
Service Decomposition and Task Allocation
in Distributed Computing Environments

Malamati Louta and Angelos Michalas
Department of Business Administration

Technological Educational Institute of Western Macedonia
Koila, Kozani, 50100, Greece, louta@kozani.teikoz.gr

Department of Information and Communication Technologies
Engineering

University of Western Macedonia
Department of Informatics and Computer Technology

Technological Educational Institute of Western Macedonia
Fourka, Kastoria, 52100, Greece, amichalas@kastoria.teikoz.gr

Abstract. Highly competitive and open environments should encompass
mechanisms that will assist service providers in accounting for their interests,
i.e., offering at a given period of time adequate quality services in a cost
efficient manner. Assuming that a user wishes to access a specific service
composed of a distinct set of service tasks, which can be served by various
candidate service nodes, a problem that should be addressed is the allocation
of service tasks to the most appropriate service nodes. This scenario accounts
for both the user and the service provider. Specifically, service providers
succeed in efficiently managing their resources, while users implicitly exploit
in a seamless way the otherwise unutilized power and capabilities of the
provider's network. In general, service task allocation is founded on general
and service specific user preferences, service provider's specific service logic
deployment and current system & network load conditions. The pertinent
problem is concisely defined, mathematically formulated, optimally solved
and evaluated through simulation experiments.

1 Introduction

The main role of all players in the liberalised, deregulated and competitive
telecommunication market is to constantly monitor the user demand, and in response
to create, promote and provide the desired services and service features. In

Please use the following format when citing this chapter:

Louta, M., Michalas, A., 2007, in IFIP International Federation for Information Processing, Volume 247, Artificial
Intelligence and Innovations 2007: From Theory to Applications, eds. Boukis, C, Pnevmatikakis, L., Polymenakos, L.,
(Boston: Springer), pp. 81-91.

82 Malamati Louta and Angelos Michalas

accordance with a business model applying to the telecommunications world, five
main different entities can be identified, namely, user, service provider, (third party)
application (content) provider, broker and network provider. The role of the (third
party) appHcation (content) provider is to develop and offer applications (content).
The role of the service provider is to provide the means through which the users will
be enabled to access the apphcations (content) of (third party) apphcation (content)
providers. The broker assists business level entities in finding other business entities.
Finally, the role of a network provider is to offer the network connectivity needed for
service provision.

Service provisioning in such open models is a quite complex process since it
involves various diverse actors. The following are some key factors for success.
First, the efficiency with which services will be developed. Second, the quahty level,
in relation with the corresponding cost, of new services. Third, the efficiency with
which the services will be operated, controlled, maintained, administered, etc. The
challenges outlined above have brought to the foreground several new important
research areas. Some of them are the specification of service architectures (SAs)
[1,2], the development of advanced service creation environments (SCEs) and grid
computing architectures [3,4] and service characteristics (e.g., the personal mobihty
concept), and the exploitation of advanced software technologies, (e.g., distributed
object computing [5] and intelHgent mobile agents [6]). The aim of this paper is, in
accordance with the cost-effective QoS provision and the efficient service operation
objectives, to propose enhancements to the sophistication of the fimctionality that
can be offered by service architectures in open competitive communications
environments.

In accordance with the SA concept and exploiting advanced software paradigms,
the service logic is realised by a set of autonomous co-operating components, which
interact through middleware functionality that runs over Distributed Processing
Environments (e.g.. Common Object Request Broker Architecture - CORBA).
Limited by techno-economic reasons or considering administrative, management and
resihence/ redundancy purposes it is assumed that each service provider deploys
service components realising service logic in different service nodes, residing in the
same and/or different domains. Moreover, it can be envisaged that a service will in
general comprise a set of distinct service tasks, which could be executed by different
service nodes.

Highly competitive and open environments should encompass mechanisms that
will assist service providers in accounting for their interests, i.e., offering at a given
period of time adequate quality services in a cost efficient manner which is highly
associated to efficiently managing and fulfilling current user requests. Thus,
assuming that a user wishes to access a specific service composed of a distinct set of
service tasks, which can be served by various candidate service nodes (CSNs), a
problem that should be addressed is the allocation of service tasks to the most
appropriate service nodes. In this paper, the pertinent problem is called service task
allocation. The aim of this paper is to address the problem from one of the possible
theoretical perspectives and to show the software architecture that supports its
solution and how it can be incorporated in service architectures that run in the open
environment.

Service Decomposition and Task Allocation in Distributed Computing Environments 83

In general, service task allocation is founded on general and service specific user
preferences, service provider's specific service logic deployment and current system
& network load conditions. A high level problem statement may be the foUow îng.
Given the set of candidate service nodes and their layout, the set of service tasks
constituting the required service, the resource requirement of each service task in
terms of CPU utilization, memory and disk space, the cost of deploying each service
node, the current load conditions of each service node and of the netv^ork links, find
the minimum cost assignment of tasks to service nodes (in terms of the number of
nodes that need to be deployed, the communication cost introduced during the
execution of service tasks, and the management cost imposed by the arrangement)
subject to a set of constraints, associated with the capabilities of the service nodes.

The approach in this paper is the following. The starting point (section 2) is the
service task allocation architecture, presenting the software elements required for the
realisation of the assignment process. Additionally, our assumptions regarding the
model of service provisioning system are presented. Section 3 presents a concise
definition, mathematical formulation and optimal solution of the service task
allocation problem, while one possible formulation of the communication cost taken
into account in our framework is provided. Section 4 gives a set of experimental
results, indicative of the efficiency of the proposed service task assignment scheme.
Finally, section 5 gives future plans and concluding remarks.

2 Service Task Allocation Architecture

Service task assignment process, as a first step, requires a computational component
that will act on behalf of the user. Its role will be to capture the user preferences,
requirements and constraints regarding the requested service and to deliver them in a
suitable form to the appropriate service provider entity. As a second step, service
task allocation requires an entity that will act on behalf of the service provider. Each
role will be to intercept user requests, acquire and evaluate the corresponding service
node and network load conditions, and ultimately, to select the most appropriate
service nodes for the realisation of the service. Furthermore, a monitoring module is
required. Monitoring module consists of a distributed set of agents, which run on
each service node of the service provider. Each agent is responsible for monitoring
the load conditions and available resources of the service node and delivering them
to the service provider related entity. Additionally, a distributed set of network
provider related entities will be responsible for providing the service provider entity
with network load conditions and managing the network connections necessary for
the service provision.

The following key extensions are made so as to cover the functionality that was
identified above. First, the Service Provider Agent (SPA) is introduced and assigned
with the role of selecting on behalf of the service provider the best service task
assignment pattern. Second, the User Agent (UA) is assigned with the role of
promoting the service request to the appropriate SPA. Third, the Service Node Agent
(SNA) is introduced and assigned with the role of promoting the current load
conditions of a CSN. Finally, the Network Provider Agent (NPA) is introduced and

84 Malamati Louta and Angelos Michalas

assigned with the task of providing current network load conditions (i.e., bandwidth
availability) to the appropriate SPA. In essence, the distributed set of the SNAs and
NPAs forms the monitoring module. In other words, the SPA interacts with the UA
in order to acquire the user preferences, requirements and constraints, analyses the
user request in order to identify the service tasks constituting the service and their
respective requirements in terms of CPU, memory and disk space, identifies the set
of CSNs and their respective capabilities, interacts with the SNAs of the candidate
service nodes so as to obtain their current load conditions and with the NPAs so as to
acquire the network load conditions, and ultimately selects the most appropriate
service task assignment pattern for the provision of the desired service.

Regarding the system model, we consider a set of service nodes SN and a set of
links L . Each service node n. ESN corresponds to a server, while each link / E Z
corresponds to a physical link that interconnects two nodes n.,n GSN . Our system
operates in a multi-tasking environment, i.e., several tasks may be executed on a
single service node sharing its resources (e.g., CPU utilization, memory, disk space).
Let D. denote a set of nodes grouped to form a domain. A pattern for the physical
distribution of the related components to the service task assignment scheme is given
in Fig. 1. Each SPA controls the service nodes of a domain. Each SNA is associated
with each node, while each NPA is associated with the network elements (e.g.,
switches or routers) necessary for supporting service node connectivity. The SNA,
NPA role (in a sense) is to represent the service nodes or network elements,
respectively, and to assist SPA by providing information on the availability of
resources of the service node/network element. Domain state information (load
conditions of the service nodes of the particular domain and link utilisation) is
exchanged between the SPA and the SNAs/NPAs residing in the specific domain,
while SPAs residing in different domains exchange their domain state info. This
approach increases scalabiUty as it reduces the requirements in terms of computation,
communication and storage. At this point it should be noted that for simplicity
reasons the network elements needed for the service node connectivity are not
depicted in Fig. 1.

SNA ^^A gp^ SNA SNA SNA

SNA SN^

Fig. 1. System Model and physical distribution of the service task allocation related
components

Service Decomposition and Task Allocation in Distributed Computing Environments 85

3 Problem Formulation & Optimal Solution

User u wishes to use a given service s . A fundamental assumption at this point is
that service s may be decomposed in a set of distinct service tasks, which will be
denoted as ST{s). Among these service tasks, of interest to the user are those
designated in the user profile and will be denoted as ST(u,s) (ST(u,s) C ST(s)).

Let's assume the existence of multiple service nodes for the provision of service
s, denoted by SN(s) = {n^,...,n^^^} . Each service node-«^ contains a collection of

components, denoted as A^ (/), which inter-work with other components that may

reside in the same or in a different service node in order to accomplish each service
task / E ST(s). Let A^ and C be the total set of components residing in the Uj

service node and the various service nodes in total, respectively. Hence, the
following relationship holds: A^ (O^A ^^ • Each service task iBST{s) may be

executed on an associated set of possible candidate service nodes, represented by the
set SN(i), (i^ST{u,s)). Thus, SN(i) C SN(s). The service logic deployment pattern
adopted by service providers determine each of these service node sets.

Task / , (iGST(s)) requires for its completion consumption of rf.p^(J), r^^^(i)

and r^-^j^ (z) resources of service node(s) rij , {rij G SN(i)). A realistic assumption is

that SPA being in charge of assisting the service providers in the competitive
telecommunication market, has a solid interest in as accurately as possible
identifying the resources r^(i) (where aE:{CPU,mem,disk}) needed for the

provisioning of service task / in terms of CPU utihzation, memory and disk space.
In this respect, the SPA can be the entity that configures these values based on the
service task characteristics, user preferences and requirements, exploiting also
previous experience.

Let c^ denote the cost of involving service node rij , (rij E SN(i)), in the service

provision. For notation simphcity it is assumed that the cost of involving a service
node in the solution is the same for all service nodes. As an alternative this cost
could be taken variant (depending on the cost of acquiring and/or maintaining the
node etc.). Notation may readily be extended.

The objective of our problem is to find a service task assignment pattern, i.e., an
allocation Agj.{s) of service tasks i (iEST(u,s)) to service nodes rij ,{njGSN(i)),

that is optimal given the current load conditions and number of service tasks being
served by each service node rij, represented as rf^rij) and k^'^rij), respectively.
The assignment should minimise an objective function f{s,Asj.{s)) that models the
overall cost introduced due to system/network resources consumption. Among the
terms of this function there can be the overall cost due to the deployment of various
service nodes to the service provisioning process, the communication cost introduced
due to the interaction of the components A^ residing in rij service node with the

components A^^ residing in service node n^ for the completion of each service task

i, (\fiEST(s)), as well as the management cost c^{i,V) introduced due to the

assignment of (iJ')EST^{s) service tasks to different service nodes

86 Malamati Louta and Angelos Michalas

The constraints of our problem are the following. First, each service task /
(i^ST(u,s)) should be assigned to only one service node rij, (rij GSN(i)). Second,

the capacity constraints of each service node should be preserved. Lets assume that
r^^ and A:""̂ represent the maximum load and the maximum number of service
tasks that a service node may handle. For notation simplicity, these parameters are
assumed to be the same for each service node rij, (rij ESN(s)). Thus, the constraints

are r^'in^)^ r^ ^rid k'^'^'irij)^ k"^^, (V«. G^iVC^)), where r/^^'C^,) and A:̂ ''̂ '(«.)

denote the potential load conditions of service node rij, after the service task

assignment process. Notation may readily be extended.
The general problem version presented is open to various solution methods. Its

generality partly lies in the fact that the objective and the constraint functions are
open to alternate implementations. Thus, the problem statement can be distinguished
from the specific solution approach adopted hereafter. In order to describe the
allocation A^{s) of service tasks to service nodes we introduce the decision

variables x^^(/,y) (iGST(u,s),njGSN(i)) that take the value 1(0) depending on

whether service task / is (is not) executed by service node- rij. The decision

variables j^^^O) assume the value 1(0) depending on whether candidate service node

rij (rij GSN(i)) is (is not) deployed (involved in the solution). In addition, we define

the set of variables z^j,(',/') (V(̂ *,/)E5'r(w,5)^) that take the value 1(0) depending on

whether the service tasks / and i are (are not) assigned to the same service node.

The variables ẑ .̂̂ ",/ J are related to variables x^(i,j), JĈ ^V ,7), through the relation
\SN(i)\

z^j,(/,/')= yx^{i,jyxsj^{i\j), which may be turned into a set of linear constraints

through the technique of [7]. Allocation AST{S) may be obtained by reduction to the

following 0-1 linear programming problem.
Service Task Assignment Problem:
Minimise

njEmis) ae{CPU.memory,disk} 1^^ {nj)

+ y y.C{i,nj)'X^{iJ) + y yc^(/, / ')(l-Z5y. (/,/')) (1),

where C(i,nj) denotes the communication cost introduced in case rij service node

has undertaken the responsibility for the execution of service task i {i^ST{u,s)),

subject to the constraints:
yx,,ii,j) = \^i^ST(s)

rr(nj)+ y^rSi)-x,,{iJ)^rr{j)'ysAJ)
iEST{s)

Cost function (1) penalises the aspects identified previously (i.e., cost of the
service node involved in the solution, communication cost introduced during the

\fnj^SNis)

\fnjGSN(s)

(3),

(4)

Service Decomposition and Task Allocation in Distributed Computing Environments 87

realisation of each service task, and management cost of service tasks that are
assigned to different service nodes). In order for the service providers to better utilize
their resources, the cost of each service node deployment introduced in cost function
(1) takes also into account the node's current load conditions in order to obtain a load
balancing solution. Parameters p , (P <^), and w^ denote the relative significance
of load balancing and of each resource type a to the service provider. Constraints
(2), guarantee that each service task will be assigned to one service node. Constraints
(3) and (4) guarantee that each service node v^ill not have to cope w îth more load and
service tasks than those dictated by its pertinent capacity constraint.

In the rest of the section, we present a model for the overall communication cost
C(i,nj) introduced in case rij service node has undertaken the responsibihty for the

execution of service task / (iEST(u,s)). In essence, the model covers the case in

which the components of set A^ (i) need to interact with the components of set

A^^ (i) residing in service node «̂ in order to provide service task /, (/ e ST{s)). It

should be noted that service nodes rij and «̂ may reside even in different domains.

At this point, a major assumption adopted in our study, is that part of A^

components are implemented as mobile agents, while the rest are supposed to be
fixed service agent components. Let A^ and ^f be the subset of components of A^

that are implemented as mobile and fixed agents, respectively.
The volume of messages exchanged between each pair of components (e.g.,

dependent on the number of messages and size of each message) for the

accomplishment of task i {iBST(s)) will be represented as m^{i), V(w,v)GC^ and

yiEST(s). Let cc(nj,nj be the communication cost per unit message that is

exchanged between service nodes rij and n^, \/(nj,n,^)GSN(sf . This factor may be

proportional to the distance (e.g., number of hops) between the two service nodes
and the load conditions (e.g., bandwidth availability) of the communication link
interconnecting the two nodes. Another factor that should be taken into account is
the cost associated with the migration of a component (implemented as a mobile
agent) from one service node to another. In this respect, let mc(w,nj,n^) be the

migration cost of component-w from service node rij to service node n^, VweC

and \/(nj,n,)eSN(sf .

The overall cost for the completion of task i (iEST(s)) can be calculated by the

following formula.

^0>y)= 2 [E y'"wv(0-C< (̂«;,«J+ X E'"-(0'CC(«.,«.) +

V. "'v. v^ "' ' yiBST(s) (5)
2 mc(w,nj,nj+ ^ A'"-v(0*ccK,«J]

"J "J *

In the previous formulation three main factors are identified. The first one is
related to the communication cost deriving from the fixed components and is
proportional to the messages (their number and size) that are exchanged between
every pair of components (w,v) and the communication cost per unit message
between different service nodes.

The second factor is associated with the migration cost of mobile agent

88 Malamati Louta and Angelos Michalas

components between two different service nodes. This factor is dependent on the
path which the mobile agent will follow (i.e., number of hops) and the information
encryption and code execution cost, as well as the load conditions of the
communication links. The last factor is the communication cost within the same
service node, which in practice may be negligible, and in the context of this study is
taken equal to zero. It is noted that only the involved to the provisioning process
components are taken into account.

Apparently, the designation of the components that will be included in sets A^,

and A^ by the service providers may be based on factors such as the overall

communication and migration costs as well as estimation of the respective
component invocations. In our study, the service logic deployment pattern (i.e.,
service components/nodes) adopted by the service providers is known.

4 Experimental Results

In this section, indicative results are provided in order to assess the proposed
framework, which allows for effective service provisioning. In order to test the
performance of the service task allocation scheme, we assume a simple application
executing on a single PC performing a configurable number of queries on a database
(that is, the service considered is composed of one service task that involves
execution of one service component which interacts with the database).

Concerning the implementation issues of our experiments, the overall Service
Provisioning System (SPS) has been implemented in Java. The Voyager mobile
agent platform [8] has been used for the realisation of the software components as
well as for the inter-component communication. To be more specific, the system
components (SPA and the monitoring module SNAs, NPAs) have been implemented
as fixed agents and the service task constituting the service as intelligent mobile
agent, which can migrate and execute to remote service nodes.

A copy of the database exists on each service node, thus, the communication cost
in practice is negligible and is taken equal to zero. In this case, only the service node
deployment cost factor is considered and the performance of the system is tested
using as decision parameter the load conditions of the service nodes.

The network topology that has been adopted for the experiments consists of five
service nodes residing in a single domain. Specifically, all service nodes reside on a
lOOMbit/sec Ethernet LAN. The configuration of the service nodes is as follows: two
service nodes with 2GHz CPU and 2 GB RAM and three service nodes with IGHz
CPU and 1 GB RAM. All service nodes are running the Linux Redhat OS.

The idle states of the CPUs of the service nodes are simulated to follow the
Exponential distribution, with mean value 50,000 ms and maximum value 100,000
ms. In all cases, the duration in which the CPU load of the service nodes is above
50% is 20,000 ms.

The graphical user interface of the SPA module, which implements the service
task assignment process, is given in Fig. 2.

Service Decomposition and Task Allocation in Distributed Computing Environments 89

L^l.ffifll.'.BfmiW

rlUlessage eoard-

It's agenttimi

28 46 Suggestion

:29:01 : Suggestion

:29:04: Suggestion

:34:26: Suggestion

:35:30: Suggestion

:35:53: Suggestion

:36:14: Suggestion

:36:50: Suggestion

:37:17: Suggestion

:37:35: Suggestion

:38:12: Suggestion

:38:33: Suggestion

:38:45: Suggestion

to move

to move

to move

to move

to move

to move

to move

to move

to move

to move

to move

to move

to move

]tcp//blacl^-tov/er 8

]t:p://luna:8000

]t:p://stavros:8000

3 t:p://blacl<tov/er:8i

3 t:p://blacl<tov/er:8i

3t:p://luna:8000

3 t:p://stavros:8

3 t:p://blacl<tov/er:8i

3t:p://luna:8000

3t:p://stavros:8000

3 t:p://blacli:tov/er:8i

3t:p://luna:8000

3 t:p://stavros:8

tctiJsvtiiKi:smo

Fig. 2. User interface of the SPA module

We have performed 100 experiments v^ith the mobile agent realising the service
logic performing tasks varying from 100 to 1000 queries (w îth interval 100 queries).
The same experiments have also been conducted w^ithout using our service task
allocation scheme. In the latter case, service tasks are assigned randomly to service
nodes.

The mean execution time w^hen the service task assignment process is applied and
when the service node is selected randomly are illustrated in Fig. 3. From the
obtained results, WQ observe a decrease in the service completion time when the
service task assignment system is used. At this point, it should be mentioned that the
performance improvement introduced is tightly related to the number of queries the
service task needs to perform at the remote service node and the time that the service
node's CPU is idle. It may be observed that for small and large tasks (from 100 to
400 and from 800 to 1000 queries) the improvement in performance is bigger than in
medium sized tasks (from 500 to 700 queries). It may also be derived that we have
about 6% improvement for small tasks and about 9% for the large ones, while for
medium sized tasks the improvement in performance is minor. This could be
explained as follows. From Fig. 3, it could be extracted that the mean time required
for initialisation of the mobile agent on a service node is approximately 35,000 ms.
Also the execution of a task consisting of 100 queries when CPU is idle is 5,500 ms.
Thus, small tasks can be performed during one slope of a CPU load (i.e., time during
which CPU load is below 50%), while large tasks require for their completion one
CPU slope, one CPU peak (i.e., time during which CPU load is above 50%) and
finally another CPU slope. The completion of medium tasks usually requires one
CPU slope and one CPU peak. Thus, the application of service task allocation
process results in minor performance improvement.

90 Malamati Louta and Angelos Michalas

CPU Load with Exponential Distribution

100000

90000

80000

70000 4

60000

50000

40000

30000

20000

10000

0 • I 1 1 1 • l i

• Execution with
Optimization

D Execution without]
Optimization

100 200 300 400 500 600 700 800 900 1000

No of SNMP Queries
Fig. 3. Execution times with/without optimization for exponential CPU load

distribution

5 Conclusions

The highly competitive communications markets should encompass mechanisms that
will assist service providers in accounting for their interests, i.e., offering at a given
period of time adequate quality services in a cost efficient manner which is highly
associated to efficiently managing and fulfilling current user requests. This paper
presented such mechanisms. Specifically, the contribution of this paper lies in the
following areas. First, the definition and mathematical formulation of (one possible
version) of the service task allocation problem, while a model for the communication
cost between the service components involved during the provision of a service task
was also provided. Through this work it is shown that the problem can be reduced to
well-known optimisation problems, which can be solved by relevant standard
algorithms. Second, the presentation of a software architecture, which is adopted for
acquiring the best service task configuration pattern, i.e., assignment of service tasks
to service nodes for efficient service provisioning.

Experimental results indicate that the proposed framework produces good results
in relatively simple contexts (e.g., a service, which is composed of one service task
that involves execution of one service component). Specifically, when the load
conditions of the service nodes is the only factor considered for deciding on the most
appropriate service node for the service provisioning, an overall improvement in
service completion time of about 7% is introduced (especially, for the small and the
large sized service tasks). What remains is to evaluate the performance of the
proposed service task allocation scheme in complex contexts where communication
cost factor is also involved.

Service Decomposition and Task Allocation in Distributed Computing Environments 91

Directions for future work include, but are not limited to the following. First, the
realisation of further wide scale trials, so as to experiment with the applicabihty of
the framework presented herewith. Second, the experimentation with alternate
approaches (e.g., market-based techniques) for solving the service task allocation
problem.

References

1. Trigila S., Raatikainen K., Wind B., Reynolds P., 1998. "Mobihty in long-term
service architectures and distributed platforms", IEEE Personal
Communications, vol. 5, no. 4, pp. 44-55.

2. Magedanz, T., 1997. "TINA-Architectural basis for future telecommunications
services". Computer Communications, vol. 20, no. 4, pp. 233-245.

3. Tag M., 1996. "Service creation environment engineering", Proc.
Interworking'96 Conference, Japan.

4. Special Issue, 2003. "Special section on grid computing", ACM SIGMETRICS
Performance Evaluation Review, vol. 30, no. 4, pp. 12-49.

5. Vinoski S., 1997. "CORBA: Integrating diverse applications within distributed
heterogeneous environments", IEEE Commun. Mag., vol. 35, no. 2, pp. 46-55.

6. Morreale P., 1998. "Agents on the move", IEEE Spectrum, vol. 35, no. 4, pp.
34-41.

7. Papadimitriou C , Steiglitz K, 1982. Combinatorial optimization: Algorithms
and complexity. Prentice Hall, Inc.

8. The Voyager Platform, Recursion Software Inc. http://wv^^w.recursionsw.com/

