss the development of a platform specifying and

enacting composite services in the context of a workflow engine. The eFlow system provides a num-

ber of features that support service specification and management, including a simple composition

language, events and exception handling.

The workflow community has recently paid attention to configurable or extensible workflow

systems which present some overlaps with the ideas reported in the above. For example, work on

flexible workflows has focused on dynamic process modification [14]. In this publication workflow

29

Figure 13: The activity dialogue window for a fixed binding

changes are specified by transformation rules composed of a source schema, a destination schema

and of conditions. The workflow system checks for parts of the process that are isomorphic with

the source schema and replaces them with the destination schema for all instances for which the

conditions are satisfied.

The approach described in [11] allows for automatic process adaptation. The authors present a

workflow model that contains a placeholder activity, which is an abstract activity replaced at run-

time with a concrete activity type. This concrete activity must have the same input and output

parameter types as those defined as part of the placeholder. In addition, the model allows to specify

a selection policy to indicate which activity should be executed.

The work presented in [7] proposes some interesting ideas in workflow interoperation. It provides

infrastructure to support dynamic aspects in planning, scheduling, and execution by introducing

workflow schema templates. Reuse of existing workflow schema and templates can be achieved by

schema splicing. However how this approach can be used in service composition is not clear.

Work related to web-services and coordination/composability can be found in CSCW and group-

ware publications [20]. In this publication the authors examine the potential of using coordination

technology to model electronic business activities and illustrate the benefits of such an approach.

The workflow approaches provide some basic mechanisms that can be used for supporting

dynamic service co-ordination and composition. However as the authors pointed out in [4, 5],

workflow systems do not cater for the dynamic and distributed nature of service composition for two

30

reasons: (1) a common workflow modelling and management environment is impossible to achieve

especially across different enterprizes since no WfMS vendor shares the same workflow syntax and

semantics; (2) workflow systems do not offer facilities such as changing flow definitions which is

a fundamental requirement for service composition. Therefore, these solutions may work only for

semi-fixed and fixed compositions, however, they do not work well with explorative composition

which requires the service composition structure to be generated on the fly and the composition

itself to be changeable. Moreover, they do not support parameterization, reuse, specialization, and

nesting of service compositions.

Based on the above arguments [4] proposes the idea of defining B2B protocols for inter-enterprize

process execution. B2B protocols expose the public processes while WfMSs implement the private

processes of an enterprize. This approach provides an interesting way of binding private and

public processes together which lays a foundation for service description, monitoring and contracts.

However, it is not clear how these can be used in service composition.

In [5], a Composition Service Definition Language (CSDL) was proposed, which supports dy-

namic service selection, data mappings and extraction. The Composite Service Engine is very much

like a workflow engine.

Our approach differs from the above activities in the following manner:

• We propose an integrated approach towards service composition, which covers the entire

service composition life-cycle for service components spanning abstract service definition,

scheduling, construction and execution.

• The concept of service component is introduced for web service reuse, specialization, and

extension.

• During the scheduling stage, variables and macros can be introduced in the SSL that can be

used for service substitution.

• Unlike workflow schemas SCSL is a light-weight specification language in XML which can be

executed in different organizational settings without too much implementation overhead.

9 Conclusion and future work

It is obvious that service composition is not just an interoperability problem. The real challenge in

service composition lies in providing a complete solution in terms of a framework and a toolset that

manage the entire life-cycle of service composition. If this approach is not followed, solutions suffer

from the same problem as classical workflow integration practices: service composition is ad- hoc,

pre-determined and pre-specified, almost impossible to specialize and extend, and applicability is

limited to only a few narrow cases and applications.

31

In this paper, we analyzed the different forms of service composition and their essential char-

acteristics. In order to support the need for flexible, scalable, extensible service compositions, we

introduced the concept of service component that raises the level of abstraction in web services by

packaging together elementary or complex services and presenting their interfaces and composition

logic in a consistent and uniform manner in the form of customizable class definitions. Based on

the concept of service component we proposed an integrated framework that manages its entire life-

cycle ranging from abstract service component definition, scheduling, and construction of concrete

service components to their execution.

Service components are fully executable and portable between service component-conformant

environments. Service components interoperate with WSDL or BPEL conformant web services,

irrespectively whether these are represented in terms of service components or not.

The service component approach is light-weight, flexible, and leads to reusable and customizable

service components when compared with current popular workflow solutions for web services.

Future research activities concentrate on combining our previous work on service planning [1]

with the work reported herein to automatically generate service components out of service request

language expressions. In addition, we also consider how non-functional service properties, such as

price, security mechanisms, and performance, may impact the choice of service alternatives that

are generated by the scheduler.

A The Schema of SCSL

<element name="compositeService" type="compositeServiceType"/>

<complexType name="compositeServiceType">

<sequence>

<element name="defn" type="Defn"/>

<element name="construction" type="Construction"/>

</sequence>

<attribute name="name" type="string"/>

</complexType>

<complexType name="Defn">

<element name="PortType" minOccurs="1">

<complexType>

<element name="operation" minOccurs="1">

<complexType>

<element ref="wsdl:input"/>

<element ref="wsdl:output"/>

<attribute name="name" type="string"/>

</complexType>

<attribute name="name" type="string"/>

32

</complexType>

</complexType>

<complexType name="Construction">

<element name="composition">

<complexType>

<sequence>

<element name="activity" minOccurs="1">

<complexType>

<element ref="wsdl:input"/>

<element ref="wsdl:output"/>

<element name="performedBy">

<complexType>

<attribute name="serviceProvider" type="string"/>

</complexType>

<attribute name="name" type="string"/>

</sequence>

<element name="messageHandling" minOccurs="1">

<complexType>

<element name="messageMapping" minOccurs="0">

<complexType>

<element name="source">

<complexType>

<attribute name="message" type="messageType"/>

</complexType>

<element name="target">

<complexType>

<attribute name="message" type="messageType"/>

<attribute name="query" type="XQuery"/>

</complexType>

</complexType>

<element name="messageDecomposing">

<complexType>

<element name="source" minOccurs="1" maxOccurs="1">

<complexType>

<attribute name="message" type="messageType"/>

</complexType>

<element name="target">

<complexType>

<attribute name="message" type="messageType"/>

<attribute name="query" type="XQuery"/>

</complexType>

</complexType>

<element name="messageComposing">

<complexType>

<element name="source" minOccurs="2">

<complexType>

33

<attribute name="message" type="messageType"/>

</complexType>

<element name="target" minOccurs="1" maxOccurs="1">

<complexType>

<attribute name="message" type="messageType"/>

<attribute name="query" type="XQuery"/>

</complexType>

</complexType>

</complexType>

<attribute name="type">

<simpleType>

<restriction base="string">

<enumeration value="seqNoInteraction"/>

<enumeration value="seqWithInteraction"/>

<enumeration value="seqAlt"/>

<enumeration value="paraWithSyn"/>

<enumeration value="paraAlt"/>

</restriction>

</simpleType>

</complexType>

Acknowledgements: We wish to thank Bart Orriëns for the implementation of the Serv-Co

system and his constructive ideas. We also wish to thank the anonymous reviewers of this paper

for their constructive comments and criticism, which resulted in considerably improving the quality

of this manuscript.

References

[1] M. Aiello et al. A Request Language for Web-Services Based on Planning and Constraint
Satisfaction. in VLDB Workshop on Technologies for E-Services (TES02), 2002.

[2] P. Boinot et al. A Declarative Approach for Designing and Developing Adaptive Components.
in Procs of the 15th IEEE Conference on Automated Software Engineering, September 2000.

[3] P. Brada. Towards Automated Component Compatibility Assessment. in Procs of ECOOP
Workshop on Component-oriented programming, Budapest, 2001.

[4] C. Bussler. The Role of B2B Protocols in Inter-Enterprise Process Execution. Procs. of the
2nd VLDB-TES Workshop, Rome, 2001.

[5] F. Casati and Ming-Chien Shan. Dynamic and Adaptive Composition of e-services, Informa-
tion Systems, 26(2001), page 143-163, 2001.

[6] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M.C. Shan. Adaptive and Dynamic Service
Composition in eFlow, HP Lab. Techn. Report, HPL-2000-39.

[7] V. Christophides, R. Hull, A. Kumar, and J. Simeon Workflow Mediation using VorteXML.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2000.

[8] V. Christophides, R. Hull, and M. Xiong. Beyond Discreate E-Services: Composing Session-
Oriented Services in Telecommunications. Procs. of the 2nd VLDB-TES Workshop, Rome,
2001.

34

[9] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language
doe XML, W3C note, http://www.w3.org/TR/NOTE-xml-ql, 1998.

[10] Eliëns, A.. Principles of Object-Oriented Software Development, Addison-Wesley, Harlow,
England, 2nd Edition, 2000.

[11] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Managing Escalation of Collab-
oration Processes in Crisis Mitigation Situations. Proceedings of ICDE 2000, San Diego, CA,
USA, 2000.

[12] P. Herzum, O. Sims. Business Component Factory. J. Wiley & Sons, 2000.

[13] W-J Van Heuvel, J. Yang, and M.P. Papazoglou. Service Representation, Discovery, and Com-
position for E-Marketplaces, Proc. of International Conference on Cooperative Information
Systems (cooPIS01), September 2001.

[14] G. Joeris and O. Herzog. Managing Evolving Workflow Specifications with Schema Versioning
and Migration Rules. TZI Technical Report 15, University of Bremen, 1999.

[15] H. Kuno, M. Lemon, A. Karp, and D. Beringer. Conversations + Interface = Business Logic.
Procs. of the 2nd VLDB-TES Workshop, Rome, 2001.

[16] G.M. Kuper and J. Simeon. Subsumption for XML Types. in Procs of International Conference
on Database Theory (ICDT’01), London, January 2001.

[17] J. Lu, J. Mylopoulos, J. Ho. Towards Extensible Information Brokers Based on XML. in
Procs of 12th Conference on Advanced Information Systems Engineering, Stockholm, June,
2000.

[18] M. Mecella, B. Pernici, and P. Craca. Compatibility of e-Services in a Cooperative Multi-
platform Environment. Procs. Of the 2nd VLDB-TES Workshop, Rome, September 2001.

[19] M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using Formal
Language Theory. in Procs of Extreme Markup Languages, Canada, August, 2000.

[20] G. A. Papadopoulos and F. Arbab. Modelling Electronic Commerce Activities Using Control-
Driven Coordination, Ninth International Workshop on Database and Expert Systems Appli-
cations, Vienna, Austria, August 1998, IEEE Press.

[21] M.P. Papazoglou, A. Delis, A. Bouguettaya, M. Haghjoo. “Class Library Support for Workflow
Environments and Applications”. IEEE Transactions on Computer Systems , vol. 46, no.6,
June 1997.

[22] M. Papazoglou. The World of e-Business: Web Services, Workflows and Business Transactions.
WWW Journal, Kluwer Academic, to appear March 2003.

[23] M. P. Papazoglou, J. Yang Design Methodology for Web Services and Business Processes
Procs. of the 3rd VLDB-TES Workshop, Hong-Kong, 2002.

[24] Szyperski, C. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley/ACM-Press, NY. 1999.

[25] K. Sycara, J. Lu, M. Klusch, S. Widoff. Matchmaking among Heterogeneous Agents on the
Internet. in Procs of 1999 AAAI Spring Symposium on Intelligent Agent in Cyberspace, March
1999.

[26] UDDI.org UDDI Technical White paper,
http : //www.uddi.org/pubs/lru UDDI Technical Paper.pdf , 2001

[27] Web Service Definition Language. http://www.w3.org/TR/wsdl.

[28] ”An XML Query Language, http://www.w3.org/TR/xquery, 2002.

[29] J. Yang, M.P. Papazoglou, and W-J Van Heuvel. Tackling the Challanges of Service Compo-
sition. ICDE-RIDE workshop on Engineering E-Commerce/E-Business, San Jose, 2002.

35

[30] J. Yang. Web Service Componentization: Towards Service Reuse and Specilization. To appear
in Communication of ACM, October 2003.

[31] http://www-106.ibm.com/developerworks/library/ws-bpel/

[32] A.M. Zaremski and J.M. Wing. Specification Matching of Software Components. ACM
Transactions on Software Engineering and Methodology, Vol 6(4), October 1997.

36

