
Service Discovery for Mobile Ad Hoc
Networks: A Survey of Issues and Techniques

Christopher N. Ververidis and George C. Polyzos , Member, IEEE

Abstract- This paper surveys research in service advertising,

discovery and selection for mobile ad hoc networks (MANETs)
and related issues. We include a categorization of service
discovery architectures for MANETs and their modes of
operation, presenting their merits and drawbacks. We pay
particular attention to cross-layer service discovery a special
class of efficient service discovery approaches for MANETs. We
also present security issues and discuss service description
options, service selection mechanisms and service state
maintenance techniques. We conclude with a summary, an
outlook and directions for future research in this area.

Index Terms— Service Discovery, Advertisement, Selection,
Description, Cross layer

I. INTRODUCTION
OBILE Ad Hoc Networks (MANETs) are networks
comprised of mobile nodes (e.g. portable computers,
PDAs etc.) equipped with wireless interfaces and

communicating with each other without relying on any
infrastructure. In these networks each mobile node may act as
a client, a server and a router. MANETs have emerged to
fulfill the need for communication of mobile users in locations
where deploying a network infrastructure is impossible, or too
expensive, or simply is not available at that time.
Characteristic scenarios for MANETs are disaster relief
operations, battlefields and locations where infrastructure-
based WLAN coverage (also called hotspots) is not provided
and wireless WANs (e.g. GPRS/UMTS) are too expensive to
use or too slow.

Most of the research on MANETs has focused on issues
dealing with the connectivity between mobile nodes in order
to cope with the dynamism of such networks and the arising
problems thereof. This dynamism is due to the mobility of
nodes, the wireless channel’s adverse conditions and the

 This research has been supported in part by the project Autonomic
Network Architecture (ANA, #IST-27489), which is funded by the IST FET
Program of the European Commission.

 C. N. Ververidis is with the Computer Science Department, Athens

University of Economics and Business, Athens, 10434 GREECE (phone: +30-
210-8203646; fax: +30-210-8203860; e-mail: chris@aueb.gr).

 G. C. Polyzos is with the Computer Science Department, Athens
University of Economics and Business, Athens, 10434 GREECE (e-mail:
polyzos@aueb.gr).

energy limitations of mobile nodes, all of which lead to
frequent disconnections and/or node failures. These research
efforts have led to the creation of a sound technical basis for
dealing with the aforementioned problems regarding node
connectivity in MANETs (mainly through routing protocols,
link layer protocols etc.)

However, solving the problems of connectivity alone is not
sufficient for the adoption of MANETs. Since their basic role
is to allow mobile users to exchange data and use each other’s
services, there is also a need for architectures, mechanisms
and protocols for Service Discovery. Service Discovery is
defined as a process allowing networked entities to:

• Advertise their services.
• Query about services provided by other entities.
• Select the most appropriately matched services.
• Invoke the services.

Service Discovery has been mainly addressed in the context
of wired networks in the past. However, in the context of
MANETs new challenges arise:

• Node mobility, affecting service availability.
• Frequent disconnections of the server, the client or

intermediate nodes breaking or changing the path and
the service selection parameters.

• Channel variability, leading to significant
communication characteristics variability (data rate,
delay etc.)

Despite the existence of a number of survey papers
regarding service discovery protocols ([48], [89], [90], [91])
we believe that a comprehensive overview of techniques and
open issues for service discovery in MANETs would be
useful. It is the purpose of this paper to provide a
comprehensive review on the state of the art regarding service
discovery approaches for MANETs. In the following we will
try to make a categorization of service discovery approaches
according to the mechanisms they utilize and their features.
We will also highlight features that are not fully developed yet
and require further research.

The structure of the remainder of the paper is as follows:
Section II describes the basic service discovery architectures,
Section III presents the possible modes for service discovery,
Section IV highlights approaches based on cross-layer
optimizations, Section V discusses special features for service
discovery such as service description options, service
selection mechanisms and service state maintenance
techniques, Section VI comments on security, trust and

M

privacy issues for service discovery, Section VII identifies
areas requiring further research and Section VIII concludes
the paper.

Before continuing to the presentation of research results
regarding service discovery it is worth briefly presenting the
pioneering service discovery approaches developed and
adopted by the industry, namely Jini1 [1], Salutation2 [2],
UPnP3 [3], Bluetooth SDP4 [5], SLP5 [6] and Bonjour6 [7].
Jini
Jini is a service discovery architecture specifying how service
discovery and service invocation is to be performed among
Java-enabled devices (a Java Virtual Machine is mandatory).
A central component of a Jini deployment is a Lookup server.
Lookup servers act as directories. They store services
published by service providers and also they reply to client
queries. Lookup servers announce their presence in response
to requests multicasted by service providers or clients. Service
providers register their services with Lookup servers by
sending service objects along with their attributes. Service
objects are actually proxies written in Java and serve as
interfaces for clients to access a remote service. Clients
receive those proxies (usually RMI stubs) by Lookup servers
upon successful match of their requests. Requests may include
the type of the requested service as well as other attributes.
Jini also supports leases, which means that services are
registered for a specific amount of time and if they do not get
updated they are erased from Lookup servers. Another
characteristic of Jini is that through Java remote events, clients
can be notified upon changes in the status of a remote service.
Finally, Jini provides security through the Jini Security
Framework (see section VI).

Salutation
Salutation was primarily designed for home and enterprise

environments. Its architecture allows devices, services and
applications to advertise their capabilities, discover and access
each other. Capabilities are expressed as attribute sets. A basic
component of the architecture is Salutation Managers (SLM),
who are responsible for storing attribute sets. Every device has

a local SLM with descriptions of its own services. However
SLMs at different devices communicate with each other via
the Salutation Manager Protocol in order to discover services
available in other devices. Communication protocol
independence is achieved through a transport independent
layer between an SLM and the Salutation Transport Manager
(TM), which implements the transport functionality. One SLM
may have many TMs in order to operate over different
network technologies (e.g. IR, Bluetooth etc.). Service
availability can be checked by setting a local SLM to
periodically query a remote SLM about the needed service.
Regarding security Salutation supports only password-based
authentication. For small footprint devices a less demanding
version of Salutation, Salutation-Lite [58], has also been
developed.

1 Sun Microsystems.
2 Salutation Consortium members: Canon Inc., Consumer Electronics

Association (CEA), Continental Automated Buildings Association
(CABA), Fuji Xerox Co., Ltd., Hewlett Packard, Infrared Data Association
(IrDA), Institute of Certified E-Commerce Consultants (ICECC),
International Business Machines, Konica Minolta Holdings, Inc., Kyocera
Mita Corporation, National Institute of Standards and Technology (NIST),
Oki Data Corp., Ricoh Company, Ltd., Seiko Epson Corp, SISCO, Sun
Microsystems.

3 UPnP Forum’s Steering Committee members: Broadcom Corporation,
Cable Television Laboratories, Inc., Intel Corporation, LG Electronics,
Microsoft Corporation, Motorola, Inc., Nokia Corporation, Panasonic,
Philips Consumer Electronics, Pioneer Research, Ricoh Company, Ltd.,
Samsung Electronics Company, Ltd., Siemens AG, Sony Corporation,
Thomson Inc.

4 Bluetooth Special Interest Group members: Agere Systems, Ericsson
Technology Licensing AB, Intel Corporation, Lenovo, Microsoft
Corporation, Motorola, Inc., Nokia, and Toshiba Corporation.

5 Internet Engineering Task Force (IETF) standard.
6 Apple Inc.

UPnP
Like Salutation UPnP was also proposed for use in small

office and home environments and mainly targets device and
service discovery. Through UPnP, devices first advertise their
presence in a network and upon request they also present their
capabilities using XML for service descriptions. The basic
entities considered in UPnP are control points (acting as
service directories) and devices. Control points are optional so
if there is no control point, devices may also listen to service
advertisements directly. Service discovery in UPnP is based
on the Simple Service Discovery Protocol (SSDS [59]), which
operates using HTTP over multicast and unicast UDP. It is
worth noting that UPnP can be deployed only over TCP/IP
networks and generally operates better over reliable networks.
A special feature is that through AutoIP, UPnP devices
automatically receive an IP address even when a DHCP server
is absent. Unfortunately due to the extensive use of
multicasting (multicasting is used both for service
advertisements and service requests) UPnP cannot scale well.
Also it does not support attribute-based querying for services.
UPnP provides many mechanisms for securing service
discovery and access through UPnP Security [50] (see section
VI).

Bluetooth SDP
Bluetooth SDP is a service discovery protocol for Bluetooth

enabled devices. Bluetooth SDP addresses only service
discovery and does not address service advertising, service
caching in registries or service access. Every service is
described by a service record consisting of a set of attribute-
value pairs each of which describes a service characteristic.
Bluetooth SDP defines two methods for discovering services,
namely ‘service searching’ and ‘service browsing’. With the
first method a client formulates a query containing desired
service attributes and those are matched against service
records at the provider and the result is returned. The latter
method allows a client to send a generic query and get a list of
all services of a specific provider. We should note that
Bluetooth SDP supports only 1-hop discovery and hence its
discovery capability is limited to the immediate proximity of a

device.

SLP
The Service Location Protocol (SLP) is an IETF standard

and has been embedded in many commercial products (by
Hewlett Packard, IBM etc.). SLP addresses only service
discovery and leaves service invocation unspecified. Service
descriptions consist of unique URLs (for locating the service
in the network) and a set of attribute-value pairs. Clients may
query for services using their type or some combination of
their attributes utilizing SLP’s capability of substring
matching. SLP also allows grouping services in scopes.
Service browsing is also allowed if a client requests to see all
available services. SLP can work totally distributed using only
User Agents (UA) on client devices and Service Agents (SA)
on service providers. Communication among them takes place
through multicasting. If directories exist, then they are
represented by Directory Agents (DA). In the directory-based
operation of SLP when a DA enters the network it multicasts a
beacon and any SA that hears it must register its service to this
DA. UAs that hear this message unicast their queries to the
DA. If no DA is present UAs multicast queries and all
receiving SAs with matching descriptions respond using
unicasts. Regarding security, SLP provides only a PKI-based
mechanism for signing service advertisements (see section
VI). Finally, we should note that a more lightweight version of
SLP, called SLPManet, was proposed in [79], excluding
features like optional SLP messages, DAs and authentication.

Bonjour
Bonjour is a technology developed by Apple to provide

service and device discovery among computers, electronic
appliances and other networked devices (e.g. printers, faxes
etc.). Bonjour runs over the IP protocol and also has the
capability of automatically assigning IP addresses to
networked devices, even without the help of a DHCP server.
Bonjour’s core is a service discovery protocol entirely based
on the Multicast DNS Service Discovery – MDNS-SD.
Actually MDNS-SD extends MDNS [59] so that hosts in an
ad hoc network can resolve, in addition to host names also
service names to IP addresses without relying on DNS servers.
In MDNS-SD clients multicast their DNS-like queries
specifying (defined in DNS-SD [60]) the service type they are
looking for, the domain where the service resides and the
preferred communication protocol. Service providers respond
to those queries by DNS service records. However, a new
provider coming into the network may make a multicast
announcement so that other devices become aware of its
presence. The service records are cached on client devices for
a limited time and if not updated (by querying again) they are
deleted. However, multicasting everything creates a
significant amount of traffic. Bonjour tries to address this by
employing “exponential back-off” for increasing the gap
between queries and announcements in order to minimize
traffic while keeping the user’s view as fresh as possible [7].

All the aforementioned approaches were mainly designed

for administered networks (even if ad hoc), some requiring
fixed-well known directories, others making extensive use of
broadcasting and multicasting (hence not scaling for large ad
hoc networks) and others not supporting mobility. However,
they have served as a solid base and source of inspiration for
developing new protocols oriented to pure ad hoc
environments.

II. SERVICE DISCOVERY ARCHITECTURES
Regarding service information dissemination, there are

three basic architectures that a service discovery approach
may adopt (see Fig.1). We will present each of them and refer
to representative approaches found in the literature:

A. Directory-based Architectures
In this architecture there are three possible roles for a

mobile node. A node can be a server (service provider,
offering one or more services to other nodes), a client (service
requestor, requesting services from other nodes) or a service
directory (facilitating communication between providers and
clients). Service providers register their services to service
directories and service requestors are informed about the
available services in the network only through these directory
nodes.

A directory can be implemented as centralized (hosted by a
single node) or can be distributed among several nodes.
Centralized approaches were primarily adopted by service
discovery protocols in wired networks or in wireless local area
networks where one or more fixed hosts take up the role of a
directory (e.g. UDDI [4]). A simple centralized directory,
however, is not a good solution for an ad hoc network, since
no node is always reachable. A centralized directory also
represents a single point of failure and is not well suited for
such volatile environments. Scalability is also another
problem, since in MANETs the nodes are resource-poor and a
single node acting as a directory would not be able to handle
responses for a large number of nodes. Distributed directories
are thus more suitable for MANETS.

A basic question is whether global service discovery is to
be provided (i.e. to be possible for every node to learn and
invoke any service provided in the ad hoc network). One
approach is to use full replication for directory nodes in order
for every directory to store all services available in the
MANET, irrespectively of their location.

A classic distributed directory approach is Jini, where a few
nodes, named Lookup servers, act as directories. However,
there is no communication among Lookup servers and it is at
the discretion of service providers to publish their service to
more than one directory node and keep them updated. In this
case, that automatic replication is not provided, a service may
be known only locally, around the directory node that
originally hosts it and remote MANET nodes will not be able
to easily discover it. Global discovery is hence not supported,
since services are advertised only in the area where the
Lookup servers reside.

In more elaborate distributed directory approaches, nodes

acting as directories are in constant communication with each
other to disseminate and also replicate service information
among them. Such approaches are based on protocols that
create and maintain a backbone of directory-enabled nodes.
For example in [28] a backbone of directory nodes is formed
using a Minimum Dominating Set algorithm. Servers advertise
their services to one or more members of the backbone.
However, despite the fact that service replication is not
inherently provided, global discovery is possible since
backbone members disseminate to each other service
discovery requests that could not be satisfied locally. This way
a service requestor and a service provider connected to the
opposite edges of the formed backbone can still discover each
other and communicate. A better way to forward requests to
neighboring backbone members (instead of doing it randomly)
was proposed in [30]. There, backbone members frequently
exchange directory profiles guaranteeing that service requests
are forwarded to nodes that are likely to cache the description
of the requested service.

An alternative to the aforementioned backbone based
approaches for implementing distributed directories are
clustering approaches. A representative approach is “Service
Rings” [22]. In Service Rings a number of clusters are formed.
Each cluster (called a ring) of service providers is formed
based on physical proximity and semantic proximity of the
descriptions of provided services. Every ring has its own
Service Access Point (SAP), which is responsible for handling
service registrations and service requests (operating as a
directory). SAPs also communicate with each other and
exchange summaries about all the services they are aware of
in their own ring. This way higher-level rings are also formed
iteratively. Global discovery is possible since if a node’s
request cannot be satisfied by its local SAP, then this SAP
forwards the request to neighboring SAPs (and eventually to
higher level SAPs) that are possibly capable of satisfying the
request based on the service summaries they have previously
sent. A similar approach is also adopted in [16] with the
difference that the hierarchy of clusters is strictly dependent
on a common service ontology. At the bottom level of this
hierarchy, clusters group devices offering services described
by the same leaf term of the ontology and being within radio
range of each other. Moving up the hierarchy, every level
consists of groups of clusters of their respective lower level.
The higher the level, the more general the semantic
descriptions become (always in alignment with the
generalization of categories performed as we move up the
ontology tree). In [11] each cluster groups nodes with similar
mobility patterns. In each cluster one of the nodes (called
clusterhead) stays awake permanently and answers discovery
requests. The rest of the nodes periodically wake up to
provide the actual services and also to inform the clusterhead
about their presence and services. The clusterheads are re-
elected periodically to avoid draining a single node’s battery.

Another solution to the global discovery problem, when
replication is not provided (either by servers or directories), is
to use Distributed Hash Table based techniques along with

location information. Such approaches are described in [21]
and [87]. The network topology is divided into geographical
regions, where each region is responsible for a set of keys
representing the services of interest. Each key is mapped to a
region based on a hash-table like mapping scheme. A few
elected nodes within each region are responsible for storing
these keys (in [87] all nodes inside the region store these
keys), thus acting as directories. Global discovery is possible
since a node requesting a service, uses the same hashing
function (as the one used by service providers) and finds the
directory-location where its description is stored. The service
request is then routed, using this location information, towards
that directory. Location information is also used in [32] for
creating clusters of nodes based on physical proximity. Every
cluster has a gateway, which is responsible for handling
routing and discovery requests and for storing service
descriptions from nodes located within its region. Inter-
gateway request forwarding is also possible for global service
discovery and is done on a region-covering basis (actually
requests are routed to neighboring regions, where another
gateway will be present and will try to answer them). This
approach however differs from other backbone or cluster
based approaches in the sense that cluster leaders (gateways in
this case) are elected or de-selected automatically based on
location information and do not need to keep contact with
each other.

The election of nodes for taking the role of a directory or
for participating in a directory structure (backbone) is a very
crucial issue for a directory-based service discovery approach.
In [16] and [22] an election mechanism is not provided, while
in [21] a directory node election is performed randomly. In
more elaborate approaches, like [28] and [30], criteria like
average packet loss rate, effective degree (for connectivity to
neighbors) and capacity are used to choose one among a set of
candidate nodes.

It is important to note here that directory based approaches
imply additional communication costs in the network for
maintaining the directory structure and also for exchanging
data among the members of a distributed directory for
preserving service consistency and for replicating service
information. If maintenance and consistency procedures are
not well tuned, then either too much traffic will be generated,
causing congestion and hence rendering the whole MANET
useless, or inconsistencies in service information and directory
structure (due to insufficient updating) will degrade the
performance of the service discovery process.

B. Directory-less Architectures
This type of architecture differs from the previous in that

there are no service directories to mediate communication
between service providers and service requestors. It is much
simpler from directory-based architectures since there is no
need for directory selection and maintenance mechanisms.
Service providers broadcast service advertisements and
service requestors broadcast service requests. Both processes
may take place at the same time in the network. In the early

approaches of this type only servers could reply to service
requests. Later intermediate nodes (located along the paths
between servers and requestors) were also allowed to reply to
service requests based on the information they had cached
locally by overhearing past server replies.

A basic problem in those non directory-based approaches is
how to determine the frequency of service advertisements in
order to reduce network load and avoid redundant
transmissions. Scheduling and prioritization was one of the
first techniques proposed to deal with the problem. For
example in [9] servers periodically broadcast service
advertisements to their 1-hop neighbors. These advertisements
contain services provided locally by the sending node and also
services that the sending node has learned from its neighbors,
which are then stored as service records in the receiving
node’s local cache. Servers, whose services are about to
expire7 or have expired, are assigned a greater probability to
make the next broadcast. An exponential back-off algorithm
regulates the periodicity of broadcasts depending on server
priority and changes in the network (i.e. new servers). A
similar approach is employed in [82] where providers
periodically advertise their services along with services that
they became aware of by neighboring service providers. A
provider postpones advertising its services and back-offs for a
fixed amount of time if it receives and advertisement that
contains its own services (this means that nodes in its vicinity
are aware of its service and up-to-date). Very close to this
concept is also the mechanism proposed in [83] where a
provider listens to other’s broadcasts and when it is its turn to
broadcast, it only broadcasts service information (if any) that
has not expired and has not been seen recently in previous
broadcasts.

Another way for lowering the load imposed on the network
by broadcasting for service discovery is to use multicasting. In
[10] servers multicast their advertisements on a fixed multicast
group and so do service requestors. In contrast to [9] where 1-
hop discovery is performed, in [10] the messages cover the
whole network.

Covering the whole network using either broadcasting or
even multicasting techniques is very costly. This is why many
approaches use various other techniques:

• Advertisement range bounding/scoping
• Selective, probabilistic and intelligent

(advertisement/request) forwarding
• Peer-to-peer (P2P) information caching
• Intermediate node responding to service requests.

Several approaches taking advantage of these ideas and
techniques are described next.

Many approaches use an advertisement range measured in
number of hops specifying when the advertisement message
will be dropped. In the Group-based Service Discovery (GSD)

protocol [18] and the Alliance-based Service Discovery
(Allia) protocol [57] such a technique is adopted. However, in
order to allow most of the nodes in the network to eventually
become aware of the advertised services, these two
approaches also include a technique called peer-to-peer (P2P)
information caching for nodes to merge services heard by
others and re-advertise them (using again a range) along with
their own services. Eventually, most nodes will become aware
of all services in the network, but at a lower cost since service
merging is performed.

7 Each service record has a Time To Live (TTL) field. This TTL

continuously decreases with time until it reaches zero (except if a new
advertisement is received and the TTL is refreshed). When the TTL becomes
zero the corresponding service is considered expired and its record should be
deleted from the node’s cache.

The two approaches mentioned above also employ selective
forwarding of service requests to further reduce the load of
service discovery. Selective forwarding means that a node
receiving a service request that it cannot fulfill will forward
the request only to those of its neighbors that are known to
host the requested service, or similar services. Besides
selective forwarding [80] and [81] propose that the overhead
of GSD can be further reduced by an additional mechanism
called Broadcast Simulated Unicast (BSU). Instead of
forwarding the same query in unicasted packets towards
selected neighbors, with BSU the message is forwarded once
using broadcast. Only the selected neighbors will further
process this packet since it contains a list with the intended
recipients. If a neighboring node receives such a packet and
does not find itself in the receiver’s list, it will just discard the
packet. However, a significant amount of bandwidth will have
been saved.

The P2P information caching technique is also used in [29]
along with probabilistic forwarding instead of selective
forwarding. In this case a node receiving a service request that
it cannot fulfill, forwards it with a probability that decreases
with the number of hops that the request has already traveled.

Intelligent forwarding can also be used for spreading
service advertisements, as done in [35]. In [35] every node
continuously monitors its 2-hop neighborhood. In order to
avoid duplicate packet forwarding and also to cover every
node, each server initially sends its advertisements only to
those nodes in its 1-hop neighborhood (called brokers)
through which all its 2-hop neighbors can be reached. In the
next advertising round new brokers will be formed for the 2-
hop neighbors of the originating server thereby expanding the
service coverage in the same way (by forwarding the
advertisement only to a subset of their 1-hop neighbors
through which all their 2-hop neighbors can be reached).
Costly broadcasting is hence replaced by a few unicasts in
every advertising round.

Another way to reduce the load imposed by service
discovery requests and advertisements is to allow intermediate
nodes to respond to service requests. Intermediate nodes may
have been informed about the existence of some services
either by receiving and forwarding service advertisements or
because they themselves have requested these services in the
past. Hence a service request may not need to travel all the
way to the service provider, since it can be answered by an
intermediate node located closer to the service requestor.

In [17] intermediate nodes are allowed to answer service

requests. However in order not to decrease the number of
discovered services the authors propose that intermediate
nodes must be informed of all the services matching the issued
requests. This is because dropping requests at intermediate
nodes that already know one out of many matching services
may decrease the service discoverability of the protocol. It is
proposed that when answers come to a service requestor from
different servers and different paths, intermediate nodes and
servers along those paths are updated to become aware of all
the services that were returned to the requestor. Thus, when
they receive another request for the same kind of service from
another node, any server or intermediate node will be able to
reply with all the matching services they became aware of by
informing each other in previous requests.

Finally in order to totally avoid broadcasting or
multicasting and the associated costs, the use of location

inf
adv
per
tra
poi
pro
alo
Re
(in

C. Hybrid Architectures
In these architectures service providers register their services
with service directories if they locate any in their vicinity (if
not they simply broadcast service advertisements). Service
requestors send their queries to the service directories they are
aware of. If they are not aware of any service directory, they
broadcast them to the whole network. Service replies may
come both from service providers and service directories.

D. Comparisons
Despite the multitude of publications on each of the service

discovery architectures described in this section, researchers
have not come into a general consensus on which architecture
is better. The basic criteria for evaluating the effectiveness of
service discovery architectures are service availability,
messaging overhead and latency. The reason making it
Figure 1: Service Discovery Architectures

ormation has also been proposed in [23] for sending service
ertisements and service requests. In this protocol, servers
iodically send their advertisements along cross-shaped
jectories. At each node in the trajectory, a backwards
nter is set up establishing paths leading to the service
vider. Any service requestor need simply send a query
ng a path that intersects with the advertisement path.
quests are answered by nodes at the intersection
termediates) of the advertising and requesting trajectories.

difficult to come to a general conclusion on which architecture
is more suitable for a MANET is that it depends on many
factors, some of which relate to the MANET’s characteristics
(e.g. server and client density, node mobility and service
request frequency) and others to tunable parameters of the
discovery architecture employed (e.g. flooding / broadcasting
scopes, directory node density, service registration and
announcement frequency). For example, for a MANET with a
high degree of mobility and a low service request frequency a
distributed architecture without caching could prove to be
more efficient than a directory-based architecture, since the

latter would either suffer from stale service information in
directories, or would demand much overhead for maintaining
service information integrity and coping with mobility.
However, if the same MANET of the previous example faced
a very high service request frequency a directory-based
architecture could be more efficient. In this case, a directory-
less architecture would demand that clients frequently flood
the whole network with their queries. This traffic would most
probably outweigh the traffic created in a directory-based
architecture for maintaining consistent directories and for
unicasting queries to directories only, instead of flooding them
to the whole network. The above would hold in the general
case where both architectures’ parameters are tuned similarly.
However, there exist certain values for the tunable parameters
that could affect an architecture’s performance so severely,
that a seemingly better/matching architecture could prove to
be worse than the other.

Generally, none of the three architectures can outperform
the other two in all of the above mentioned performance
criteria. Even the underlying routing protocol (especially
when integrated with the service discovery process) may have
an impact on the performance of a service discovery
architecture as shown in [36] and [31]. In [36] simulations
show that in proactively routed MANETs the hybrid
architecture outperforms in terms of service availability the
other two architectures. However, the directory-less
architecture outperforms the other two architectures in
messaging overhead. A more recent work [31] for reactively
routed MANETs, however, shows by simulations that a
directory-less architecture may outperform a hybrid one, both
in terms of higher service availability and lower message
overhead, while having almost the same delays.

It would be interesting to have a flexible/autonomic
architecture with the ability to self tune its parameters and
change operational modes from directory-based to directory-
less or hybrid, based on a MANET’s dynamic characteristics.

III. SERVICE DISCOVERY MODES
Irrespectively of the service discovery architecture there are

three possible ways/modes of operation for a service requestor
to acquire service information:

A. Reactive
In this mode a service requestor issues a query in an on

demand basis to directory nodes or directly to service
providers. There are many variations for this mode, some of
which have been discussed in the service discovery
architectures section of this paper. To name a few options for
service requestors, they may choose to set a limited TTL so
that they do not flood the whole network when there are no
directories. They may expand their search step-by-step by
gradually increasing the hops that a service request is allowed
to travel. They may utilize mechanisms to selectively forward
their requests to specific neighbors only, instead of sending
them to every neighbor. They also may unicast, multicast or

broadcast a query to one or more directories or to one or more
servers.

B. Proactive
In this mode service providers advertise their services

(either to service directories or directly to potential service
requestors) on discrete time intervals. The same holds for
advertisements originating from directory nodes. Servers and
directories have also the option to use ranges for the
advertisements instead of flooding the whole network. A basic
tunable parameter is how frequently those advertisements
should be sent, since it greatly depends on the level of
dynamism of the MANET (mobility, failures, congestion).

C. Hybrid
In this mode both proactive and reactive communication

between service requestors, service providers and service
directories is possible. For example servers may proactively
advertise their services to service directories, but clients may
issue requests to service directories only reactively (on
demand). As explained in [24], several strategies can be
employed by clients and servers in order to discover services.
For example in a “greedy” strategy all servers may advertise
services to all nodes and all clients query all nodes in the
network in order to discover services, while in a
“conservative” strategy servers may advertise services to a
random set of nodes and clients may also query only a random
set of nodes. Other more complex strategies include
incremental increase of the advertisement and querying sets
and memorizing previously queried nodes in order to avoid
querying them again in next rounds, for the case that a service
has not been discovered in the previous round. As expected,
authors conclude that “greedy” strategies offer higher success
rates and lower delays than “conservative” strategies, but
produce much higher overheads. However, they also note that
depending on factors such as success rate requirements, delay
tolerance, overhead tolerance, node memory constraints,
network dynamism (expressed as mobility and underlying
routing protocol - proactive or reactive) the preferred strategy
is different.

D. Comparisons
Mohan et al. in [33] present a simulation analysis of the

proactive and reactive modes in their simplest form, which
involves global flooding. According to these results the
proactive mode outperforms in terms of latency and overhead
the reactive mode when the number of servers is significantly
lower than the number of clients. The opposite happens when
the available servers are significantly more than the clients in
the network. A hybrid scheme is proposed to give on the
average better results in terms of overhead and latency for
most combinations of number of servers to number of clients.
This hybrid scheme is enhanced by a mechanism allowing
servers (respectively clients) to determine network congestion
before deciding to send an advertisement (respectively a
query). If the congestion is over a given threshold, the senders
(either clients or servers) exponentially back-off in order to

avoid congesting the network further, causing delays,
retransmissions etc. However, careful selection of this
threshold is difficult in such a dynamic environment as a
MANET.

In a MANET with a proportion of clients to servers close to
50% the preferred approach depends on the actual demand for
discovering services. It is intuitive that in such MANETs, if
service discovery requests are rather rare, a reactive approach
would be more efficient (at least in terms of control overhead)
than a proactive or hybrid approach. Of course in cases where
service discovery is performed frequently, a proactive scheme
would prove to be preferable (provided that services are
advertised in appropriate time intervals, matching the
demand). This is also backed by experimental results in [46],
where the authors provide a thorough analysis (both
theoretical and experimental), on the performance of reactive
and proactive service discovery modes investigating the
impact of several factors (mobility, traffic patterns, message
aggregation, use of caching). They conclude that the actual
service context is what determines which mode is most
efficient and that a hybrid mechanism able to adapt to service
demand is the preferred choice. They especially investigate
the impact of the underlying routing protocol and also its
coupling with the service discovery process on the
performance of each service discovery mode. This coupling
leads to a special case of service discovery protocols, namely
the cross layer service discovery protocols, which we examine
in the following section.

IV. CROSS LAYER SERVICE DISCOVERY
In contrast to traditional application layer based service

discovery, there are many approaches that employ cross layer
techniques in order to benefit from information available at
lower layers of the protocol stack. Most of these approaches
are based on integrating the routing process with the service
discovery process. The motivation for integrating routing and
service discovery stems from the fact that any service
discovery protocol implemented above the routing layer will
always require the existence of some kind of routing protocol
for its own use. Hence, two message-producing processes
must coexist: the first one communicates service information
among service providers and service requestors; the second
one communicates routing information among them. As a
result, a node is forced to perform multiple times the battery-
draining operation of receiving and transmitting (control)
packets. Cross layer service discovery exploits the capability
of acquiring service information along with routing
information (from the same message) by piggybacking service
information onto routing messages. This way, redundant
transmissions of service discovery packets at the application
layer are avoided and energy is saved. Henceforth, we will
refer to those cross layer service discovery protocols as
integrated protocols.

The idea of providing routing layer support for service

discovery was first introduced by Koodli and Perkins in [13].
They argue that for proactively routed MANETs, a service
reply extension added to topology updating routing messages
is enough for providing both service discovery and route
discovery concurrently. In reactively (or on-demand) routed
MANETs, the service discovery process follows the
traditional route discovery process by using its message
formats for route requests (RREQ packets) and route replies
(RREP packets) extended to carry also a service request or a
service reply respectively. In [41] the authors have extended
the Ad hoc On-Demand Distance Vector (AODV) routing
protocol with service discovery functionality and have
experimentally compared it with NOM [15] (a pure
application based service discovery protocol). Their findings
show that the integrated protocol produces 30% to 50% less
control overhead and has 2 to 7 times lower service
acquisition latency than the application layer based protocol
(depending on simulation parameters). Authors of [68] and
[69] have provided additional extensions to the integrated
AODV protocol to also support QoS aware service selection
(see Section V. B).

In [61] AODV and Dynamic Source Routing (DSR) are
extended (named SD-AODV and SD-DSR) to support service
discovery and are compared in terms of traffic overhead
against an application layer service discovery protocol based
on the Service Location Protocol (SLP) [6] and also against a
protocol with global knowledge. The global knowledge
protocol uses an oracle to determine which service providers
are available in the network and to select the closest one for
communication. Once again it is experimentally shown that
both integrated protocols outperform the SLP-based approach
under any node density, request frequency and speed. SD-
DSR is also shown to be more efficient than SD-AODV, since
it allows its nodes to update their routing information and
maintain a consistent view of routes and services by
overhearing other nodes’ transmissions. Regarding the global
knowledge application layer service discovery protocol, when
using AODV at the network layer, SD-AODV presents
comparable performance, but requires that services are cached
for short periods of time so that stale service information (e.g.
due to node movement) is erased and service provider
selection is nearly optimal (i.e. the closest server must be
selected). SD-DSR compared to the global knowledge
protocol with DSR at the network layer performs slightly
better or worse depending on network conditions. The global
knowledge approach always tries to contact the closest
provider. If the path to the closest provider is unreliable the
global knowledge will keep trying several times before
choosing the second nearest provider. In DSR a provider is
tried only once and if there is no response the second nearest
provider is contacted.

A similar study on DSR and AODV integrated protocols
was conducted in [62], where authors propose the use of a
module at the link layer, which is responsible for assembling
and disassembling packets, to embed service information from
an application layer service discovery protocol and at the same

time routing information from a network layer protocol. This
way routing protocols are not extended or modified in any
way. The authors experimentally show that cross layer service
discovery using the link layer module and AODV
(respectively DSR) produces about 15% (respectively 90%)
less traffic than classic service discovery without the module
and using AODV (respectively DSR) at the network layer.

In [25] in order to compare a reactive routing and service
discovery protocol and a proactive routing and service
discovery protocol, DSR and the Destination-Sequenced
Distance Vector protocol (DSDV) are extended to provide
service discovery functionality. Those approaches are
compared against SLP, implemented at the application layer.
The extended DSR protocol proves to have the least
messaging overhead among the three, with second best the
extended DSDV protocol. DSDV is not the only proactive
routing protocol extended with service discovery
functionality. In [63] and [64] researchers have also extended
the Optimized Link State Routing (OLSR) proactive routing
protocol to support service discovery, but no comparisons
with other integrated or application layer protocols are
presented.

Service discovery extensions have also been introduced in
hybrid routing protocols in [12] and [40] where energy
consumption is also considered. In hybrid routing protocols
each node proactively advertises the routes and services it is
aware of by sending control messages to its neighbors up to a
fixed number of hops away (this is called the node’s zone).
Information for routes or services outside this zone may be
gathered only upon request (reactively). Experimental results
show that those integrated protocols also clearly outperform
application layer based service discovery protocols
demonstrating energy savings of 30% to 95%.

Comparisons between a hybrid integrated protocol and an
on-demand integrated protocol (based on the AODV routing
protocol) are given in [27], [65] and [66]. The proposed
hybrid integrated protocol in [27] resembles the one proposed
in [40] but adds the functionality of dynamically adjusting the
size of a node’s zone depending on service usage frequency.
The higher the popularity of a node’s services, the larger the
zone where proactive announcements should be propagated.
By simulations it is shown that the hybrid protocol has 25%
less control overhead and is 2 to 10 times faster in service
acquisition than the on-demand AODV-based integrated
protocol. In [65] the same concept is followed, with the
difference that the zone size determination is based on the
transmission power/range selected by a node. Paper [66]
presents another hybrid integrated protocol (SPIZ), where an
autonomous and adaptive zone radius determination
mechanism (based on multiple criteria such as call rate,
mobility, service popularity etc.) is provided. SPIZ is
compared against an AODV-based integrated protocol, a
ZRP-based integrated protocol and application layer based
service discovery protocols implementing pull and push
methods for service discovery. SPIZ saves 20% to 65% of the
control traffic for service discovery when compared to those

approaches, with ZRP being the second best and AODV
following. Those savings are attributed to SPIZ’s capability to
adapting to the network’s characteristics using the zone
determination mechanism (e.g. larger zones are selected for
high call rates and low mobility, but also providers with
popular services operate more efficiently with larger zones).
The performance of the pull based service discovery protocol
is worse than all aforementioned integrated protocols and even
worst for the push based service discovery protocol.

Another category of routing protocols, namely multicast
routing protocols has been used for service discovery. The
authors in [19] and [20] extend the On-Demand Multicast
Routing Protocol – (ODMRP) to support service discovery
functionality. According to this approach each server and its
possible clients form a multicast group. Each server multicasts
an advertisement encapsulated in an ODMRP join query
packet. Any client, interested in the advertised services, stores
the advertisement and sends a service awareness reply
encapsulated in an ODMRP join reply packet. Once the
multicast group between a server and all interested clients has
been formed, the server will re-send advertisements only if its
service changes. Otherwise it waits for explicit queries from
clients. In [28] authors show that an AODV-based integrated
protocol performing service discovery using anycasting8 is
much better in terms of delay and control packet overhead
compared to an ODMRP-based integrated protocol
constructing requestor-based multicast trees for performing
service discovery. However, the ODMRP-based integrated
protocol has a significantly higher service hit ratio especially
in highly mobile environments.

A more radical approach is adopted in [67], where the
authors do not integrate service discovery with a well-known
protocol, but build their own multicast routing protocol named
HESED, which also supports service discovery. In HESED
multicast routing is used both for service requests and service
responses. Intermediate nodes locally cache service reply
information but do not use it to reply to requests. When
requesting a service, a client first searches its local cache, and
if it finds a matching service record, it calculates the
probability that the path to the service is still valid. The
routing part of HESED uses a beaconing mechanism allowing
nodes to know their 2-hop neighbors. Depending on the
change rate of their neighbors, nodes calculate the probability
that a route to a server is valid. The proposed protocol shows
significant gains (up to 80% less delay and control packet
overhead) over a flooding based protocol implemented at the

8 In anycasting, a virtual server node is defined that is uniquely identified by
the IP anycast address, for which only the actual server nodes have routing
entries. In the anycast-1 service discovery scheme, every node receives the
service advertisements from the different service instances and stores only one
single entry in its routing table, the one towards the neighbor which sent the
advertisement with the smallest hop count value. Therefore, a query is always
sent to the neighbor that is the closest to any service instance. The major
drawback of this simple anycast implementation is its lack of robustness. Due
to its single entry per service, it fails to deliver a query when any of the links
on the path to the service becomes unavailable.

application layer. This is especially true for high-density
scenarios, since HESED employs an intelligent forwarding
mechanism similar to the one proposed in [35].

Finally, another benefit provided by cross layer approaches
is the exploitation of routing information for restoring service
sessions, or making handovers from provider to provider. This
idea was implemented in [77], where the authors integrated
the GSD protocol with routing. The integrated protocol
additionally provides automatic redirection to another service
provider when the route to the selected service provider fails.
Comparisons of the integrated protocol with the simple GSD
protocol over AODV showed increased service success ratio
of up to 50% for the integrated protocol.

All the aforementioned approaches target higher efficiency
in terms of energy consumption, capacity-scalability and
control packet overhead. However, they share a common
disadvantage: they require that the logical separation among
protocol stack layers is broken (in order for application layer
logic to be integrated into routing or link layer logic) and as a
consequence minor or even major modifications to well-
established routing (or in case of [62] link layer) protocols are
done. A promising approach would be to piggyback service
discovery messages into the data section of the routing
protocol and leave the routing headers intact. This would
require only packet interceptors for investigating the data part
and executing the service discovery logic specified at the
application layer. Very close to this concept, lies the approach
proposed in [70], however the example provided (using
AODV) requires that the underlying routing protocol’s
headers have already been service-extended. Intelligent
methods for matching service discovery policies with routing
policies also have to be defined (e.g. what if push-based
service discovery is to be run over a reactive routing
protocol?).

Since direct comparisons are difficult due to lack of specific
compatible performance data for the various protocols, a
rough categorization regarding which type of routing protocol
(reactive, proactive or hybrid) is more efficient (in terms of
messaging overhead) when integrated with a service discovery
protocol is given in Fig.2, based on simulation results
collected and combined from [12], [25], [27], [28], [40], [61],
[62], [66], and [88].

V. SPECIAL FEATURES

A. Service Description Options
A simple method for describing services is to use Unique

Universal Identifiers (UUIDs). Such a method was adopted in
[5] and [25]. The use of UUIDs is mostly recommended in
environments where there is not much service heterogeneity
and resources such as energy and bandwidth are very scarce.
They also fit well in network layer based service discovery
protocols, where there is a need to enhance routing messages
with service information without increasing the length of
those messages too much. The routing process should not be
affected and hence small service-aware routing messages are
preferable. Moreover, keeping those messages short leads to
low energy consumption for sending and receiving them. It is
worth noting that UUIDs could also be combined with anycast
or multicast addresses to facilitate the discovery process.

However, UUIDs should be a-priori known to all the nodes
participating in a MANET. In addition, UUIDs cannot capture
service attributes in order to help users make more informed
decisions upon selecting among similar services. In [14] a
two-level discovery protocol is proposed, adding service
attribute support to a method based on UUIDs. There, services
are first discovered using the classic UUID method, but then
users are given the opportunity to request service attributes
that will further specify the discovered service’s capabilities.

Attributes or attribute lists implemented as text-based
keyword-value pairs have been extensively used as service
descriptions. In [3] such descriptions are written in the
Extensible Markup Language (XML). Similar descriptions
are also used in [10] where an XML-like language for
describing services is defined, accompanied by a tree-like
hierarchy for service categorization. In contrast to the
approach in [3], where each new description for a new
service must go through standardization, in [10] the tree-like
hierarchy of services can be seamlessly extended with new
categories and services.

All the aforementioned approaches are generally based on
exact keyword matching–syntactic matching. This implies
that service providers and service requestors have agreed on
the exact keywords that should be used for each service.
Especially when a single keyword is used to discover a
service, it is very difficult to select it properly, since a very
broad keyword will result in a lot of irrelevant services, while
a keyword that is too specific will lead to the exclusion of
many, possibly useful services. In [34] the authors propose a

Figure 2: Overhead comparison of Cross Layer vs.
Application Layer Service Discovery Protocols

multi-keyword service discovery protocol to tackle this issue.
Their protocol, through a training process, adapts to keyword
usage patterns and complements a user’s requests with
additional keywords automatically. Their performance
evaluation when using 1 to 4 such additional keywords shows
a 25% to 70% hit rate improvement compared to traditional
single keyword matching.

Another class of protocols, however, relies on the use of
ontologies so that semantic matching is possible and keyword
similarity can be taken into account when searching for
services. GSD [18] for example exploits the semantic
capabilities offered by the Web Ontology Language (OWL) to
describe services and service requests. OWL is also used to
define an ontology for the services in the MANET. OWL
provides rules for describing further constraints and
relationships among services, which can be exploited to create
the ontology of services and service groups. However, it
should be noted that in this class of protocols the ontology
must be common for all nodes, and hence a priori agreed to
among them.

Let us mention here that service descriptions concern not
only the functional characteristics of a service. Service
descriptions can be rich enough to also provide context
awareness, scope awareness and QoS awareness regarding a
service.

B. Service Selection Mechanisms
A basic feature for service discovery approaches, which has

been many times underestimated, is service selection. Service
selection is the phase that comes after service replies have
been gathered by the service requestor.

Service selection can be categorized into automatic and
user assisted. Some early work regarding both manual service
discovery (with the help of a service browser implemented as
an application) and automated service selection (based on a
service ranking system with the ranking function being
formulated by the user) is cited in [37].

A rather simple approach for automatic service selection is
to select the best match according to the similarity degree
between the keywords supplied in the service request and
those describing the service. This however implies that a
distance function applied to keywords for determining their
degree of similarity is available.

Generally a selection algorithm is based on certain criteria
or metrics. These metrics can be either route (e.g. hop-count,
bandwidth, delay) or service (e.g. server load, remaining
energy, capacity) specific. In [25] and [26] the service with
the lowest hop-count is automatically selected. Paper [25]
demonstrates through simulations that the achieved
localization of communications leads to improved network
performance. It also shows that triggering reselection of
servers after detecting changes in network topology is very
effective in lowering congestion and delays. In [38] the
proposed discovery protocol selects a service instance based
on two metrics, the hop-count between service requestor and
service provider and also the capacity of service (CoS). The

CoS metric expresses the nominal capacity of a service
instance. The service selection algorithm is automatic and
does not involve interaction with the user.

A more complex approach is adopted in [8], where mobile
agents are used to perform service selection after receiving the
list of available services. Users can customize their selection
algorithms and embed them in the mobile agent. Context
information potentially useful for performing the selection is
current system user load, actual bandwidth available, actual
packet drop rates and the velocity of the provider. Agents are
transferred to the service providers’ devices and compute a
rank based on the specified metrics. They then send these
ranks back to the requestor and based on a local policy the
desired service is selected (e.g. first rank received, or best
rank). This way bandwidth is also saved since only a value is
sent back instead of the whole context information.

All the aforementioned approaches, consider the impact of
service selection mechanism on the client side (delays, hit
ratio, QoS). In [68] the authors investigate the impact of two
basic and easy to implement service selection strategies on the
lifetime of mobile servers and of the whole network. Using
the first strategy, a client always selects the nearest server (in
hops), while using the second strategy a client always selects
the server with the maximum remaining energy. Through
simulations it is shown that selecting providers based on their
remaining energy yields on the average 5% to 10% better
performance in terms of service and network lifetimes, service
success and service discoverability ratios, compared to
selecting the closest server. A similar work in [69] also
evaluates the performance of the closest server selection
strategy, but against a strategy considering the available
bandwidth of the path to the service provider. According to
the latter strategy, the path with the maximum minimum
bandwidth among all candidate paths towards matching
service providers is selected. Early simulations show that both
strategies have the same service discoverability ratios, leading
to the conclusion that different route selection criteria do not
seem to have significant impact. It should be noted however,
that both [68] and [69] use an AODV-based service discovery
protocol, meaning that route selection strategies are severely
affected by the expanding ring search (ERS) mechanism of
AODV. Using ERS clients may only discover a few (or even
only one) service providers located near them and hence path-
based (e.g. bandwidth) or server-based (e.g. energy) selection
policies may actually yield the same selection as the closest
server selection policy. Route selection criteria would be more
important for non ERS-based protocols, which can potentially
discover all possible paths to all possible service providers.

C. Service State Maintenance Techniques
The issue of service state maintenance certainly cannot be

neglected when designing a service discovery protocol. It is a
challenge to maintain accurate and valid service information
and service state especially in MANETs where the inherent
dynamism leads to frequent changes in service availability.
One approach is to maintain a hard state of services where a

provider must de-register its service/s before leaving the ad
hoc network. However, in MANETs where unpredictable
disconnections occur (due to mobility, path loss, congestion
and node failures), assuming that a provider will be able to de-
register its service before disconnecting is not realistic. The
opposite approach is to maintain a soft state of services. In this
case each service record is associated with a Time-To-Live
(TTL) counter, upon the expiry of which the service record is
automatically deleted. It is the job of the service provider to
periodically refresh that counter by re-advertising the service
in order for the service to stay ‘alive’ in the caches of nodes
and directories. These approaches mainly relate to the
availability of a service and not its state.

For state maintenance one can use two mechanisms. The
first mechanism is polling. Polling is used by service
requestors to ask a server about the current state of a service
(frequently, QoS related metrics are involved). Polling can be
performed proactively or on-demand. The second mechanism,
namely notifications, is the inverse mechanism of polling.
Notifications are sent by service providers (or directories) to
inform clients about service state changes. In this mechanism
clients have to register to the server (or to the directory) their
interest in receiving service state updates.

In [39] the authors prove that notifications are less efficient
in terms of produced control messages than periodic polling,
especially when the status of services in the MANET changes
very frequently. However, they also show that polling is a less
responsive mechanism than update notifications because of
the dependency on the period of polling.

VI. SECURITY, PRIVACY AND TRUST IN SERVICE DISCOVERY
Recently, in [47], a security requirements model specific to

service-oriented architectures has been clearly defined.
According to this model there are four sets of security
requirements, regarding:

• Service registration and deregistration: during this
phase mutual authentication between directories and
providers must be ensured. Also upon service
registration, service integrity must be kept until
deregistration from the directory.

• Service discovery: only authorized clients must be
allowed to discover services, and only those services
for which they have access rights. Moreover service
requests and replies must be kept confidential so that
an attacker/eavesdropper cannot perform an inventory
of available services and devices.

• Service delivery: during delivery, the service must be
protected against malicious tampering or accidental
modifications by intermediaries.

• Service availability: the system must be able to handle
denial of service attacks, including denying service
discovery to illegitimate clients.

In addition, the authors of [49] arrive at similar
requirements for secure service discovery, by identifying the
possible types of threats that could arise from various types of

node misbehavior. According to their threat model, nodes can
be categorized as: failed (nodes-victims of attacks), selfish
(participating in the service discovery process only when it is
convenient for them) and malicious (nodes trying to disrupt
the service discovery process).

Unfortunately service discovery approaches fail to address
most of the above requirements and often overlook the
problems of security, privacy and trust. These problems are
important, especially when service discovery protocols are
employed in public ad hoc environments (e.g. shopping malls,
concerts, conferences). On the contrary, in private ad hoc
environments (e.g. home or enterprise networks) devices are
more or less trusted and managed by one administrator (their
owner) and access to (support by) fixed trusted service
registries, servers and authorities can be assumed. In the
remainder of this section we briefly present and comment on
how proposed service discovery approaches deal with
security, categorizing them according to the environment they
mostly fit in:

A. Private/“Managed” Ad Hoc Environments
In this sub-section we briefly report and discuss the security

features of service discovery approaches designed mainly with
private ad hoc environments in mind, whose security models
fit better to such “managed” environments (a detailed security
analysis for those protocols can be found in [47] and [48]).

Jini enhanced with the Jini Security Framework provides
authentication, integrity and confidentiality. Jini is based on
the use of service objects (proxies) downloaded to client
devices in order to access a specific service. The security
framework allows a service provider to dictate which clients
are allowed to download and execute a service proxy. Also it
allows clients to impose constraints on the functionality of a
service object once downloaded. It is however cumbersome to
verify that the service proxy can be trusted (at code level) and
that it will closely follow the client’s restrictions when
contacting remote servers.

In UPnP enhanced with UPnP security [50], every device
has a public key. Many different mechanisms are supported
for authorization, authentication, confidentiality and integrity.
However, they are all based on centralized architectures
implying/requiring the existence of certificate validation
authorities and authorization servers storing access control
lists.

SLPv2 also provides authentication and data integrity based
on private and public keys that have to be distributed to
devices/users by an administrator, something that may impose
scalability problems for large networks. Moreover, the
authentication provided is only one-way, i.e. only users can
authenticate service providers and directories and not the
opposite.

Bluetooth SDP relies on security mechanisms described in
the Bluetooth specification. According to the specifications
unidirectional or mutual authentication and encryption is
supported. These features are based on a secret link key that
has to be exchanged by two devices when discovering each

other. A protocol for secret key distribution however is not
provided, leading to possible inefficiencies for large networks
consisting of unknown devices.

SSDS [51] provides authentication for clients and service
providers through certificates. It also provides data privacy
and confidentiality through symmetric key encryption.
However, it assumes that clients and service providers always
trust directories, where service providers register their services
and which respond to clients’ service discovery requests.

Salutation provides only a rather basic authentication
scheme based on usernames and passwords to control service
access.

Similarly to Salutation, the service provision model
proposed in [52] is based on service registries (either
centralized or decentralized) protected with a password. Also
services inside registries may be protected with their own
passwords for increased access permissions granularity.
However, this scheme also requires password distribution and
management (possibly by an administrator), which affects the
system’s scalability.

Finally, in [56] directories (i.e. registries) use a multicast
address to periodically announce their unicast address and
certificate. Servers register their service to those directories.
Also, directories respond to client requests for services.
Communications are secured by a PKI infrastructure. What is
new is that clients are supposed to have, besides ad hoc
communication capabilities, access to the Internet over a side
channel. Through this channel clients and servers
communicate with their proxies, which handle registration,
authentication, authorization, and key management for them.
Those proxies upon authenticating the involved entities also
send them a session key that is used for encrypting their
communications over the ad hoc network. Unfortunately this
solution cannot work in ad hoc environments without the help
of side channels for accessing proxies over the Internet.

B. Public/ “Pure” Ad Hoc Environments
Trust among certain entities (e.g. directories and service

providers) and central administration cannot be assumed in a
public environment however.

In [42, 53] the authors propose a lightweight distributed
privacy and security aware service discovery approach. Users
are potential service discovery clients and also providers.
Each provider may administer his own directories, which can
be portable (e.g. on a PDA). For every directory the provider
creates and manages user identities (in the form of passwords
or certificates) for controlling access to them. In order to
access services from a foreign directory, physical contact with
its administrator is required in order to get the appropriate
access credentials. Clients are represented by user agents
responsible for managing access credentials to avoid
distracting the user every time access to a specific service is
needed. Moreover, to enhance user privacy and confidentiality
service requests and replies do not contain plain text, but are
transferred in the form of Bloom filters. Those Bloom filters
also include random bits set to 1 (for making it even harder to

an attacker to infer who discovers what service) and are also
digitally signed. Unfortunately, hash functions producing
those Bloom filters have to be agreed upon beforehand among
all possible members of the network and there is no automatic
way for acquiring them. Furthermore, despite the fact that this
work is a step forward towards secure service discovery in
“pure” ad hoc environments, physical contact to obtain access
rights and controlling access only at the directory level and
not at the service level, render this solution inflexible.

Another promising direction for securing service discovery
in “pure” ad hoc environments is to use distributed trust
models that do not rely on centralized Certification
Authorities. For example SPDP [44] is such a protocol based
on an anarchic trust model. In SPDP there are no directories.
Service clients and providers gradually built trust relationships
based on past transactions and recommendations obtained by
other trusted entities. Mutual authentication between devices
is based on a challenge mechanism. Actually, each device acts
as a Certification Authority for the services it provides. Data
integrity and confidentiality for service requests and replies is
guaranteed with IPSec. A basic shortcoming is that the
protocol cannot defend against a malicious device that joins
the network for the first time. Its initial trust-score will be set
to ignorance (0.5 in a scale from 0 to 1) and clients or
providers may interact with it at their own risk. This problem
becomes even more severe in the case that devices are able to
easily change their identity.

In order to protect service providers from this problem,
SSRD+ [45, 54] proposes a similar trust mechanism but
enhances it with a risk assessment mechanism. Using this
mechanism, every service provider ranks the risk for
providing each of its services to unknown clients based on
past service usage patterns. In order to calculate the risk it
collects information about the number of times the service
access was granted and denied, the average trust values of the
devices that requested the service, service time etc. A similar
mechanism could also be used by clients for ranking services
and be protected from unknown service providers (or
malicious providers continuously changing identities).

C. Privacy Beyond Service Discovery and Open Issues
Even if every entity participating in the service discovery

process is authenticated and communications are encrypted,
service providers become the holders of sensitive user
information such as user location, service usage patterns,
interaction history etc. Although out of the scope of this
paper, it is very challenging to provide ways for clients to
interact with service providers without “leaving” sensitive
information. For a review of current approaches dealing with
such issues, the interested reader may refer to [55].

Finally the following issues regarding privacy in service
discovery remain open: balancing security with user
interaction. Most approaches require considerable user
intervention e.g. for installing certificates, contacting
administrators or service owners for acquiring passwords, for
physical contact in order to authenticate to a device offering a
desired service [43] etc. Balancing security with device

capabilities (many pervasive devices may not be capable of
supporting the security features due to limited memory
storage, battery power and computational capability) is also a
reasonable requirement [56].

VII. DISCUSSION AND OPEN ISSUES
In the following subsections we identify open issues related

to service discovery in mobile ad hoc networks that present an
open field for further investigation and research:

A. Adaptation and Flexibility
Besides a few exceptions, most service discovery protocols

do not adapt their mechanisms based on context. Context-
awareness has been primarily used for augmenting service
selection rather than for self-tuning of the discovery protocol.

Depending on the sophistication of the service discovery
protocol self-tuning can be radical or conservative.
Conservative tuning refers to changing the values of the
protocol’s basic operational parameters (e.g. the maximum
number of hops an advertisement is allowed to travel), while
radical tuning regards changing the method of operation (e.g.
from push-based to pull-based). Most protocols employ
predefined fixed parameters for their operation (e.g. discovery
scopes, advertisement frequency, time intervals for repeating a
failed query, cached service lifetimes, cache sizes etc.). This
monolithic protocol design cannot cope well with the
dynamism of ad hoc networks, where node speed, node
density and channel conditions may vary a lot.

For example, a proactive service discovery protocol may
need to decrease the service advertising frequency when
severe congestion is detected. This way it will not aggravate
more the congestion and will also allow directories or servers
to save energy avoiding useless transmissions (i.e. a
transmission that would probably result in more collisions).

In a highly dense environment a pull-based service
information dissemination method may be more efficient than
a push based one (assuming that a protocol supports both).
Hence, there is a need for developing protocols and
architectures with more autonomic features [78] allowing their
optimization and self-adaptation on-the fly depending on the
network’s conditions. In this direction, one of the most
difficult issues is how to coordinate self-adapting discovery
agents so that service discovery can be realized effectively.
Election mechanisms (e.g. for deciding on the preferred
dissemination method) and incentive schemes (e.g. for
conforming to majority decisions regarding the service
discovery process) may prove valuable tools in this effort.

B. Interoperability
Considering the multitude of service discovery standards,

architectures and protocols and taking also into account the
ubiquitous and pervasive nature of future environments,
interoperability in service discovery will be a major issue
requiring attention (to avoid building a ‘Tower of Babel’). It is
clear that requiring all devices to support all service discovery
protocols is far from being realistic. To the contrary
interoperation seems to be the way forward. Despite a few
efforts [71-76] much remains to be done towards this. It is out
of the scope of this paper to analyze in detail the approaches

proposed for service discovery protocol interoperability;
however, it is worth outlining their basic characteristics and
weaknesses. Some of the approaches try to make direct
translations from one protocol to another, while others try to
translate all protocols to a common protocol. It is obvious that
not every protocol provides the same functionality and some
mappings are simply not achievable (e.g. UPnP service status
notifications cannot be mapped to any SLP function). On the
other hand defining a common protocol which can support all
possible functionality ranging from service description
methods to service invocation to security provision to context-
awareness etc. is too optimistic if not impossible.
Furthermore, some approaches, called explicit, require that
client applications make calls to the common protocol
implemented as middleware. Other approaches, called
transparent, implement middleware that accepts any service
discovery protocol call issued by legacy clients and transforms
it appropriately depending on the protocol provided in the
network. However, all of those approaches (transparent or
explicit) require that translation modules for all possible
protocols are available in the middleware, or that nodes are
always available to make translations (either fixed bridges or
mobile clients), or that thin client devices can deal with the
complexity of the code required for identifying the used
service discovery protocols and for making protocol
translations. Considering the above, further work is needed for
developing truly scalable interoperability solutions for service
discovery, matching the requirements as well as the
restrictions posed by MANET environments.

C. Benchmarking
One of the major problems in the research area of service

discovery for MANETs is that little attention has been given
in standardizing the evaluation of service discovery protocols.
In effect discovery protocols found in the literature are often
incomparable since different settings and assumptions have
been made during their evaluation.

Developing a universal evaluation framework for service
discovery protocols would allow fair and direct comparisons
among protocols. The foundations of such a framework for
simulation-based evaluation have been set in [84], where
authors presented BenchMANET. This benchmark specifies a
number of tests associated with realistic service discovery
applications and scenarios for MANETs. Each of these tests
defines different configurations of basic parameters that affect
service discovery (service provider population, client
population, network size, area size, mobility model, services
per node, service advertisement lifetime). However, this
framework still lacks other equally important parameters e.g.
related to frequency of advertisement and querying.
Moreover, the specifics of the underlying routing protocol are
not considered.

Besides simulation an evaluation can use analytical models
too. Regarding analytical modeling and evaluation of service
discovery protocols there have been proposed two models in
[85] and [86]. The model developed in [85] uses a M/G/c/c
queue to model and predict the behavior of the service cache
on a node. Using the model the average timeout of a service
description can be determined given the protocol’s parameters

(e.g., advertisement frequency, service cache size etc.). Also
the optimal timeout for service descriptions can be calculated
for achieving a non-fluctuating average number of services
discovered (equilibrium). Unfortunately the aforementioned
model, being abstract, cannot take into account radio link
behavior and node mobility as well as of other specifics of the
service discovery protocol (e.g. forwarding policies).
Moreover the model was designed only for evaluating
proactive directory-less service discovery. Directory-based
service discovery was modeled in [86], where a queuing based
model for service caches was also developed. However, this
model is more elaborate since it accounts for node movement
and link failures. Through this model the optimal service
advertisement update rate can be determined in order to
optimize system performance in terms of success rate and
network overhead. Such analytical models can prove to be
valuable tools in the evaluation and optimization of developed
service discovery protocols, but require more sophistication to
cover (i.e., be adaptable to) a broader range of service
discovery approaches (e.g. hybrid discovery architectures).

VIII. CONCLUSIONS
MANETs have attracted extraordinary attention from the

research community in recent years, yet civilian, mass
applications remain elusive. Efficient service discovery is one
of the key issues that need to be resolved for the acceptance of
MANETs.

In this article we surveyed the literature on service
advertisement, discovery and selection schemes for MANETs,
presenting the most representative approaches. In most
traditional approaches, these three aspects are intertwined and
typically an integrated scheme is proposed.

We discussed the fundamental architectures for service
discovery, explaining the basic ideas for each architecture and
commenting on their merits and drawbacks. Then we
classified the basic discovery modes into three categories,
based on the way a client (requestor) acquires service
information. We discussed the performance for each mode in
MANETs with different characteristics. Our analysis led us in
identifying the need for having autonomic service discovery
protocols capable of flexibly adapting their operation (in terms
of selected architecture, discovery mode and values for
tunable parameters) to the actual context and service demand
specific to the ad hoc network in which the protocol is used.

We have also paid particular attention to a special class of
efficient service discovery approaches using cross-layer
optimization. The integration of service discovery with several
(if not all) types of routing protocols (reactive, proactive,
hybrid, multicast) was analyzed and the advantages and
disadvantages for each integrated protocol have been
presented. Analyzing simulations results found in the
literature we conclude that hybrid integrated discovery
protocols perform best in terms of overhead. Second best are
reactive integrated protocols, leaving the third place to
proactive integrated protocols. However, the worst
performance in terms of overhead is experienced by

application layer-based service discovery protocols (for SLP-
based and flooding based protocols).

We have also reported on special features of service
discovery and particularly on service description options,
service selection mechanisms, service state maintenance
techniques and also security issues. Especially regarding
security we underlined the need for more flexible secure
service discovery protocols that can balance security with user
interaction and device capabilities.

Finally we have identified three issues that require further
research, namely, service discovery flexibility and adaptation,
interoperability and benchmarking.

REFERENCES

[1] Sun Microsystems, “JINI Architecture Specification,” Nov. 1999.
[2] Salutation Consortium, “Salutation Architecture Specification,”

Available:
http://web.archive.org/web/20030623193812/www.salutation.org/,
1999. (The Salutation Consortium was disbanded on 30 June 2005).

[3] Microsoft Corporation, “Universal Plug and Play: Background,”
Available: http://www.upnp.org/resources/UPnPbkgnd.htm, 1999.

[4] “Universal Description Discovery and Integration Platform,” Available:
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf, Sept.
2000.

[5] “Specification of the Bluetooth System,” Available:
http://www.bluetooth.com, December 1999.

[6] E. Guttman, C. Perkins, J. Veizades, and M. Day. “Service Location
Protocol, Version 2,” IETF RFC 2608, June 1999.

[7] Apple Inc, “Bonjour Technology White Paper,” Available:
http://images.apple.com/macosx/pdf/MacOSX_Bonjour_TB.pdfT, 2007

[8] J. Tyan and Q. H. Mahmoud, “A network layer based architecture for
service discovery in mobile ad hoc networks,” Proc. IEEE CCECE 2004,
Niagara Falls, May 2004.

[9] M. Nidd, “Service Discovery in DEAPspace,” IEEE Personal
Communications, August 2001, pp. 39-45.

[10] S. Helal, N. Desai, V. Verma, and C. Lee, “Konark - A Service
Discovery and Delivery Protocol for Ad hoc Networks,” Proc. 3rd IEEE
Conference on Wireless Communication Networks (WCNC), New
Orleans, Louisiana, March 2003.

[11] G. Schiele, C. Becker and K. Rothermel, “Energy-Efficient Cluster-
based Service Discovery for Ubiquitous Computing,” Proc. 11th ACM
SIGOPS European Workshop, Leuven, Belgium, September 2004.

[12] A. Helmy, S. Garg, N. Nahata and P.Pamu, “CARD: A contact-based
Architecture for Resource Discovery in Wireless Ad hoc Networks,”
Mobile Networks and Applications (MONET), Vol. 10, 2005, pp.99-
113.

[13] R. Koodli and C. E. Perkins, “Service discovery in on-demand ad hoc
networks,” IETF Internet Draft, draft-koodli-manet-servicediscovery-
00.txt, October 2002.

[14] S. Preu, “JESA Service Discovery Protocol,” Proc. Networking 2002,
Lecture Notes in Computer Science Series, vol. 2345, 2002, pp. 1196-
1201.

[15] D. Doval and D. O'Mahony, “Nom: Resource Location and Discovery
for Ad hoc Mobile Networks,” Proc. 1st Annual Mediterranean Ad hoc
Networking Workshop, Med-hoc-Net 2002, Sardegna, Italy, Sept 4-6,
2002.

[16] M. Klein and B. König-Ries, “Multi-layer clusters in ad hoc networks -
an approach to service discovery,” Proc. 1st International Workshop on
Peer-to-Peer Computing (Co-Located with Networking 2002), Pisa, Italy
2002, pp. 187–201.

[17] S. Motegi, K. Yoshihara and H. Horiuchi, “Service discovery for
wireless ad hoc networks,” Proc. 5th International Symposium on
Wireless Personal Multimedia Communications, vol. 1, 2002, pp. 232 -
236.

[18] D. Chakraborty, A. Joshi Y. Yesha, and T. Finin, “Toward Distributed
Service Discovery in Pervasive Computing Environments,” IEEE

Transactions on Mobile Computing, Volume 5, Number 2, February
2006, pp. 97-112.

[19] Liang Cheng, “Service advertisement and discovery in mobile ad hoc
networks,” Workshop on Ad hoc Communications and Collaboration in
Ubiquitous Computing Environments, in conjunction with the ACM
2002 Conference on Computer Supported Cooperative Work, New
Orleans, November 16-20, 2002.

[20] Wenbin Ma, Baoning Wu, Wei Zhang, and Liang Cheng,
“Implementation of a lightweight service advertisement and discovery
protocol for mobile ad hoc networks,” IEEE Globecom 2003, San
Francisco, CA, Dec 1-5, 2003, pp. 1023-1027

[21] K. Seada and A. Helmy, “Rendezvous Regions: A Scalable Architecture
for Service Location and Data-Centric Storage in Large-Scale Wireless
Networks,” ACM Mobicom 2003, San Diego, CA, September 2003.
(Refereed Poster)

[22] M. Klein, B. König-Ries, P. Obreiter,” Service Rings - A Semantic
Overlay for Service Discovery in Ad hoc Networks,” Proc. 6th Intl.
Workshop on Network-Based Information Systems (NBIS 2003) at
DEXA 2003, Prague, September 2003.

[23] J. Tchakarov and N. Vaidya, “Efficient Content Location in Wireless Ad
Hoc Networks,” IEEE International Conference on Mobile Data
Management (MDM), January 2004.

[24] Honghui Luo and M. Barbeau, ”Performance Evaluation of Service
Discovery Strategies in Ad Hoc Networks,” Proc. 2nd Annual
Conference on Communication Networks and Services Research, CNSR
2004, Fredericton, N.B., Canada, May 19-21, 2004, pp. 61-68.

[25] Engelstad, P.E., Zheng, Y., Koodli, R., Perkins, C.E., "Service Discovery
Architectures for On-Demand Ad Hoc Networks", International Journal
of Ad Hoc and Sensor Wireless Networks, Old City Publishing (OCP
Science), Vol. 2. Number 1, March 2006, pp. 27-58

[26] C. Frank and H. Karl, “Consistency Challenges of Service Discovery in
Mobile Ad Hoc Networks,” Proc. 7th ACM International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), Venice, Italy, October 2004, pp. 105-114.

[27] Chang-Seok Oh, Young-Bae Ko and Young-Sung Roh, “An Integrated
Approach for Efficient Routing and Service Discovery in Mobile Ad
Hoc Networks,” Proc. IEEE Consumer Communications and
Networking Conference (CCNC'05), Las Vegas, Nevada, Jan. 2005.

[28] U. C. Kozat and L. Tassiulas, “Service discovery in mobile ad hoc
networks: an overall perspective on architectural choices and network
layer support issues,” Ad Hoc Networks 2(1), 2004, pp. 23-44.

[29] Zhen-guo Gao, Xiao-Zong Yang, Tian-yi Ma, Shao-Bin Cai, “RICFFP:
An Efficient Service Discovery Protocol for MANETs,” Proc.
International Conference on Embedded and Ubiquitous Computing,
EUC-04, Aizu, Japan, 26-28 August 2004, pp. 786-795.

[30] F. Sailhan and V. Issarny, ” Scalable Service Discovery for MANET,”
Proc. 3rd IEEE International Conference on Pervasive Computing and
Communications (PerCom'2005), Kauai Island, Hawaii 8–12 March
2005.

[31] P.E Engelstad and Zheng, Y., “Evaluation of Service Discovery
Architectures for Mobile Ad Hoc Networks,” Proc. 2nd annual
conference on Wireless On-demand Networks and Services (WONS
2005), St.Moritz, Switzerland, Jan. 19-21, 2005.

[32] J. Tyan and Q. H. Mahmoud, “A Comprehensive Service Discovery
Solution for Mobile Ad Hoc Networks,” MONET 10(4), 2005, pp. 423-
434.

[33] U. Mohan, K. C. Almeroth and E. M. Belding-Royer, “Scalable Service
Discovery in Mobile Ad Hoc Networks,” NETWORKING 2004,
Athens, Greece, 2004, pp. 137-149.

[34] Hen-I Yang and R. Bose, “A Multi-level Multi-keyword Service
Discovery Protocol for Mobile Ad hoc Networks,” Department of
Computer and Information Science and Engineering, University of
Florida.
http://www.cise.ufl.edu/class/cen5531fa05/files/hyang_rbose.pdf

[35] A. Nedos, K. Singh and S. Clarke, “Service*: Distributed Service
Advertisement for Multi-Service, Multi-Hop MANET Environments,”
Proc. 7th IFIP International Conference on Mobile and Wireless
Communication Networks (MWCN'05), Springer-Verlag, Marrakech,
Morocco, 2005.

[36] G. E. Güichal, “Service Location Architectures for Mobile Ad hoc
Networks,” Master Thesis, Georgia Institute of Technology, July 2001.

[37] M. Barbeau, “Service discovery protocols for ad hoc networking,”
CASCON 2000, Workshop on Ad Hoc Communications, Mississauga,
Ontario, Canada, 2000.

[38] V. Lenders, M. May and B. Plattner, “Service Discovery in Mobile Ad
Hoc Networks: A Field Theoretic Approach,” Elsevier Journal on
Pervasive and Mobile Computing (PMC), Volume 1, Issue 3, September
2005, pp. 343-370.

[39] C.Dabrowski, K.Mills, and J.Elder, “Understanding consistency
maintenance in service discovery architectures during communication
failure,” Proc. 3rd International Workshop on Software and
Performance, ACM Press, Rome, Italy, July 2002, pp. 168–178.

[40] C. N. Ververidis and G. C. Polyzos, “Extended ZRP: Performance
Evaluation of a Routing Layer Based Service Discovery Protocol for
Mobile Ad Hoc Networks,” Proc. 2nd Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous’05), San Diego, California, July 2005, pp. 114-123.

[41] J. Antonio García-Macías and Dante Arias Torres, “ Service Discovery
in Mobile Ad hoc Networks: Better at the Network Layer?,” Proc. IEEE
Intl. Workshop on Wireless and Sensor Networks (WSNET'05), Oslo,
Norway, June 2005, pp. 452-457.

[42] Feng Zhu, Mutka M. and Ni L., “PrudentExposure: a private and user-
centric service discovery protocol,” Proc. 2nd IEEE Annual Conference
on Pervasive Computing and Communications Workshops, 2004
(PerCom 2004), New York, USA¸ March 2004, pp. 329-338.

[43] H. Kopp, U. Lucke and D. Tavangarian, “Security Architecture for
Service-based Mobile Environments,” Proc. 3rd IEEE Annual
Conference on Pervasive Computing and Communications Workshops,
2005 (PerCom 2005), Kauai Island, Hawaii, March 2005, pp. 199-203.

[44] F. Almenarez, and C. Campo, “SPDP: A Secure Service Discovery
protocol for Ad hoc networks,” 9th open European summer school and
IFIP workshop on next generation networks (EUNICE 2003), Hungary,
Sep 2003.

[45] M. Sharmin, S. Ahmed, S. I. Ahamed, and H. Li, “SSRD+: A Privacy-
aware Trust and Security Model for Resource Discovery in Pervasive
Computing Environment,” Proc. 30th Annual International Computer
Software and Applications Conference (COMPSAC 2006), IEEE CS
Press, Chicago, USA, September 17-21, 2006, pp. 66-70.

[46] J. Hoebeke, I. Moerman, B. Dhoedt and P.Demeester, “Analysis of
Decentralized Resource and Service Discovery Mechanisms in Wireless
Multi-hop Networks,” Proc. 3rd International Conference on
Wired/Wireless Internet Communications (WWIC 2005), Xanthi,
Greece, May 2005, pp. 117-127.

[47] D. Cotroneo, A. Graziano, and S. Russo, “Security Requirements in
Service Oriented Architectures for Ubiquitous Computing,” Proc. 2nd
Workshop on Middleware For Pervasive and Ad hoc Computing, ACM
Press, New York, NY, pp. 172-177.

[48] F. Zhu, M. Mutka, L. M. Ni, "Service Discovery in Pervasive
Computing Environments", Pervasive Computing, IEEE Volume 4,
Issue 4, Oct. Dec. 2005, pp. 81–90.

[49] A. Leung and C. J. Mitchell, “A service discovery threat model for ad
hoc networks,” Proc. International Conference on Security and
Cryptography (SECRYPT 2006), Setubal, Portugal, August 7-10, 2006,
INSTICC Press, 2006, pp.167-174.

[50] C. Ellison, “Home Network Security,” Intel Technology Journal, vol. 6,
2002, pp. 37-48.

[51] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and R.Katz, “An
Architecture for a Secure Service Discovery Service,” Proc. 5th Annual
International Conference on Mobile Computing and Networks
(MobiCom '99), Seattle, WA, 1999.

[52] R. Handorean and G.C. Roman, “Secure service provision in ad hoc
networks,” Proc. 1st International Conference on Service Oriented
Computing (ICSOC 03), number 2910 in Lecture Notes in Computer
Science, 2003, pp. 367–383.

[53] Feng Zhu, Matt Mutka, and Lionel Ni, “A Private, Secure and User-
centric Information Exposure Model for Service Discovery Protocols,”
IEEE Transactions on Mobile Computing, vol. 5, No. 4, 2006, pp. 418-
429.

[54] M. Sharmin, S. Ahmed, and S. I. Ahamed, “An Adaptive Lightweight
Trust Reliant Secure Resource Discovery for Pervasive Computing
Environments”, Proc. 4th Annual IEEE International Conference on
Pervasive Computer and Communications (PerCom 2006), Italy, Mar 06.

[55] P. Bhaskar and S. I. Ahamed, “Privacy in Pervasive Computing and
Open Issues,” Proc 2nd International Conference on Availability,
Reliability and Security (ARES'07) pp. 147-154

[56] F. Zhu, M. Mutka and L. Ni, “Facilitating Secure Ad hoc Service
Discovery in Public Environments,” Journal of Systems and Software 76
(2005), pp. 45-54.

[57] O. Ratsimor, D. Chakraborty, S. Tolia, D. Kushraj, A. Kunjithapatham,
G. Gupta, A. Joshi, T. Finin, “Allia: Alliance-based Service Discovery
for Ad hoc Environments,” Proc. 2nd ACM Mobile Commerce
Workshop, September 2002.

[58] Bob Pascoe, “Salutation-Lite: Find-and-Bind Technologies for Mobile
Devices,” Salutation Consortium, Available:
http://web.archive.org/web/20031023072133/www.salutation.org/whitep
aper/Sal-Lite.pdf, June 6, 1999.

[59] S. Cheshire and M. Krochmal, “Multicast DNS (Internet Draft),” Apple
Computer, Inc. http://files.multicastdns.org/draft-cheshire-dnsext-
multicastdns.txt, 2004.

[60] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,”
Internet-Draft (work in progress), http://files.dns-sd.org/draft-cheshire-
dnsext-dns-sd.txt, August 2006.

[61] G. P. Halkes, A. Baggio and K. G. Langendoen, “ A Simulation Study of
Integrated Service Discovery,” EUROSSC 2006, LNCS 4272, 2006,
pp.39-53.

[62] V. Atanasovski and L. Gavrilovska, “Efficient Service Discovery
Schemes in Wireless Ad Hoc Networks Implementing Cross-Layer
System Design,” Proc. 27th International Conference on Information
Technology Interfaces (ITI 2005), Cavtat, Croatia, June 20-23, 2005.

[63] J. L. Jodra, M. Vara, J. M. Cabero, J. Bagazgoitia and J. L. Jodra,
“Service Discovery Mechanism Over OLSR for Mobile Ad hoc
Networks,” Proc. 20th International Conference on Advanced
Information Networking and Applications - Volume 2 (AINA'06), 2006,
pp. 534-542.

[64] L. Li and L. Lamont, “A Lightweight Service Discovery Mechanism for
Mobile Ad Hoc Pervasive Environment Using Cross-Layer Design,”
Proc. 3rd IEEE International Conference on Pervasive Computing and
communications Workshops, March2005, pp.55-59.

[65] R. Harbird, S.Halies and C.Mascolo, “Adaptive resource discovery for
ubiquitous computing,” Proc. 2nd Workshop on Middleware for
Pervasive and Ad hoc Computing, Toronto, Canada, October 2004,
pp.155-160.

[66] D. Noh and H. Shin, “SPIZ: An Effective Service Discovery Protocol for
Mobile Ad Hoc Networks,” EURASIP Journal on Wireless
Communications and Networking, vol. 2007, Article ID 25167, 13
pages, 2007, doi: 10.1155/2007/25167.

[67] H. Hassanein, Y. Yang and A. Mawji, “A new approach to service
discovery in wireless mobile ad hoc networks,” International Journal of
Sensor Networks, Volume 2, Number 1-2 / 2007, pp.135-145.

[68] S. Athanaileas, C. N. Ververidis and G. C. Polyzos, “Optimized Service
Selection for MANETs using an AODV-based Service Discovery
Protocol”, accepted for publication in the 6th Annual Mediterranean Ad
Hoc Networking Workshop (MEDHOCNET 2006), Corfu, Greece, June
2007.

[69] Z.Fan and E. G. Ho, “Service Discovery in Ad Hoc Networks:
Performance Evaluation and QoS Enhancement”, Wireless Personal
Communications: An International Journal, Volume 40, Issue 2,
Springer, January 2007, pp.215 – 231.

[70] P. Stuedi, M. Graber and G. Alonso, “Exploiting Synergies between
Service Discovery and Routing in Wireless Multihop Networks,”
Technical Report 510, ETH Zürich, 2006.

[71] J. Allard, V. Chinta, S.Gundala and G. Richard, “Jini Meets UPnP: An
Architecture for Jini/UPnP Interoperability,” Proc. International
Symposium on Applications and the Internet (SAINT- 2003), Orlando,
Florida (USA), January 2003.

[72] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink,
“Supporting service discovery, querying and interaction in ubiquitous
computing environments,” Wireless Networks, vol. 10, no. 6, 2004, pp.
631–641.

[73] Paul Grace, Gordon S. Blair and Sam Samuel. “ReMMoC: A Reflective
Middleware to Support Mobile Client Interoperability,” Proc.
International Symposium on Distributed Objects and Applications
(DOA), Catania, Sicily, Italy, November 2003.

[74] P.G. Raverdy, V. Issarny, A. de La Chapelle, and R. Chibout, “A multi-
protocol approach to service discovery and access in pervasive

environments,” Proc. 3rd Annual International Conference on Mobile &
Ubiquitous Systems: Networks & Services, (Mobiquitous 2006), San
Jose, California, USA, July 2006.

[75] Y. D. Bromberg and V. Issarny, “INDISS: Interoperable Discovery
System for Networked Services,” Proc. 6th International Middleware
Conference, Grenoble, France, November/December 2005.

[76] T. Koponen and T. Virtanen, “A Service Discovery: A Service Broker
Approach,” Proc. 37th Annual Hawaii International Conference on
System Sciences (HICSS'04), Hawai, January 2004.

[77] D. Chakraborty, A. Joshi and Y. Yesha, “Integrating service discovery
with routing and session management for ad hoc networks,” Ad Hoc
Networks, Volume 4, Issue 2, March 2006, pp. 204-224.

[78] George C. Polyzos, Christopher N. Ververidis and Elias C. Efstathiou,
“Service Discovery and Provision for Autonomic Mobile Computing,”
Proc. 2nd IFIP Workshop on Autonomic Communication (WAC 2005),
Springer Lecture Notes in Computer Science Vol. 3854 (LNCS), Athens,
Greece, pp 226-236.

[79] M.A. El Saoud, T. Kunz, and Samy Mahmoud, “SLPManet: Service
location protocol for MANET,” Proc. International Wireless
Communications and Mobile Computing Conference (IWCMC 2006),
Vancouver, Canada, Jul 2006.

[80] Z. Gao, L. Wang, M. Yang and X. Yang, “CNPGSDP: An efficient
group-based service discovery protocol for MANETs,” Computer
Networks, Volume 50, Issue 16, 14 November 2006, pp. 3165-3182

[81] Z. Gao, L. Wang, M. Yang and D. Wen, “PCPGSD: An enhanced GSD
service discovery protocol for MANETs,” Computer Communications,
Volume 29, Issue 12, 4 August 2006, pp. 2433-2445.

[82] C. Campo, M. Munoz, J. C. Perea, A. Marın, C. Garcıa-Rubio: PDP and
GSDL: a new service discovery middleware to support spontaneous
interactions in pervasive systems,” Proc. 3rd IEEE International
Conference on Pervasive Computing and Communications
(PerCom'2005 Workshops), Kauai Island, Hawaii 8–12 March 2005.

[83] C. Lee and S.Helal, “Gossip-Based Service Discovery in Mobile Ad Hoc
Networks,” IEICE-Transactions on Communications Volume E89-B,
Number 9, September 2006, pp. 2621-2624.

[84] M. A. El Saoud, T. Kunz, and S. Mahmoud, “BENCHManet: An
evaluation framework for service discovery protocols in MANET,” Proc.
3rd Annual IEEE Communications Society Conference on Sensor and Ad
Hoc Communications and Networks (SECON 2006), Volume 3, Reston,
Virginia, USA, June 2006, pp. 860-865.

[85] D. Chakraborty, A. Shenoi, A. Joshi, and Y. Yesha, “A Queuing
Theoretic Approach for Service Discovery in Ad hoc Networks,” Proc.
Communication Networks and Distributed Systems Modeling and
Simulation Conference (CNDS), San Diego, California, USA, January
2004.

[86] T. Wu and G.S. Kuo, “An Analytical Model for Centralized Service
Discovery Architecture in Wireless Networks,” Proc. IEEE 64th
Vehicular Technology Conference, 2006, VTC-2006 Fall, September
2006, pp. 1-5.

[87] S. Sivavakeesar, O.F. Gonzalez, G. Pavlou, “Service Discovery
Strategies in Ubiquitous Communication Environments,” IEEE
Communications, special issue on Advances in Service Platform
Technologies for Next Generation Mobile Systems, Vol. 44, No. 9,
September 2006, pp. 106-113.

[88] A. Helmy, “Contact-extended zone-based transactions routing for
energy-constrained wireless ad hoc networks,” IEEE Transactions on
Vehicular Technology, vol. 54, no. 1, 2005, pp. 307–319.

[89] C. Bettstetter and C. Renner, “A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol,” Proc.
EUNICE Open European Summer School, Twente, Netherlands, Sept
13-15, 2000.

[90] Helal, S., “Standards for service discovery and delivery,” IEEE
Pervasive Computing, Volume 1, Issue 3, 2002, pp. 95-100.

[91] G.G. Richard, “Service advertisement and discovery: enabling universal
device cooperation,” IEEE Internet Computing, Volume 4, Issue 5,
Sep/Oct 2000, pp. 18-26.

AUTHOR BIOGRAPHIES

 Christopher N. Ververidis received his Master of Science in Information

Systems from the Computer Science Department of Athens
University of Economics and Business (AUEB). His
Master’s thesis on Location Based Services was awarded
with the Ericsson Award of Excellence in
Telecommunications by Ericsson Hellas S.A. He is
currently working as a Ph.D. student and research assistant
at the Mobile Multimedia Laboratory (MMLab), AUEB.

He has participated in several national and international research programs in
the areas of networking and telecommunication services. His current research
interests include ubiquitous computing, wireless networks and service
discovery protocols for mobile ad hoc networks. He has published 12 papers
in refereed workshops and conferences. During his PhD studies he has served
as a reviewer for various conferences, workshops and journals (IEEE Infocom,
ACM Mobicom, IEEE VTC, IEEE ISCC, IEEE WoWMoM, IEEE PIMRC,
WCMC Journal). He is on the Technical Program Committee of IEEE WCNC
2008. He is on the Technical Program Committee of IEEE WCNC 2008.

 George C. Polyzos, Professor of Computer Science at AUEB since 1999, is

leading the Mobile Multimedia Laboratory. Previously, he
was Professor of Computer Science and Engineering at the
University of California, San Diego, where he was co-
director of the Computer Systems Laboratory, member of
the Steering Committee of the UCSD Center for Wireless
Communications and Senior Fellow of the San Diego
Supercomputer Center. He has received his Dipl. in EE

from the National Technical University in Athens, Greece (1982) and his
M.A.Sc. in EE (1985) and Ph.D. in Computer Science (1989) from the
University of Toronto. His current research interests include mobile
multimedia communications, ubiquitous computing, wireless networks,
security, Internet protocols, distributed multimedia, and performance analysis
of computer and communications systems. Prof. Polyzos is on the editorial
board of the journal Wireless Communications and Mobile Computing and has
been a guest editor for: IEEE Personal Communications, ACM/Springer
Mobile Networking, IEEE Journal on Selected Areas in Communications, and
Computer Networks. He has been on the Program Committees of many
conferences and workshops, co-chaired the 1999 IEEE International
Workshop on Mobile Multimedia Communications and has been a reviewer
for the US NSF, the California MICRO program, the European Commission,
the Greek Secretariat of Research and Technology and many scientific
journals.

