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Abstract   

We investigate keeping dedicated stocks at customer sites in addition to stock kept at some central 

location as a tool for applying service differentiation in spare parts supply. We study the resulting 

two-echelon system in a multi-item setting, both under backordering and under emergency 

shipments assumptions (i.e. lost sales). In an extensive computational experiment, we show that 

dedicated stocks have significant added value: compared to an approach where all customers 

receive uniform service, we find average cost savings of 14% under backordering and 20% under 

emergency shipments. Furthermore, we find that dedicated stocks are comparable to critical level 

policies in terms of cost savings, while being much easier to implement in practice. Finally, we 

find further savings (20% under backordering, 23% under emergency shipments) by combining 

dedicated stocks and critical level policies in one aggregate differentiation strategy.  

Key words: service differentiation, dedicated stocks, spare parts, multi-echelon 

systems, lost sales 

1 Introduction 

In the current business environment, suppliers of advanced capital goods, such as 

defense systems and chemical plants, increasingly provide their customers with 

service contracts that specify the services offered to that customer for system 

upkeep. Such contracts often contain quantified targets for key performance 

measures, such as a maximum response time in case of system failure. These so-

called service level agreements may differ among customers to reflect the value 

each customer places on system availability. For instance, the maximum on-site 

response time may be 4 hours or next day. These varying service levels challenge 

suppliers to somehow incorporate such differentiation in their service processes. 
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In this paper, we consider dedicated customer stocks as a tool for handling 

differentiated service levels in spare parts supply. In this approach, a supplier 

keeps stock of certain items at premium customers’ sites in addition to stock at 

some central location. Dedicated stocks are often used in practice, because it is a 

simple differentiation tool. For instance, we have seen such stocks used at a 

company specializing in luggage handling system at airports. Still, no research has 

yet been done on the savings possible with this approach: we expect the benefits 

from risk pooling to be smaller for this approach than for the case where all stock 

is kept centrally. We thus investigate if and when the approach has added value.  

We evaluate the added value of dedicated stocks by comparing it to two 

approaches that have often been used in literature and practice, namely one-size-

fits-all policies and critical level policies. One-size-fits-all policies provide all 

customers with uniform service irrespective of the individual service level 

agreements. As a result, they are usually excessively costly. Also, customers with 

standard contracts have no incentive to switch to premium contracts. In contrast, 

critical level policies reserve stock for only premium customers once the 

inventory level drops below a certain threshold. Requests that cannot be met by 

on-hand stock are either backordered or satisfied from another source (e.g. a 

production facility upstream in the supply chain). Although the policy can lead to 

large cost savings, there are barriers for implementing it in practice. For instance, 

service engineers responsible for speed of repair might use reserved stock for non-

premium customers. Therefore, it is interesting to investigate whether a supplier 

can still obtain large savings with a simpler policy. In addition to comparing 

dedicated stock to critical level policies, we also examine the added value of 

combining both strategies in a single model. This combined policy enables us to 

judge which policy is best for which set of items. 

In the remainder of the paper, we first give an overview of literature related to our 

research in Section 2. Here, we also state the main contributions of our research. 

We present our model in Section 3, and an optimization approach for this model 

in Section 4. Our optimization approach requires certain performance measures, 

such as waiting times, as input. We highlight how we find these performance 

measures in Section 5. We test the model in an extensive experiment (Section 6). 

Finally, we draw conclusions and discuss further research options in Section 7. 
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2 Literature overview 

Our research contributes to the literature on service differentiation in spare parts 

supply of expensive slow movers. In general, the models for such systems are 

continuous-review models where demand arrives according to Poisson processes 

and one-for-one replenishment of items (i.e. base stock policies) is used. 

In the area of service differentiation, most contributions consider critical level 

policies, a concept introduced by Veinott (1965). The optimality of this policy has 

been proven under various circumstances, such as under periodic and continuous 

review, both under backordering and lost sales assumptions (see Alvarez et al. 

(2010) for further details). Some recent contributions focusing on expensive slow 

movers are by Kranenburg and Van Houtum (2008) and Enders et al. (2008). 

Kranenburg and Van Houtum (2008) consider a multi-item single-location model 

with various demand classes and lost sales (emergency shipments are used for lost 

demand). The authors analyze the system through Markov chains and use an 

optimization approach based on decomposition and column generation, combined 

with local search. Enders et al. (2008) consider a single-item model with two 

demand classes. In addition to using critical level policies, the authors use 

different shipment modes when demand cannot be met from on-hand stock: non-

premium demand is backordered, with premium demand being lost. In Alvarez et 

al. (2010), we also combine critical levels with differentiated shipment modes, but 

in a multi-item setting. In this model, demand that cannot be met from on-hand 

stock is either backordered or satisfied using an emergency shipment, which is 

similar to assuming a lost sale. The shipment option used depends on the customer 

class requesting the item and the item characteristics. 

So far, all literature on critical level policies considers single-location models. In a 

multi-echelon setting, we find literature where the lowest echelon level consists of 

multiple locations that each have separate restrictions on performance (and as 

such are similar to a system where stock may be kept at customer sites). Under 

backordering, we find various contributions with recent ones from Wong et al. 

(2007) and Caggiano et al. (2008). Wong et al. (2007) consider a two-echelon 

system with a central depot and multiple local warehouses. Each warehouse as a 

service requirement in terms of a maximum mean waiting time for spares and the 

objective is to minimize system holding costs while meeting the service 

constraints per warehouse. The authors give exact and approximate approaches to 
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analyze the system. Furthermore, they present an optimization approach that is 

along similar lines as that of Kranenburg and Van Houtum (2008). Caggiano et al. 

(2008) consider a multi-item, multi-echelon system. They express the service 

restriction at each location in terms of channel fill rates, i.e. time-based fill rates 

where each location might have multiple fill rate restrictions (e.g. 90% of requests 

must be met instantaneously and 95% of requests must be met within 2 hours). 

Under lost sales, the contributions are limited, (see Bijvank and Vis (2011)). The 

analysis of such systems is complex, particularly of locations at higher echelons: 

there, the demand arrival process is often not Poisson and depends on the 

inventory states of locations at lower echelon levels. So far, literature considering 

multi-echelon systems with lost sales are either only accurate for limited problem 

instances (e.g. Andersson and Melchiors, 2001) or under restrictive assumptions, 

e.g. that the transportation time from a central warehouse to a local stock point is 

at least the lead time to the central warehouse (e.g. Hill et al., 2007). 

Our paper contributes to existing research in various ways. First, we extend the 

literature on two-echelon systems with lost sales. In our system, demand at a local 

stock point is only lost (and thus satisfied through an emergency shipment) if it 

cannot be met from stock at that stock point, from stock at the higher-level central 

location, or from items in the transportation pipeline between the two locations. 

We believe that such a system has not been considered in literature before, 

whereas it is a very reasonable model from a practical perspective: demand is only 

met through emergency shipments if no cheaper and faster alternatives are 

available. A companion paper (Alvarez and Van der Heijden, 2011) details how 

such a system can be accurately analyzed, whereas this paper gives an approach 

for optimizing such a system. Second, in an extensive experiment we investigate 

the added value of dedicated customer stocks by comparing it to alternative 

differentiation approaches. Such a comparison has not been done before, whereas 

it is very useful to know whether such an approach to differentiation can lead to 

large cost savings (and thus is a viable alternative to critical level policies). 

Finally, we consider a model where dedicated stocks and critical level policies are 

jointly used for differentiation to determine under what conditions each individual 

strategy (dedicated stocks, critical level policies) works best.  
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3 Model description 

3.1 Outline 

Consider a two-echelon network consisting of a warehouse supplying various 

items to multiple customers. We assume that all items are critical: any item failure 

causes a system failure. All customers belong to one of various customer classes, 

with each customer class having a distinct target service level in terms of a 

maximum time a customer of that class is willing to wait for spares. 

To meet the various service requirements at minimal costs, the supplier can apply 

two differentiation strategies. First, he may keep dedicated stocks (DS) of certain 

items at a customer’s facility next to stocks at the warehouse. Second, he may use 

a critical level policy (CLP), where he concentrates all stocks at the warehouse 

and only uses warehouse stock to satisfy requests from a customer class if this 

stock exceeds a critical level for that customer class.  

The supplier may opt to use the same differentiation strategy for all items. 

Furthermore, he may use a combined (COMBO) strategy, where the mode of 

differentiation (i.e. dedicated stocks or critical levels) can differ per item. In this 

case, only one differentiation strategy may be selected per item. The rationale 

behind COMBO is that an item’s characteristics influence the added value of the 

individual differentiation strategies: we expect dedicated stocks to be most 

beneficial for inexpensive fast movers, since they are frequently requested and 

inexpensive to keep in stock. Conversely, for expensive slow movers it might be 

better to centralize stocks and differentiate through critical levels.  

Irrespective of the strategy, a one-for-one replenishment policy is used at all 

locations. Furthermore, we consider two settings for dealing with demand that 

cannot be met from on-hand stock: (1) we backorder demand at all locations, or 

(2) we satisfy demand using emergency shipments from an central depot with 

infinite supply (effectively a lost sales setting). In the emergency shipments 

setting, we assume that a shipment from the warehouse to any customer is faster 

than an emergency shipment. As a result, emergency shipments are only used if 

both the customer and the warehouse are out of stock, and there are no items in 

transit between warehouse and customer. In literature on differentiation, unmet 

demand is often satisfied through emergency shipments, since in practice 

suppliers will try to obtain a part for a customer as quickly as possible (see e.g. 
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Kranenburg and Van Houtum, 2008). However, in an earlier paper (Alvarez et al., 

2010) we have shown that in some cases emergency shipments are excessively 

costly. Therefore, we also consider a backorder setting.  

Overall, we focus on minimizing the system’s holding costs and, if applicable, 

shipment costs under constraints on the mean aggregate waiting time per 

customer. Our decision variables are the item base stock levels at the various 

locations in the system, and the critical levels per customer class at the warehouse.  

3.2 Assumptions and notation  

3.2.1 Model assumptions 

• Demand for parts at any customer occurs according to mutually independent 

Poisson processes. 

• The shipment time from the warehouse to any customer is deterministic.  

• The emergency shipment time from depot to customer is deterministic. This is 

most realistic, although it is no problem for the model to include variability 

(then we use the mean only). 

• The regular shipment time to the warehouse is exponentially distributed. 

Although deterministic shipment times are generally more realistic, this 

assumption facilitates a performance evaluation based on Markov chain 

analysis. Also, inventory models for slow moving parts tend to be quite 

insensitive to lead time variability (Alfredsson and Verrijdt (1999)).  

• We use priority backorder clearing under CLP with backordering: backorders 

from a certain class will only be cleared once all backorders have been cleared 

from classes with higher service requirements, and the stock level at the 

warehouse is at least the critical level for that class. In contrast, first-come-

first-served clearing is used in the DS strategy.  

• Possible emergency shipments are sent directly to the customers.  

3.2.2 Notation 

We keep stock of I  items for K  customers; index 0 refers to the warehouse, and 

indexes K,...,1 to the customers. Each customer belongs to one of J  demand 

classes, with a class j  customer ( Jj ,...,1= ) willing to wait at most max
jW  time 

units on average for any item. Without loss of generality, we assume that max
jW  is 
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increasing in j  (i.e., class 1 has the tightest waiting time constraint). We let ( )kq  

denote the class to which customer k  belongs. Demand for item Ii ,...,1=  from 

customer k  occurs at rate ikm , with ∑=
=

I

i ikk mM
1

 denoting the total demand rate 

from customer k  and ∑ == jqk ik
j

i k
mM |  the total demand rate for item i  coming 

from class j  customers. For each item i , the shipment time to the warehouse is 

denoted by reg
iT 0 , the mean regular shipment time from the warehouse to customer 

k  is denoted by reg
ikT  and the emergency shipment time from the central depot to 

customer k  is denoted by em
ikT  (> reg

ikT ). Finally, for each item i  we denote the 

unit holding costs per time unit at location k  (i.e. including the warehouse) by ikh  

and the additional costs of an emergency shipment compared to a regular 

replenishment at customer k  by 
em
ikEC . We only require the additional shipment 

costs, since each demand triggers either a regular or an emergency shipment.  

For each item i , we have as decision variables (1) the base stock level ikS  at each 

location k ( )Kk ,...,0= , and (2) the critical level ( )jCi  for class j  customers at 

the warehouse. Note that ( ) 00 ii SjC ≤≤ j∀ , since we cannot reserve more items 

than we have in stock at the warehouse. As class 1 has the tightest waiting time 

restriction, we have that ( ) 01 =iC .We use vectors [ ]iKii SS ,...,0=S  and 

( ) ( )[ ]JCC iii ,...,1=C  to denote respectively the item i  stock levels and critical 

levels in the system. We combine all variables for item i  in an item policy 

( )ii CS , . For each item policy, we have as performance measures the expected 

waiting time ( )iiikEW CS ,  and the fraction of demand met through emergency 

shipments ( )iiik CS ,γ  for item i  and customer k , and the total costs ( )iiiTC CS ,  

for item i . We now express optimization problem ( )1P  as follows: 

( )1P  ( ) ( )∑ ∑ ∑ ∑∑
= = = = =

+=
I

i

I

i

K

k

I

i

em
ikik

K

k
iiikikikiii ECmShTC

1 1 0 1 1
,,min CSCS γ  

s. t. ( ) ( )∑
=

≤
I

i
kqiiik

k

ik WEW
M
m

1

max,CS  Kk ,...,1=  (P1.1)  

 ( ) 0, N∈jCS iik  JjKkIi ,...,1,,...,0,,...,1 ===   

As mentioned, our system costs consist of holding costs and, if applicable, 

additional emergency shipment costs. Under backordering, ( )iiik CS ,γ  will be 0, 
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and thus the total costs will only consist of holding costs then. Holding costs are 

computed over the stock in the entire system, including items in transit to the 

customers. However, the model can be adjusted to compute holding costs over on-

hand stock only: we then subtract the average number of items in transit, which is 

a constant value, from the stock level. Each customer k  has a restriction on the 

mean aggregate waiting time over all items, with kik Mm /  being the fraction of 

item i  waiting time that contributes to the aggregate waiting time. Note that the 

waiting time threshold ( )
max

kqW  depends on the customer’s class. 

4 Solution approach 

We solve problem )1(P  by using an approach based on decomposition and 

column generation which closely resembles Dantzig-Wolfe decomposition. This 

approach has been used before to solve nonlinear integer spare parts optimization 

problems with multiple items and aggregate waiting time restrictions over all 

items (see e.g. Kranenburg and Van Houtum (2007, 2008), Wong et al. (2007), 

and Alvarez et al. (2010)). In the approach, we reformulate ( )1P  to a linear integer 

programming problem and solve its LP-relaxation to obtain a lower bound. Then, 

we obtain a near-optimal integer solution by solving the integer problem itself.  

This solution approach is suitable for all the strategies we consider in this paper 

(i.e. dedicated stocks and critical level policies, both under backordering and 

emergency shipments). As we show, we can use this solution approach for any 

kind of strategy, provided that we are able to determine the performance measures 

(e.g. expected waiting times) for that strategy. We elaborate on the computation of 

performance measures in Section 5. 

Section 4.1 gives the reformulated variant of ( )1P . Sections 4.2 and 4.3 detail how 

to find a lower bound and near-optimal integer solution respectively. 

4.1 Reformulation to a linear problem 

We obtain the linear variant of ( )1P  by considering a set of item policies for each 

item. Our decision problem now becomes to select one item policy for each item 

such that the system costs are minimized while the waiting time restrictions per 

customer are still met.  
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Let ib  be shorthand notation for policy ),( ii CS , with iB  denoting the policy set 

considered for item i . Let binary variable 
ibx specify whether ib  is selected for 

item i  or not ( =
ibx  1 or 0 respectively). The reformulated problem ( )2P  becomes: 

( )

( ) ( ) ( )

( )

{ }

1

max

1

min

. . 1,..., 2.1

1 1,..., 2.2

0,1 1,..., ,

i
i i

i
i i

i
i i

i

I

i i b
i b B

I
ik

ik i b q k
i b B k

b
b B

b i i

TC b x

ms t EW b x W k K P
M

x i I P

x i I b B

= ∈

= ∈

∈

≤ =

= =

∈ = ∈

∑∑

∑∑

∑

 

4.2 Lower bound 

To solve the LP-relaxation of ( )2P , we must determine what item policies to 

include in iB  for item i . We use a similar procedure as in earlier papers, i.e. we 

first construct an initial policy set for each item and we use this set to solve the 

LP-relaxation a first time. Subsequently, we use column generation to iteratively 

find unconsidered item policies that further improve the solution value. We 

proceed in this way until we cannot find any more relevant policies. A critical part 

for our specific model is to limit the number of item policies to be evaluated in the 

column generation step. This is important, since the computation time for policy 

evaluation may explode if we do not select relevant policies carefully. In Section 

4.2.1, we show how we find an initial policy set. In Section 4.2.2, we give the 

column generation problem and the main steps in solving this problem. Finally, in 

Section 4.2.3 we give the formal column generation procedure.  

4.2.1 Creating an initial set of policies for each item 

As only criterion, our initial item policy set must result in a feasible solution to the 

LP-relaxation. In literature, such a policy set is typically found using a greedy 

approach: For each item, a policy is found by iteratively increasing stock until the 

waiting time for that item satisfies the tightest upper limit 
( ) ( )

maxmin q kq k
W . This 

condition ensures that the resulting solution will be feasible (see e.g. Kranenburg 

and Van Houtum, 2008). As disadvantage, the stock levels found tend to be much 
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larger than in the optimal solution. Therefore, we look for a better initial solution 

by constructing a policy set over all items simultaneously.  

Our approach is similar to the greedy approach by Wong et al. (2007) to find an 

integer solution (see Section 3.3 of their paper). We limit ourselves to policies 

without critical levels, irrespective of the strategy (DS or CLP, backordering or 

emergency shipments) being considered. Iteratively, we add stock at the item-

location combination resulting in the largest decrease in the so-called distance to 

the feasible region per euro additional costs. We shall define this distance 

measure below. If options exists that are both closer to the feasible region and less 

expensive, we select the option closest to the feasible region, since our focus is to 

find a feasible solution. The procedure stops once the resulting customer waiting 

times satisfy the overall targets. Note that this approach is also suitable under 

CLP, provided that we only add stock at the warehouse.  

We define the distance ( )iiDist S  of a solution to the feasible region as the amount 

by which the customer waiting times exceed the thresholds, i.e. 

( ) ( ) ( )∑
=

+









−=

K

n
nqiin

n

in
ii WEW

M
m

Dist
1

maxSS  with [ ] { }aa ,0max=+  (1) 

At the end of the procedure, we have one item policy per item consisting of the 

system stock levels found. However, note that we have analyzed various other 

item policies as well during the procedure (i.e. in each iteration we changed one 

stock level value). By also adding these policies to the initial policy set, we limit 

the number of additional policies that must be found through column generation. 

We realize that some of the added policies might be poor options. Therefore, 

when looking for an integer solution later on, we first remove those poor policies 

from our policy set before optimizing the integer problem. Section 4.3 gives 

further details on the criteria we use to remove these policies.  

4.2.2 The column generation problem 

Through column generation, we iteratively look for unconsidered item policies 

that have negative reduced costs. Such policies further improve the solution value 

of the LP-relaxation. In each iteration, we find per item i  the policy with 

minimum reduced costs and we add this policy to iB  if these reduced costs are 

negative. We proceed in this way until we cannot find any policy with negative 

reduced costs. We use the shadow prices found when solving the LP-relaxation as 
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input to obtain a policy’s reduced costs. The reduced costs ( )ibRED  for policy ib  

is given by equation )2( , with 0≤ku  and 0≥iv  denoting the shadow prices 

associated with restrictions ( )1.2P  and ( )2.2P  respectively. 

( ) ( ) ( ) ( )∑
=

−−==
K

k
iiiik

k

ikk
iiiiiiii vEW

M
mu

TCREDbRED
1

,,, CSCSCS
 

(2) 

For three strategies, we refer to earlier literature for the column generation 

procedures. Specifically, for DS under backordering we refer to Wong et al. 

(2007), for CLP under backordering we refer to Alvarez et al. (2010), and for CLP 

under emergency shipments we refer to Kranenburg and Van Houtum (2008). In 

the remainder of this section, we give the column generation procedure for DS 

under emergency shipments. For combination of DS and CLP (i.e. the COMBO 

strategies), we simply use both the procedures for DS and CLP. As we only 

consider DS, we omit the vector iC  in the remainder of this section. 

A complication under DS with emergency shipments is that the service level (i.e. 

fill rates and waiting times) at a customer does not only depend on the stock level 

at that customer and at the warehouse, but also on the stock levels at all other 

customers. In particular, if stock is increased at a customer k  while all other 

customer stock levels remain unchanged, the service level at customer k  will 

improve at the expense of the service levels at all other customers: the warehouse 

then sees a relatively large arrival rate from customer k due to replenishment 

requests, and must satisfy these additional demands using the same amount of 

stock. As a result, a smaller fraction of replenishment requests from other 

customers can be met from warehouse stock. Irrespective of this complication, we 

can find the policy with minimum reduced costs from the following observations: 

• Observation 1: We can find an upper bound max
0iS  on 0iS . Let ( )*

0i iRED S  

denote the minimal reduced costs for a given 0iS  over the stock levels at all 

customer locations ikS ( )1≥k . Equation (2) shows that ( )*
0i iRED S  will be at 

least iii vSh −00  since the total cost include the holding costs for the stock at 

the warehouse, and ku  ≤ 0. We ignore the cost elements related to the various 

customers (e.g. the waiting times), as these depend on the other stock levels as 

well. We find max
0iS  as follows: (i) We determine an upper bound UB

iRED  on 

the reduced costs by setting all customer stocks ikS  to zero and finding the 
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value of 0iS  leading to the lowest reduced costs; given that 0 ( 1)ikS k= ≥ , the 

reduced costs are convex in 0iS , see Kranenburg and Van Houtum (2007). (ii) 

We find max
0iS  as the smallest 0iS  for which iii vSh −00  exceeds { }0,min UB

iRED . 

It is sufficient for the lower bound on the reduced costs iii vSh −00  to be 

nonnegative, as we focus on item policies with negative reduced costs. 

• Observation 2: We can find a rough upper bound MAX
ikS  on ikS ( )1≥k . An 

increase of ikS  can only benefit the service level at customer k . Hence, we 

find MAX
ikS  once the additional holding costs of increasing ikS  outweigh the 

maximum reduction in that customer’s emergency shipment and waiting time 

costs, i.e. MAX
ikS  is the smallest ikS  for which ikh  exceeds 

( ) ( )iik
k

ikkem
ikikiik EW

M
mu

ECm SS −γ . To ensure that MAX
ikS  is sufficiently large, 

we require upper bounds on )( iik Sγ  and )( iikEW S . We find such bounds from 

the special case where demand at customer k  can only be met from on-hand 

stock at that customer (i.e. that customer has no access to warehouse stock). 

Then, we have the worst-case scenario in terms of service level. The resulting 

system can be analyzed as an Erlang-loss system with ikS  servers. 

• Observation 3: For a given value of 0iS , we can now find a tighter upper 

bound on ikS  ( 1≥k ), denoted by ( )0
max

iik SS . As in observation 2, we find 

( )0
max

iik SS  when the holding costs of increasing ikS  exceed the emergency 

shipment and waiting time costs of customer k . Compared to MAX
ikS  (in 

Observation 1) , we now use more accurate values for )( iik Sγ  and )( iikEW S , 

which we find by also considering the stock kept at other locations in the 

system. Specifically, we set all other customer stocks inS kn ≠  to their rough 

upper bounds MAX
inS  and then we determine )( iik Sγ  and )( iikEW S . As the 

service level at customer k  is lowest when the stock levels at other customers 

are large, the values for )( iik Sγ  and )( iikEW S  will still be sufficiently large. 

 

In addition to these observations, we empirically find that the optimal value of ikS  

for a given 0iS , denoted by ( )0
ˆ

iik SS , always lies between two thresholds ( )0iik SS ′  
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and ( )0iik SS ′′ . We find ( )0iik SS ′  as the value of { }max
00,.., ( )ik ik iS S S∈  that 

minimizes ( )iRED S  when all other customer stocks inS kn ≠  are set to their upper 

bounds ( )max
0in iS S . Similarly, we find ( )0iik SS ′′  as the optimal ikS  when all other 

customer stocks are at their lower bounds ( ) 00
min =iin SS . As we look for optimal 

values of ikS  in two extreme cases (the remaining customer stocks are either at 

their maximum or at their minimum), we expect the true optimum to lie between 

these values. Note that ( )0iik SS ′  and ( )0iik SS ′′  in fact give us new bounds on 

( )0
ˆ

iik SS . We can thus repeat the mentioned steps (i.e. we can find new values for 

( )0iik SS ′  and ( )0iik SS ′′ ) by updating ( )0
min

iik SS  and ( )0
max

iik SS . We proceed in this 

way until the bounds stabilize (either because the values for ( )0
min

iik SS  and 

( )0
max

iik SS  no longer change or because ( ) ( )00 iikiik SSSS ′′=′  for all customers k ). 

Overall, our column generation procedure works as follows: We increase 0iS  

from zero up to max
0iS  with step size 1. In each step, we first compute ( )0iik SS ′  and 

( )0iik SS ′′  for each customer k . Then, we look for the combination of customer 

stock levels that has minimum reduced costs, given that ( ) ( )0 0ik i ik ik iS S S S S′ ′′≤ ≤ .  

4.2.3 The formal steps the column generation procedure  

Full column generation procedure 

1. Find max
0iS  from observation 1. 

2. For each customer k , find a rough upper bound MAX
ikS  on the optimal stock 

level (observation 2).  

3. For each { }max
0 00,..,i iS S∈  do: 

a. Find a tighter upper bound ( )0
max

iik SS  on the optimal stock level for 

customer k  (see observation 3). 

b. Find thresholds ( )0iik SS ′  and ( )0iik SS ′′  for each customer k . 

c. Find the customer stock combination [ ]iKi SS ,...,1  that minimizes 

( )iRED S , with ( ) ( )0 0ik i ik ik iS S S S S′ ′′≤ ≤ . 
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d. If the solution is the best so far, store it. Also store the related reduced 

costs as *
iRED . If iii vSh −+ )1( 00  (i.e. the lower bound on the reduced 

cost for 10 +iS ) exceeds *
iRED , exit the procedure.  

 

Next, we give further details on steps 1 through 3b.  

 

Step 1. Finding max
0iS . 

1. Determine an upper bound UB
iRED  on the reduced costs.  

a. Set all customer stocks ikS  to zero ( )1≥k . 

b. Find the 0iS  that minimizes ( )iiRED S . Set UB
iRED  to this value. 

2. Find max
0iS as the smallest 0iS  for which iii vSh −00  exceeds { }0,min UB

iRED . 

 

Step 2. Finding MAX
ikS  for each customer k . 

1. Consider an Erlang Loss system with ikS  servers and replenishment rate 

( )reg
i

reg
ikik TT 0/1 +=µ . Our performance measures now only depend on 

ikS : we find ( )ikik Sγ  as the probability of all servers being occupied, with 

)( ikik SEW  being equal to ( )ikik
em

ik ST γ . 

2. Find ( )0
max

iik SS  as the smallest value of ikS  for which ikh  exceeds 

( ) ( )ikik
k

ikkem
ikikikik SEW

M
mu

ECmS −γ . From that moment, the reduced costs 

cannot improve further.  

 

Step 3a. Finding ( )0
max

iik SS  customer k  for any 0iS . 

1. Set all other customer stocks inS kn ≠  to MAX
inS . 

2. Find ( )0
max

iik SS  as the smallest ikS  for which ikh  exceeds 

( ) ( )iik
k

ikkem
ikikiik EW

M
mu

ECm SS −γ . 

 

Step 3b. Finding ( )0iik SS ′  and ( )0iik SS ′′ . 

1. Set all customer lower bounds ( )0
min

iik SS  )1( ≥k  to 0. 

2. Find ( )0iik SS ′  for each customer k . 
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a. Set all other customer stocks inS kn ≠  to ( )0
max

iin SS . 

b. Find ( )0iik SS ′  as the ( ) ( ){ }0
max

0
min ,..., iikiikin SSSSS ∈  that minimizes ( )iRED S . 

3. Find ( )0iik SS ′′  for each customer k . 

a. Set all other customer stocks inS kn ≠  to ( )0
min

iin SS . 

b. Find ( )0iik SS ′′  as the ( ) ( ){ }0
max

0
min ,..., iikiikin SSSSS ∈  that minimizes ( )iRED S . 

4. Exit if (i) ( ) ( )00 iikiik SSSS ′′=′  for all customers k , or (ii) neither ( )0iik SS ′  nor 

( )0iik SS ′′  has changed compared to the previous iteration for any customer. 

Otherwise, set ( )0
min

iik SS  to ( ) ( ){ }00 ,min iikiik SSSS ′′′  and ( )0
max

iik SS  to 

( ) ( ){ }00 ,max iikiik SSSS ′′′  and proceed to step 2.  

4.3 Near-optimal integer solution 

The optimal solution to the LP-relaxation might be fractional, i.e. it might be that 

a combination of item policies has been selected for certain items. Therefore, we 

also require an approach to find a near-optimal integer solution. We obtain such a 

solution by solving the integer problem ( )2P  using a limited set of item policies. 

This approach worked well in an earlier paper (cf. Alvarez et al., 2010), where it 

outperformed a greedy heuristic in terms of solution quality. 

In Alvarez et al. (2010), we solve the integer problem using the set of item 

policies generated when solving the LP-relaxation of ( )2P . In this paper, this 

policy set is a starting point, as it might contain many policies: when constructing 

our initial policy set (Section 4.2.1), we included all found policies in iB . We also 

added additional policies during column generation. Such a large policy set is not 

an issue when solving an LP-relaxation, but computation times might explode 

when solving the integer problem. Therefore, we eliminate all dominated item 

policies from the LP-relaxation set before solving the integer problem. Dominated 

policies have both higher costs and higher waiting times than at least one other 

policy in the policy set. As a result, such policies will never be chosen and they 

can thus be eliminated from the policy set without sacrificing solution quality.  

5 Evaluation of an item policy 

Our solution approach requires as input the performance measures for each item 

policy. In this section, we specify how we can find such performance measures 
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using Markov chain analysis. For most item policies, the evaluation procedure is 

not new and has already been described in earlier papers. However, we needed a 

new procedure for evaluating a policy under dedicated stocks (DS) with 

emergency shipments. We describe this procedure in detail in a companion paper 

(Alvarez and Van der Heijden, 2011). In this paper, we limit ourselves to globally 

specifying the main evaluation steps. In Sections 5.1 and 5.2 we describe the 

evaluation under a critical level policy (CLP) and under DS respectively. For 

simplicity, we limit ourselves to two customer classes in this section and the 

remainder of the paper. However, in many cases the analysis can be extended to 

more classes. As we only have one relevant critical level in a two-class model (i.e. 

( )2iC ), we denote this critical level by iC  for simplicity. 

5.1 Evaluation under a critical level policy (CLP) 

Under CLP, we only keep stock at the warehouse. As a result, we only need to 

analyze the warehouse to obtain the performance measures needed. Indeed, under 

emergency shipments we find performance measures from the distribution of the 

pipeline to the warehouse: if we have more than ii CS −0  items in the pipeline, 

demands from both customer classes are satisfied from warehouse stock. 

Otherwise, only demand from premium customers is met from on-hand stock if 

possible, with non-premium demand being lost. Kranenburg and Van Houtum 

(2008) further detail how an item policy can be analyzed under lost sales.  

In contrast, under backordering we can no longer analyze the system using only 

the pipeline to the warehouse: once we have ii CS −0  or more items in the 

pipeline, we can simultaneously have stock on-hand and backorders for non-

premium customers. As a result, we need a two-dimensional state space ( )zw,  to 

analyze the warehouse, with w  the number in the pipeline and z  the number of 

class 2 backorders. From these values, we are able to compute the number of class 

1 backorders as well. Further details are given in Alvarez et al. (2010).  

Under backordering, it is difficult to analyze the system for more than two 

demand classes, as each additional class adds an additional dimension to the 

Markov chain. In contrast, such an extension is straightforward under emergency 

shipments, as shown by Kranenburg and Van Houtum (2008).   
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5.2 Evaluation under dedicated stocks (DS) 

Under DS, we can also keep stock at the customers. As a result, we must analyze 

a two-echelon system to find the needed performance measures: Naturally, we 

must analyze the availability of stock at each customer separately. Furthermore, 

we must analyze the availability of stock at the warehouse, as this availability 

influences the lead time for replenishment orders to each customer. 

Under full backordering, Wong et al. (2007) analyze such a system using the 

following steps: first, they analyze the warehouse to obtain per customer the 

distribution of items outstanding at the warehouse (i.e. the items that still need to 

be shipped to that customer). Using this distribution, the authors determine the 

distribution of the pipeline to each customer, which consists of the items 

outstanding for that customer at the warehouse and the additional demand that 

occurs during the shipment time from warehouse to customer. Finally, the authors 

use these pipeline distributions to determine the expected number of backorders at 

each customer (resulting in an expected waiting time through Little’s Law).   

Under emergency shipments, the main analysis steps are similar to the 

backordering case. However, the analysis of the warehouse is now far from trivial: 

If the warehouse is out of stock, it will only receive item requests from customers 

that either still have stock on-hand or have stock in transit from the warehouse 

(demand from other customers is met through emergency shipments). As a result, 

the distribution of outstanding items at the warehouse depends on the availability 

of stock in the entire system. Under backordering, this complication does not 

exist, as each customer demand triggers a demand at the warehouse. In a 

companion paper (Alvarez and Van der Heijden, 2011), we detail how such a 

system can still be efficiently analyzed. 

Note that a customer’s demand class has no influence on the analysis of the 

system, so an extension to more demand classes is straightforward. 

6 Computational experiment  

In this section, we describe our computational experiment. We give the objectives 

in Section 6.1, the experiment design in Section 6.2, and the results in Section 6.3. 
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6.1 Experiment objectives 

First, we investigate the performance of our optimization approach for the DS 

strategy with emergency shipments in terms of solution quality – expressed as a 

relative gap to the lower bound – and computation time. Second, we evaluate the 

added value of using dedicated customer stocks for differentiation. We do so by 

comparing results under DS to those under a one-size-fits-all approach and under 

CLP. Finally, we investigate the added value of the COMBO strategy where the 

differentiation mode (i.e. dedicated stocks or critical levels) may differ per item. 

6.2 Experiment design 

Figure 1 shows the parameter values we used for our problem instances.  

 Parameter Values 

1.  Number of items I  20; 100 

2.  Number of customers K  8; 16 

3.  Percentage premium customers (% of K ) 12.5; 25 

4.  ( )max
2

max
1 ;WW  (days) ( )3

1
12

1 ; ; ( )3
2

12
1 ;  

5.  Intervals for demand rates ikm  (per day) [ ]05.0002.0 − ; [ ]25.0002.0 −  

6.  Intervals for holding costs ih  (per day) [ ]10010 − ; [ ]100010 −  

7.  0
reg

iT  (days) 5; 15 

8.  reg
ikT (days) 48

1 ; 16
1   

9.  em
ikT (as a % of 0

reg
iT ) 10; 20 

10.  em
ikEC  (per shipment) 1000 

Figure 1 Parameter settings in problem instances 

Parameters 2 and 3 give the number of premium customers in the system. Note 

that reg
ikT  has very small values compared to the other shipment times: under CLP, 

the mean waiting time for each customer will at least be reg
ikT . Hence, we can only 

find solutions under CLP if reg
ikT  is smaller than max

1W .  

Except for the demand rates and holding costs, the parameter values are the same 

for all items, and if applicable all customers, in a problem instance. The demand 

rates ikm  and holding costs ih  are randomly drawn from uniform distributions on 
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the specified intervals. We use the same holding cost value at all locations in a 

problem instance. Therefore, we omit suffix k  in ih .  

For each combination of parameters 1 through 9, we create 3 samples of demand 

rates and holding costs, thereby ensuring that our results are not influenced by the 

specific values of one sample. In total, we have 2304 instances: 3 (samples) * 28 

(parameters 1..8) = 768 instances for each of the strategies (i) backordering, (ii) 

emergency shipments with em
ikT  as 10% of 0

reg
iT  , (iii) emergency shipments with 

em
ikT  as 20% of 0

reg
iT . 

6.3 Results  

We discuss the results for each experiment objective in a separate section. 

6.3.1 Performance of the optimization approach 

We determine the solution quality of the optimization approach by comparing the 

integer solutions found to their lower bounds. The solution quality is expressed as 

a gap to the lower bound, i.e. ( ) LBLBIP TCTCTC /−  with LBTC  and IPTC  

respectively denoting the lower bound and integer solution value. 

Table 1 shows the solution quality and computation times of the approach. The 

approach works very well in terms of solution quality: the average gap is 0.3% 

and the maximum gap is 2.2%. Also, the maximum gap decreases greatly as the 

number of items increases. The procedure will thus give good solutions for 

practical instances with many items. The average computation time of an instance 

is 23 minutes, with a maximum of 940 minutes. However, most instances (91%) 

require fewer than 60 minutes computation time, with only 9 instances (out of 

1536) having a computation time larger than 360 minutes. The bulk of the 

computation time lies in the column generation step, where sometimes many item 

policies need to be evaluated. Furthermore, the computation time mainly depends 

on the number of items and customers, and the shipment time to the warehouse.  
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Table 1 Performance of the optimization approach for DS with emergency shipments 

6.3.2 The added value of dedicated stocks (DS) 

We determine the added value of DS by comparing the solutions under DS to 

those under a one-size-fits-all (OSFA) approach and under critical level policies 

(CLP). Under OSFA, stock may only be kept at the warehouse, with no stock 

reserved for premium customers. Possible backorders at the warehouse are cleared 

first-come-first-served. We compute the relative cost saving of DS and CLP over 

OSFA, expressed as ( ) OSFADSOSFA TCTCTC /− . Here, OSFATC  denotes the costs 

under OSFA and DSTC  the costs under a differentiation strategy. Figure 2 shows 

the overall savings of DS over OSFA, both under backordering and under 

emergency shipments (columns BO and ES respectively). Under backordering, 

the average savings are 14% with a maximum of 36%. Under emergency 

shipments, the savings are even larger (20% on average and a maximum of 63%).  

 
Figure 2 Overall cost savings of dedicated stocks (DS) over one-size-fits-all (OSFA)  

Table 2 shows the parameters of greatest influence on the savings for the 

emergency shipment cases. Except for the holding cost values, the trends are 

similar for the backordering cases. Dedicated stocks are particularly beneficial if 

we have relatively few premium customers. Then, we only need to keep stock at 

those few premium customers to effectively apply differentiation. As the (relative) 

Parameter Values
Average Maximum Average Maximum

20 0.4% 2.2% 10 404
100 0.1% 0.2% 36 940
8 0.2% 2.2% 3 28
16 0.3% 2.0% 43 940
5 0.2% 2.2% 4 36
15 0.3% 2.0% 42 940

Grand Total 0.3% 2.2% 23 940

            

Relative gap to lower bound Computation time (mins)

Num. Items  

Num. Customers

𝐼

𝐾

𝑇𝑖0
𝑟𝑒𝑔

14%
20%

36%

63%

BO ES

Relative cost savings of DS over OSFA
Average Maximum
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number of premium customers grows, we either need to keep stock at more 

customers (which increases holding costs), or we find that it is more beneficial to 

pool stock centrally – which benefits all customers – instead of keeping dedicated 

stock. Either way, the savings compared to OSFA decrease. Dedicated stocks are 

also beneficial when the shipment time from the warehouse to the customers is 

large: As this time increases, it becomes more interesting to keep stock at the 

customer instead of centrally. Indeed, in practical settings –  where shipment 

times to customers are often larger than the times we tested – dedicated stocks 

might even be necessary for meeting the premium customer requirements.  

 
Table 2 Parameter-specific savings of DS over OSFA under emergency shipments 

In contrast to the backordering cases, where the holding cost values have very 

little influence on the savings, we see that the savings under emergency shipments 

clearly increase as the holding costs increase. This is caused by the height of the 

holding costs relative to the emergency shipment costs: when holding costs are 

low, we keep stock both to meet waiting time requirements and to limit expensive 

emergency shipments. As a result, it is most beneficial to keep stock at the 

warehouse, where it reduces the number of emergency shipments needed for all 

customers. Dedicated stocks are not beneficial in this setting, since they benefit 

only those customers where stock is kept. In contrast, when holding costs are 

high, emergency shipments are relatively inexpensive and we focus less on 

avoiding them. As a result, we use dedicated stocks to minimize the gap between 

actual and required waiting times, especially for non-premium customers (see 

Figure 3 for the aggregate non-premium waiting times when 3
2max

2 =W days).  

Parameter Values
Average Maximum

8 23% 63%
16 17% 59%
0.125 24% 63%
0.25 16% 51%
0.5 15% 52%
1.5 25% 63%
(2; 8) 17% 58%
(2; 16) 23% 63%
[10 - 100] 9% 37%
[10 - 1000] 31% 63%

Grand Total 20% 63%

Relative savings over OSFA

Num. Customers

Percentage premium 
customers (%)

Holding cost interval

𝐾

𝑇𝑖𝑘
𝑟𝑒𝑔

W1
𝑚ax;W2

max



22 

 
Figure 3 Aggregate non-premium waiting times under OSFA and DS (waiting threshold = 2/3 days)  

Further analysis of the solutions shows that we mainly keep stock at premium 

customers’ sites: on average, we keep 61% of items in stock at premium sites, 

with only 1% kept in stock at non-premium sites. However, we often only keep 1 

unit of an item at any customer. Overall, we keep dedicated stocks of fast-moving 

items that are slightly cheaper than average (see Figure 4). 

 
Figure 4 The item characteristics of items that are kept at customers vs. items that are not 

Table 3 shows the savings of both DS and CLP over OSFA. Note that the savings 

under DS are close to those under CLP, particularly when emergency shipments 

are used. As we expect DS to also be easier to implement in practice, we consider 

it a very viable alternative to CLP. 

 
Table 3 Relative savings of DS and CLP over OSFA 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Agg. waiting time OSFA Agg. waiting time DS

Low holding costs High holding costs

0.09 0.09

0.03

0.07

BO ES

Average demand rate

Local stocks No local stocks

263 256
299 288

BO ES

Average holding costs

Local stocks No local stocks

Parameter Values
DS CLP DS CLP

8 17% 19% 23% 21%
16 12% 19% 17% 21%
0.125 18% 20% 24% 23%
0.25 11% 18% 16% 20%
0.5 10% 17% 15% 19%
1.5 19% 21% 25% 23%

Grand Total 14% 19% 20% 21%

Backordering

Num. Customers

Percentage premium 
customers (%)

Em. Shipments

𝐾

𝑇𝑖𝑘
𝑟𝑒𝑔
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6.3.3 The combined policy 

Figure 5 summarizes the overall savings of the various differentiation strategies 

over OSFA, including the COMBO strategy where the mode of differentiation 

(dedicated stocks, critical level policies) may vary per item. Note that the savings 

under COMBO are not much larger than those under DS or CLP.  

 
Figure 5 Overall savings over OSFA of the various differentiation strategies 

Even though the additional savings under COMBO are not very large, we do see 

that most solutions (68% of the instances) contain a mix of both dedicated stocks 

and critical level policies. Still, the fraction of items per strategy (DS or CLP) 

depends greatly on the parameter values, see Table 4.   

 
Table 4 Average percentage of items per differentiation strategy in the COMBO approach 

Finally, for each strategy (DS, CLP) we analyzed the item holding costs of the 

items assigned to that strategy. We find that DS is mainly used for inexpensive 

15%

20%19% 21%20%
23%

Backordering Em. Shipments

Relative savings over OSFA

DS CLP COMBO

Parameter Values

DS CLP DS CLP
8 29% 38% 42% 40%
16 21% 42% 26% 60%
0.125 25% 32% 40% 41%
0.25 23% 45% 28% 58%
0.5 10% 41% 21% 61%
1.5 36% 41% 43% 43%
[2 - 8] 23% 29% 31% 48%
[2 - 16] 24% 53% 35% 54%
0.05 21% 47% 26% 56%
0.25 26% 35% 39% 47%
[10 - 100] 23% 41% 29% 45%
[10 - 1000] 24% 41% 35% 56%

Grand Total 24% 41% 33% 52%

Holding cost interval

Maximum daily 
demand rate

Percentage of items per strategy
Backordering Em. Shipments

Num. Customers

Percentage premium 
customers (%)

𝐾

𝑇𝑖𝑘
𝑟𝑒𝑔

W1
𝑚ax;W2

max
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items, with CLP being used for expensive items. Figure 6 shows the average 

holding costs per strategy over the instances with holding cost interval [10 – 

1000]. We find similar figures for other intervals. We were unable to draw clear 

conclusions on the item demand rates per strategy. 

 
Figure 6 The average item holding costs per differentiation strategy 

7 Conclusions and further research 

7.1 Conclusions 

• The optimization approach of Section 4 gives near-optimal solutions 

under dedicated stocks with emergency shipments: the average and 

maximum gap to the lower bound are 0.3% and 2.2% respectively. The 

approach works particularly well (maximum gap of 0.2%) when there are 

many items in a problem instance.  

• Dedicated stocks have significant added value. Under backordering, DS 

leads to average savings of 14% compared to an approach where no 

differentiation is used (i.e. OSFA), with a maximum of 36%. Under 

emergency shipments, the average and maximum savings even amount to 20% 

and 63% respectively. Furthermore, the savings obtained under DS are 

comparable to those under CLP (who has average savings of 19% and 21% 

under backordering and emergency shipments respectively). 

• Dedicated stocks are very beneficial, if not necessary, when the shipment 

time to customers is large. As shipment times to customers increase, it might 

no longer be possible to only keep stock centrally if customers have high 

service requirements. So far, this fact has been largely ignored in literature on 

190.56 249.8

624.03 670.4

Backordering Em. Shipments

Avg. holding cost per diff. strategy 
(holding cost interval [10 - 1000])

DS CLP
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critical level policies, where the shipment time to customers is assumed to be 

negligible as it is often much smaller than the shipment time to the warehouse.  

• We find relatively small additional gains under the combined strategy 

(COMBO) compared to DS or CLP. The practical relevance of this 

observation is that dedicated stocks indeed have significant added value, as we 

do not find much greater savings by adding critical levels.  

• Under the combined strategy, we keep dedicated stocks of inexpensive 

items, while using critical level policies for expensive items.  

7.2 Further research options 

We also discuss the feasibility and relevance of various research options: 

• More efficient optimization approaches. The optimization approach of 

Section 4 currently requires a lot of computation time, particularly the column 

generation step. The main cause of this computation time is the fact that many 

item policies need to be analyzed during column generation. Further research 

is thus necessary to limit the number of item policies that must be analyzed.   

• More sophisticated shipment strategies. At present, we use backordering for 

all items and demand classes, or we always use emergency shipments. By also 

distinguishing the shipment mode per item (and possibly per class), further 

savings might be possible. This extension will not impact the methods for 

analyzing an item policy. However, the number of item policies to choose 

from then increases greatly, which complicates the optimization procedure of 

Section 4. In particular, further research is needed for efficiently finding item 

policies with negative reduced costs.  

• Combining dedicated stocks and critical level policies for a single item. In 

this paper, we did not consider strategies where dedicated stocks and critical 

levels can jointly be used for the same item. However, we expect this 

combination to be of little added value: for a subset1 of problem instances, we 

compared the solutions under the current COMBO approach (i.e. at most one 

differentiation option per item) with backordering to the approach where both 

differentiation options may be used per item. We concluded that the solutions 

rarely changed: the relative difference between the solutions of the two 

approaches was at most 0.6%. 
                                                 
1 We considered one sample of demand rates and holding costs.  
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• Alternative differentiation techniques: In addition to dedicated stocks, we 

see the selective use of lateral transshipments between warehouses as an 

additional promising tool for applying differentiation in spare parts supply.  
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