Service Composition (re)Binding Driven by
Application—Specific QoS

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito,
Francesco Perfetto, and Maria Luisa Villani

RCOST - Research Centre on Software Technology
University of Sannio
Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
{canfora, dipenta, r.esposito, villani}@unisannio.it, ggperf@libero.it

Abstract. QoS—aware service composition and binding are among the
most challenging and promising issues for service—oriented architectures.
The aim of QoS—aware service composition is to determine the set of
services that, once composed, will perform the required functionality, and
will best contribute to achieve the level of QoS promised in Service Level
Agreements (SLAs). While the existing works focus on cross—domain QoS
attributes, it would be useful to support service composition and binding
according to some characteristics on the borderline between functional
and non—functional attributes, often specific to the service domain.

The paper describes a QoS evaluator that, integrated with our pre-
viously developed binder, allows the use of application specific QoS at-
tributes for composite service binding and re—binding. The applicability
of the proposed approach and tool is shown through a case study related
to the image processing domain.

Keywords: Quality of Service, Dynamic binding, Re-binding, Com-
posite Web Services.

1 Introduction

Late, dynamic binding of service compositions constitutes one of the most inter-
esting and relevant challenges for service—oriented architectures. In this scenario,
a service composition can contain some abstract service specifications — e.g., indi-
cating that a hotel booking service is needed at a particular point of the workflow
— without specifying the binding to some existing services. When the function-
ality offered by more available services is equivalent, the binding is driven by
some non—functional, Quality of Service (QoS) criteria, such as minimizing the
cost, the time or achieving a tradeoff between the two.

In case the bindings need to fulfill some global constraints imposed over the
workflow and (near) optimize a global fitness function, proper aggregation for-
mulae have been proposed to estimate the QoS of the composition from the QoS
attributes of invoked services and from some properties of the workflow [4]. Find-
ing a solution of the aforementioned problem is NP—hard: this was addressed by

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 141-[I52] 2006.
© Springer-Verlag Berlin Heidelberg 2006

142 G. Canfora et al.

various authors: Cardoso et al. [5] and Zeng et al. [I1] proposed to use Integer
Programming, while, in past work, we used Genetic Algorithms (GAs), that re-
sulted to be more scalable and allowed the use of non-linear QoS aggregation
formulae [2].

While most of the existing works focus on cross—domain QoS attributes — e.g.,
response time, cost, availability, reputation, reliability, etc. — it would be useful
to also consider other attributes, that are specific of the service domain/purpose.
For example, if the service composition returns a photo, one would try to max-
imize the photo resolution or the number of colors, keeping low, if possible, the
cost and the response time. Much in the same way, a travel booking composite
service — involving flight and hotel booking — would try to achieve a compromise
between the cost and the hotel category, favoring hotels and airlines encompass-
ing the maximum possible number of priority clubs.

This paper presents the use of application—specific QoS attributes for the pur-
pose of QoS—aware composition and re-binding. In particular, this work enhances
our framework for service (re)binding [3] by:

— introducing constructs, and a tool, to define new QoS attributes (specifying
type, scale and domain) and to annotate services with these attributes;

— specifying a language for defining QoS attribute aggregation formulae, i.e.,
formulae similar to those defined by Cardoso [4] for domain—independent
attributes. The formulae specification is supported by a guided editor and a
type—checker;

— realizing an interpreter for the aforementioned formulae; the interpreter is
integrated in our service binder described in [3] and is used to evaluate the
QoS of a composite service at binding—time and at run-time (to trigger
re-binding if necessary).

The remainder of this paper is organized as follows. Section 2] defines the lan-
guage for specifying QoS attributes and aggregation formulae. Section[3describes
the QoS—attribute definition tool, highlighting its architecture, its features and
how it is integrated with our binder. Section] shows the approach at work in the
context of a image processing workflow. After a review of the literature in Sec-
tion [, Section[@l concludes the paper and outlines the directions for future work.

2 QoS Definition Language

Let us consider a composite service S of n abstract services, S = {s1, S2,..., Sn},
whose structure is defined through a workflow description language (e.g., WS—
BPEL). Each abstract service s; can be bound to one of the m concrete services
€Si1,---, CSim, which are functionally equivalent, while exhibiting different QoS
values. As said in the introduction, the choice of bindings can depend on an objec-
tive function and on a set of constraints. Determining the (near) optimal solution
requires to evaluate each solution, estimating the QoS of a concrete workflow, i.e.,
bound to a set of concrete services. Cardoso et al. [5] defined QoS aggregation for-
mulae for each pair QoS attribute—workflow construct. For example, the cost (or

Service Composition (re)Binding Driven by Application—Specific QoS 143

the response time) of a sequence of service invocations is given by the sum of each
cost (response time), while the cost of a switchis given by the weighted sum of costs
for each case, where weights are the probabilities that cases will be followed.

In most cases, the aforementioned aggregation formulae are cabled in the
optimization algorithm the binder is using. However, as mentioned in the intro-
duction, in many cases it is useful to consider QoS attributes, sometimes specific
of a particular domain, sometimes specific of a particular application, for which
the aggregation formulae have not been defined yet. Therefore, it is necessary
to provide a language and a tool to specify aggregation formulae, and to allow
the QoS—aware binder to interpret such formulae for estimating the QoS of the
whole composition. To this aim, we developed a language that permits to specify
a new QoS attribute, defining:

1. The type: supported types are primitive types (integer, real, Boolean), strings
and collection types (Set, Bag and Sequence). For integer and real it is either
possible to define a range of possible values, or to specify an enumeration
of admissible values. For strings it is necessary to enumerate values (thus
imposing an order relationship among them). Collection types can be used
when the QoS value for a service is constituted of sets of atomic values.
In particular, Set indicates the mathematical set (no order relationship, no
repeated values), Bag admits repetitions and Sequence imposes an order re-
lationship. The chosen type limits the set of operations that can be used
when defining the aggregation formulae. For example, a set supports opera-
tions such as union, intersection, while it is not possible to apply arithmetic
operators. If necessary, it is possible to get the set cardinality and then apply
on it any operator supported for the integer type.

2. The scale: ordinal, interval, ratio, absolute. As for the type, the scale limits
the set of admissible operations. Since the QoS attribute must be able, at
least, to establish an order relationship between two services (i.e., indicate
which service is better from a particular QoS perspective), the nominal scale
is not considered.

For example, if we consider the photo domain, the color depth (defined as the
number of bits encoding colors) QoS attribute is of type integer and its scale is
ordinal. For any service involving a payment, the accepted credit cards attribute
is a set, containing strings indicating the various credit cards accepted. The
scale for this type of attribute is the ordinal scale where the order relationship
is defined over the set cardinality (i.e., the more credit card are accepted, the
better is the service). Finally, the refresh rate attribute of a webcam service can
be considered a real value in the ratio scale.

Our approach for specifying types is similar to what available in the WSLA
language [6]. However, WSLA does not consider Collection types nor it defines
how QoS attributes values can be aggregated. Similarly to Cardoso, who defined
aggregation formulae for domain—independent attributes (cost, response time,
etc.), we can compute overall workflow QoS, specifying, for each workflow control
construct, aggregation formulae for domain-specific attributes too. In order to

144 G. Canfora et al.

Table 1. Aggregation formulae for some domain—specific QoS attributes

Attribute Workflow construct QoS aggregation formula

Color Sequence min(Ai)

Depth Switch maz Probability(Ai, pi)
Flow min(Ai)
Loop Ai

Credit Sequence intersection(At)

Cards Switch mazx Probability(Ai, pi)
Flow intersection(Az)
Loop Az

Refresh Sequence min(Ai)

Rate Switch sum(pi - At)
Flow min(Ai)
Loop Ai

obtain that, the language we propose offers a set of operators and functions,
most of them inherited from the Object Constraint Language (OCL) [9]. In
particular, the language includes mathematical operators, Boolean operators,
collection operators, and finally keywords proper of the aggregation language.
These indicate parameters to be used in aggregation formulae, i.e.:

— k, the number of iterations for a Loop;

— pi, the probability of following the i—th case in a Switch;

— Ai, the QoS of the inner node of a workflow constructs. For a Sequence, Ai
is the array of QoS for nodes belonging to the sequence; for a Switch it is
the array of QoS for all cases; for a Flow it is the array of QoS for all the
children; for a Loop is the QoS of the Loop inner node.

Table[llshows examples of aggregation formulae for some domain—specific QoS
attributes, i.e. color depth of a photo service, number of credit cards accepted
from a payment service and refresh rate of a temperature service. For the Se-
quence and the Flow, the color depth is the minimum among the values A7 of
the inner nodes. For the Switch it can be defined as the color depth Ai for the
case having maximum probability pi. Finally, for the Loop it is just the value
computed for the inner node. For the credit card attribute, the aggregation is
made through the set intersection operator over Sequences and Flows (i.e., con-
sidering the set of credit cards common to all the services), while for a Switch it
is the value of the branch having highest probability, and for the Loop the value
computed for the inner node. The refresh rate aggregates similarly to color depth
for all workflow construct, except for the Switch, where an averaged weight is
computed. Finally, it is worth to point out that, even in our example we consid-
ered only the most common workflow constructs, the language can be used to
define formulae for further constructs.

Besides the aggregation formulae, it is necessary to specify the function to be
used for evaluating the attribute and to impose an order relationship between
services (thus permitting their comparison). Let A be the value of our QoS at-
tribute for a given service. For attributes (e.g., color depth) for which the type
already imposes an order relationship, the function is the identify function, while

Service Composition (re)Binding Driven by Application—Specific QoS 145

for credit card — for which the order relationship is not imposed — the function
is size(A), where the function size returns the cardinality of the set A.

As detailed in Section [Bl the formulae specification is supported by a guided
editor and a type—checker.

3 The QoS Aggregation Tool

The workflow QoS-aggregation mechanism has been implemented as part of the
WS-Binder Tool [3]. The previous release of the binder supported composite
service (re)binding considering cross—-domain attributes such as Cost, Response
Time and Availability. As shown in Fig. 2 the binder has been extended with
the following modules:

— A QoS Aggregation Function Editor: it is a web-based editor (see Fig. [)
that a service integrator can use to define new QoS attributes and their
aggregation formulae.

— A Type Checker: at design time, the Type Checker is used to verify the type—
correctness of the aggregation formulae specified by the service integrator,
according to the language rules and the type scales.

— A QoS Formulae Interpreter: at run—time, given a composite service work-

flow and a possible set of bindings, the Interpreter evaluates the workflow
global QoS.

The whole environment is realized in Java. Services are deployed using the
Axis containerf] while WS-BPEL composite services are executed using the Ac-
tiveBPEL engine. The QoS aggregator is also realized in Java using the Java
Compiler Compiler (JavaCC) Parser Generato]. The tool GUI has been devel-
oped using the JSP technology.

3.1 Development Time

When designing a composite service abstract workflow, the system integrator
may want to specify an objective function and some QoS constraints that will
drive the binding. It can happen that either the objective function or the con-
straints involve some application—dependent QoS attributes. To support binding
based on these attributes, it is necessary to have aggregation formulae defined
for them. From the preference settings user interface, the system integrator may
select the attributes of interest for the composition. The tool provides a support
to (i) choose and insert the attributes to be considered for the objective function
and (ii) define constraints for some of the attributes, according to their type.
In addition, the user may decide to add new attributes. Of course, this is
needed whenever, in the context of a composition, a QoS attribute has to be
considered, for which an aggregation function has not been defined before. In

Y http://xml.apache.org/azis
2 https://javacc.dev.java.net/

146 G. Canfora et al.

="
& Aggregation Function - Mozilla Firefox (= ﬂu
Flle Bdie Wiew Go Bookmarks Tools Help
Maume: raariian Seale: | Fin > |
Statcment: Type- D Fautlt type:
Hanaea Hesl - Han ~|
N
[Llath operation Lallection operation ; Hoolenn operation - Lansuaze component :
— [— v | = -
Stateent: Type Diefault e
Seitzy (e Ficsl e | Rl [
rcbrrbar L arp (A, Bl
Mofaths openstion Callatins musntion o Buolen operalion - Tangunge compunent :
= Fine [-
nlErzar an
ArteeErea
st it
Statement: i Type: e foult hpe:
Fum = mxA AR Fueal = ™ = |
2 RLEELh] = =
aiziail st
i s
swmarlrbiity
Dlath operation :;.J;::r':'ntr Boolean operation - Language <o oaent ©
— [~ —_ T, — | — o

Type: e Fukt type: | -

[ione

Fig. 1. QoS Aggregation Function Definition Interface

this case, its definition could be specific for the particular composite service
being designed. A service integrator can, for example, define his/her own way
to aggregate image resolution, while others could do it differently for services
having different purposes. Finally, it can happen that the attribute definition
is more generic, thus reusable for other service compositions within the same
(or related) domain. This is especially the case when attributes are defined by
domain experts.

To add new QoS attributes, and to specify aggregation formulae using the
language described in Section [2 a guided editor is available. Fig. [l shows a
screenshot of the editor interface. Given the QoS attribute, with the indication
of scale and type, the user is required to edit a function for each workflow
construct, in a guided fashion. This is achieved by specifying the return type
and the aggregation formula.

3.2 Binding Time

At binding time, the QoS Formulae Interpreter allows to estimate the QoS of
a concrete workflow (i.e., a workflow for which the abstract services have been
bound to some possible concrete services). This is done by applying the defined
aggregation formulae over the workflow topology and the QoS values of the
services composing it. This permits, using optimization techniques such as those
defined in [2], the QoS-aware (re)binding of a workflow according to domain—
oriented attributes. In this case, the QoS Aggregator component is used by
the Binder in the selection process of the solution services to the optimization
problem. The next subsection explains their interaction.

Service Composition (re)Binding Driven by Application—Specific QoS 147

QoS
aggregation >
function Editor

Type
Checker

l QoS aggregation

formulae
QoS formulae
Interpreter
Binding

workflow

workflow, Monitor
preferences oridiow, -
System QoS bindings Monitoring K_service execution
Integrator | | | 7 T TN e e e
__________ i service
; == Selection Trigger
Composite service | Mechanism re-binding W =
1 . ’
Abstract process I—) (Binder) .

1

1

1

r

1

- 1

Retrievg monitoring info 1
Enact bindings .7 I
1

1

1

1

1

1

-7 Invocation to §1

forwarded to S1a services

- Inyocation to AS1

S Discovery

Invocation fo AS2 ™

[

Fig. 2. WS-Binder extended architecture

services

Integration with the WS—Binder. Fig. 2 shows the extended architecture
of the WS—Binder. Specifically, the abstract workflow is a WS-BPEL process
definition containing invocations to proxy services. These represent the abstract
services and are used to realize the bindings with the final services at run—
time and allow re-binding. Indeed, just before the execution, each proxy service
allows to retrieve, through some discovery mechanism, and maintain a list of
candidate services for the binding, together with their QoS information. This
consists of estimated values from monitoring data for attributes like response
time and availability, and declared values by the service provider at publication
time for the other QoS characteristics of each service. These lists of services are
passed to the Binder to determine the (near) optimal concretization for the ab-
stract workflow. In our tool, this is accomplished using GAs, as described in [2].
The genome is represented by an integer array with a number of items equals
to the number of distinct abstract services present in the process specification.
Each item, in turn, contains an index to the array of the services matching that
abstract service. The two—points crossover and a mutation operator that ran-
domly changes a binding are used to generate new individuals. In this generation
process towards convergence, the QoS Aggregator module is used to evaluate the
individuals. Indeed, the individuals with the best value of the fitness function
will reproduce. The fitness function for a genome g is:

n

F(g) =Y (w; - Vi(g)) +wa D(g) (1)

i=1

148 G. Canfora et al.

where V;(g) is a normalized value, in the interval [0, 1), of the attribute Q; for
the workflowd. Each w; in () is a real, positive weight indicating the importance
a service integrator (or user) gives to the attribute @; of the fitness function,
while D(g) is the distance of the fitness value from the constraint, and wy weights
the penalty factor. Once a solution to the composition optimization problem is
found, the bindings are communicated to the proxy services and the process
execution may start. When invoked by the engine, the proxy services forward
the invocation messages to the services bound and permit to monitor them, e.g.,
the response time and availability. The re-binding trigger follows the workflow
execution to detect and issue re—binding needs. To this aim, the QoS formulae
Interpreter component is continuously used to update the QoS estimations at
each step of the workflow. A possible re-binding will imply the execution to
be suspended, new bindings computed again by the Binder on the workflow
slice that remains to be executed, and the old bindings updated through the
proxy services. Thus, the execution will continue. The final result for each QoS
attribute considered is returned at the end of the process execution.

4 Case Study

This section presents the approach at work over an image manipulation process.
The process (shown in Fig. [B]) takes as an input one or two images, plus some
options. In case a rotation is requested, the image is properly rotated. Then,
the addConstant operation makes changes to the image basic colors, while the
executeMedian smoothens the image. Subsequently, a sum, or a difference (e.g.,
adding a frame or removing a background) is computed with the second image.
Finally, the image is properly scaled. The QoS attributes considered for this
process are:

1. the cost, with aggregation formulae defined as in the paper [3];

2. the color depth (values contained in the enumeration {16, 24, 32} bits), having
aggregation formulae defined in Table[I} and

3. the resolution, in terms of image number of pixels, having aggregation for-
mulae similar to color depth.

As a first step, we evaluate how the GA is able to search for a (near) optimal
solution according to a given fitness function and a constraint set. Let us suppose
one wants to maximize resolution and color depth while keeping cost < 11. We set
our GA with a population of 50 individuals, 100 generations, a crossover probabil-
ity of 0.7 and a mutation probability of 0.01. Fig. Ml shows how the fitness (a), the
cost (b), the resolution (c¢) and the color depth (d) evolve over the GA generations.
In particular, Fig.[@}(a) shows the averaged fitness over 30 runs of the GA, indicat-
ing how the fitness is able to drive the search towards a (near) optimal solution.

3 Note that attributes are normalized (see Zeng et al. [I1] for details) so that higher
values of V;j(g) always correspond to better QoS.

Service Composition (re)Binding Driven by Application—Specific QoS 149

executeDifference
[difference]

Receive [needRotating] rotate addConstant executeMedian

[add]

executeAdd

Fig. 3. Image transformation process

0.4

0.35 12
ry 15
2 08 constraint: cost <11 §
& 025 - S L S
& 105
% 0.2 e ”
2 o5 3
T o1 o 95

0.05
O T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Generations Generations

(a) Fitness (b) Cost

1400000

@
0 2 2
S 1300000 s
S 1200000 g 15
c T
£ 1100000 5 10
S -—
3 <}
S 1000000 8 s
& 900000
800000 e 0 T T T
1 5 9 13 17 21 25 29 33 87 41 45 49 1.5 9 13 17 21 25 29 33 37 41 45 49
Generations Generations
(c) Resolution (d) Color depth

Fig. 4. GA evolution

The other figures show how, for a particular run of the GA and the best indi-
vidual, the different QoS attributes evolve. After 5 generations, the algorithm
tries to increase the color depth from 16 to 24 bits. This produces an increase of
the cost, however still within the constraint. After 9 generations, a solution with
a higher resolution is found. However, this produces an unacceptable increase
of the cost, violating the constraint. Alternative solutions are therefore selected:
the resolution is kept high, while accepting to reduce again the color depth. In
this particular case, the weights chosen on the fitness function and the tradeoff
between the resolution increase and the color depth decrease balances in favor
of a better resolution (reached at generation 10).

As described in [3], it may happen that the actual QoS measured at run—time
differs from the initial estimates. For example, when estimating the overall QoS
of the image processing workflow shown in Fig. [3 the cost of the rotate service
does not highly contribute to the overall cost, since the probability of executing
it, declared from the service provider, is of 20%. Because of that, the workflow

150 G. Canfora et al.

| Faen:
Colur Biss ;
Hasnlution :

Qas

Inittal Estirnate

1280 x 1024

Process Ouput

Cost:
Color i :

Final value

Al
H
W52 w4

Ihresha d

il ezt andg ey “em el halvaue

Fig. 5. Process monitoring and output

is bound to a set of services that guarantees an overall cost of 13.64 $, within
the constraint of 15 $ imposed in this case, a resolution of 1280 x 1024 (i.e., 1.3
M pixels) and a color depth of 32 bits. However, it happens that, when the user
executes the process, s/he decides to rotate the image. After executing the rotate
service invocation, the overall cost is re—estimated, indicating that the constraint
imposed over the cost is going to be violated. This triggers a re-binding over the
slice of the workflow still to be executed (see [3] for details). In particular, two
abstract services were re-bound:

1. rotate (AS1): from a service having cost=8.40 $, color depth=32 and Res-
olution= 1280 x 1024 to a service having cost=4.40 $, color depth=24 and
Resolution= 1152 x 864;

2. ezxecuteMedian (AS3): from a service having cost=2.80 $, color depth=32 and
Resolution= 1280 x 1024 to a service having cost=1.80 $, color depth=24
and Resolution=1152 x 864.

The new bindings guarantee a cost within the constraint (13.88 $), while low-
ering the resolution at 1152 x 864 and the color depth to 24 bits. Details on the
QoS initial estimates, the final QoS values, and the dynamics of the cost attribute
(i.e., initial estimate, run—time estimate triggering the re-binding, new estimate
and final value measured) are shown in the monitoring view of WS-Binder (Fig.[]),
together with the output, i.e., the picture produced by the process.

5 Related Work

To support a QoS-aware composition, models and techniques for workflow QoS
estimation and optimization are being developed. In [4J5] a mathematical model
is proposed for workflow QoS computation, using metrics aggregation functions
which are defined for time, cost, reliability and fidelity. In our work, we propose

Service Composition (re)Binding Driven by Application—Specific QoS 151

to precisely identify domain—wide attributes in order to have consistent ways to
aggregate them within workflows.

Aggarwal et al. [I] focus on the QoS—driven selection and composition features
of the tool METEOR-S. QoS attributes are numerical and formally defined as an
ontology that represents generic metrics is used, which also includes the concept
of domain-specific QoS metrics. To express process—level QoS constraints, the ag-
gregation operator must be specified for each attribute. The objective function
for optimization is a linear combination of the parameters and solved through an
integer programming tool, which outputs a set of feasible (sub)optimal solutions,
among which the service integrator may choose. In our knowledge, this is the first
work where it is explicitly foreseen the possibility of defining domain—specific QoS
attributes. Nevertheless, the case studies reported in the work are limited to cross—
domain attributes and it is not discussed how different domain—specific QoS at-
tributes can aggregate over workflow constructs. The same authors [8] mentioned
that the integrator could specify how the global value for a QoS attribute is com-
puted for a specific process. Differently from them, our approach does not require
to necessarily specify aggregation formulae for each process: it would only suf-
fice to define aggregation formulae for pairs QoS—attribute/workflow constructs.
Then, the estimated QoS for the whole process is computed automatically. Zeng
et al. [TT] focus more on the optimization problem for workflow bindings based on
QoS criteria, which is solved through integer programming techniques. Another
work on these issues is by Yu and Lin [I0], where a different optimization algo-
rithm is presented. Serhani et al. [7] propose a QoS broker-based architecture to
support the client in selecting web services based on his/her required QoS.

6 Conclusions

QoS—aware composition and binding represents a challenging mechanism for
service—oriented architectures. This paper describes how such a composition can
involve not only cross-domain QoS attributes, but also attributes specifically
defined for a particular domain or even for a particular application. In that
case the service integrator can define domain—specific attributes together with
customized aggregation formulae. This permits to estimate the attribute value
over a workflow, to determine the (near) optimal bindings and, if necessary,
trigger re-binding at run—time.

Work—in—progress is devoted to apply the proposed approach to further case
studies and to exploit it to automatically generate test cases, using evolutionary
testing techniques, with the aim of violating the SLA in case the latter includes
some constraints over domain—specific QoS attributes.

Acknowledgments

This work is framed within the European Commission VI Framework IP Project
SeCSE (Service Centric System Engineering) (http://secse.eng.it), Contract No.
511680.

152

G. Canfora et al.

References

1.

11.

R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint driven web service
composition in METEOR-S. In Proc. IEEE International Conference on Services
Computing (SCC’04), pages 23-30, Shanghai, China, Sept. 2004.

G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An Approach for QoS-
aware Service Composition based on Genetic Algorithms. In Proc. of the Genetic
and Computation Conference (GECCO’05), pages 1069-1075, Washington, USA,
June 2005. ACM.

G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning
of Composite Web Services. In Proc. International Conference on Web Services
(ICWS’05), pages 121-129, Orlando, FL, Jul. 2005. IEEE.

. J. Cardoso. Quality of Service and Semantic Composition of Workflows. PhD

thesis, Univ. of Georgia, 2002.

J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. J. Kochut. Modeling
quality of service for workflows and web service processes. Web Semantics Journal:
Science, Services and Agents on the World Wide Web Journal, 1(3):281-308, 2004.

. H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web Service Level Agree-

ment (WSLA) language specification.

http: //www.research.ibm.com/wsla/WSLASpec V1-20030128.pdf.

M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. A QoS broker based architecture
for efficient web services selection. In Proc. International Conference on Web
Services (ICWS’05), pages 113-120, Orlando, FL, Jul. 2005. IEEE.

K. Verma, K. Gomadam, J. Lathem, A. P. Sheth, and J. A. Miller. Semantics en-
abled dynamic process configuration. Technical report, LDIS, University of Geor-
gia, 2006.

J. Warmer and A. Kleppe. The Object Constraint Language. AW, 1999.

. T. Yu and K. Lin. Service Selection Algorithms for Composing Complex Services

with Multiple QoS Constraints. In Proc. 3rd International Conference on Service
Oriented Computing (ICSOC’05), pages 130-143, Amsterdam, The Netherlands,
December 2005. Springer.

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering, 30(5):311-327, May 2004.

	Introduction
	QoS Definition Language
	The QoS Aggregation Tool
	Development Time
	Binding Time

	Case Study
	Related Work
	Conclusions

