
Service Identification in Interorganizational
Process Design

Devis Bianchini, Cinzia Cappiello, Valeria De Antonellis, and Barbara Pernici

Abstract—Service identification is one of the main phases in the design of a service-oriented application. The way in which

services are identified may influence the effectiveness of the SOA architecture. More specifically, the granularity of the services

is very important in reaching flexibility and reusing them. Such properties are crucial in interorganizational interactions based

on collaborative business processes. In fact, collaboration is facilitated by ensuring a homogeneous description of services

at the right level of granularity. In this paper, we provide a detailed description of P2S (Process-to-Services), a computer-aided

methodology to enable the identification of services that compose a collaborative business process. The methodology is based

on metrics defined to setup service granularity, cohesion, coupling, and reuse. A prototype tool based on the methodology is

also described with reference to a real case scenario.

Index Terms—Service-based process design, service identification

Ç

1 INTRODUCTION

INTERNET and service-oriented technologies provide a
strategic platform to support the collaboration among

enterprises. Organizations are exploiting the network for
sharing applications and integrating processes, services
and knowledge. In particular, Service Oriented Architec-
ture (SOA) enables such interorganizational interactions by
facilitating and managing service integration [25]. In fact,
service technologies should be the basis of the creation of a
world where application components are easily assembled
to create dynamic business processes [22]. In this scenario,
services can encapsulate old or new components deriving
from external and internal applications.

For the design of service-based applications, several
lifecycles have been proposed. We refer to the one
described in [23], that is composed of the following
activities:

1. business process analysis (further composed of goal
analysis, SOA project planning, service identification),

2. service analysis and specification,
3. service provisioning,
4. deployment,
5. execution & monitoring.

Service identification is defined as ‘‘the process of identifying
candidate services and creating a service portfolio of business-
aligned IT services that collectively support the business

processes and goals of the organization’’ [7], [11], [14]. Such
activity can be performed by using three different strate-
gies, i.e., top-down, bottom-up, meet-in-the-middle. In the
top-down strategy, the SOA lifecycle starts from a work-
flow-based representation of a business process and
decomposes it into component services that can be used
to implement one or more process tasks [16], [23]. In this
approach, a repository of ready-to-use services is not
available and the service identification works within the
business process analysis activity only. Approaches that
deal with bottom-up or meet-in-the-middle strategies
mostly focus on the alignment between the ideal set of
services identified in the business processes and the
services available at the IT level [8]. In all the strategies,
the service identification phase has been recognized as a
fundamental step of the SOA lifecycle [28]. Service
identification must guarantee a homogeneous description
of candidate services at the same level of granularity. The
definition of the most suitable level of granularity is not a
trivial task. The higher the granularity, the higher the
resulting flexibility and reuse of component services.
Nevertheless, high granularity implies more data ex-
changes and calls between services. High granularity also
means many services involved in the process execution,
that is, higher complexity in their governance.

Service identification is a debated topic in the literature.
Some approaches focus on a methodological perspective by
providing guidelines to support the designer in the
identification of functionalities as in candidate services
[16], [23]. Other approaches focus on metrics to evaluate
the quality of service identification [20], [31]. Such metrics
enable a quantitative comparison between (given) different
sets of identified services, allowing the designer to select
the best one, but providig him/her a scarce feedback on the
rationale behind their construction.

In this paper, we illustrate the P2S (Process-to-Services)
methodology for service identification, to be applied in a
top-down context or in any case in which a portfolio of

. D. Bianchini and V. De Antonellis are with the University of Brescia,
Department of Information Engineering, via Branze 38, 25123 Brescia,
Italy. E-mail: {devis.bianchini, valeria.deantonellis}@unibs.it.

. C. Cappiello and B. Pernici are with Politecnico di Milano, Dipartimento
di Elettronica, Informazione e Bioingegneria, via Ponzio 34/5, 20133
Milan, Italy. E-mail: {cinzia.cappiello, barbara.pernici}@polimi.it.

Manuscript received 30 Jan. 2012; revised 10 Feb. 2013; accepted
10 Apr. 2013. Date of publication 16 May 2013; date of current version 13
June 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Identifier below.
Digital Object Identifier no. 10.1109/TSC.2013.26

1939-1374 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014 265



available services is not present. The methodology is
designed to implement the guidelines for service design,
ensuring at the same time proper metrics to automate
service identification. The initial principles of the P2S
methodology have been introduced in [4]. In this paper, we
perform a step forward by providing: 1) the formulation of
service identification metrics at a conceptual level; 2) a
further automation of some aspects of the methodology
based on such metrics, in particular the aggregation of
candidate services and the service reconciliation algo-
rithms; 3) a detailed evaluation of the prototype tool
(P2Stool) that implements the methodology.

The paper is structured as follows. In Section 2 we
provide preliminary definitions and we describe a real case
scenario where the P2S methodology has been applied.
Section 3 introduces the phases of the methodology that are
detailed in Sections 4, 5, and 6 with reference to the real case
scenario. In Section 7 the evaluation of the prototype tool
that implements the methodology is discussed. A compar-
ison with existing solutions is presented in Section 8. Finally,
Section 9 gives some hints about future work.

2 PRELIMINARY DEFINITIONS

2.1 Running Example

We consider a case study in the manufacturing domain that
has been developed within the TEKNE research project.1 A
sofa manufacturer, who produces the backbone compo-

nents and purchases all the accessories from trusted
suppliers, wants to apply for collaborative processes
following the P2S methodology. The Sofa Production
process is shown in Fig. 1. We adopt BPMN 2.0 as
workflow-based notation, independent from implementa-
tion technology and platforms.

Once the client’s order is received by the sales office, it is
checked and rejected if it is incomplete. Otherwise, the
sales office forwards the order to the purchasing office, that
is responsible for the relationships with providers of raw
materials. The purchasing office generates the List of
Components (LoC) and evaluates it in order to identify
the required components and the providers to contact.
Thus, the price is estimated. Sub-orders are created and
sent to the internal manufacturing department for the
backbone component production and to external providers
for the production of the accessories. Each unit involved in
the production step checks the received document and starts
the production if the required component is already
available. Finally, at the end of the production step, they
commit the delivery of the realized components. The
assemblage of the components is in charge of the purchasing
office. The shipping department receives the final product
and delivers it to the sales office, that is in charge of
generating the invoice and delivering the sofa to the client.

2.2 Business Processes, Tasks, and Services

2.2.1 Simple and Composite Tasks

We model a business process BP as a workflow composed
of an entry point (or start event), a set T of simple tasks,
which are the elementary work units that collectively1. http://www.tekne-project.it/

Fig. 1. BPMN 2.0 representation of the Sofa Production process considered as case study.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014266



achieve the workflow goal, one or more exit points (or stop
events). We define a task descriptorti 2 T as

ti ¼ dti ; INti ; OUTti ; rti ; Atih i (1)

where: dti is the vector of terms which describe the task;
they are extracted from the task name and description by
applying text mining techniques, such as stop word
management, camel case processing and stemming; INti

(resp., OUTti ) is the set of task inputs (resp., task outputs);
rti is the role (or actor) which is responsible of the task
execution according to BPMN 2.0 notation; Ati is the set of
CRUD actions (Create-Read-Update-Delete) performed by
the task on its inputs/outputs [26]. Role involvement in task
execution is represented through swimlanes. Task inputs/
outputs are expressed as business objects. A business object
with name n can be either a simple object hn; ti, described by
a built-in primitive type t (e.g., boolean, string, byte), or a
structured object hn;Pi, described by a collection of attributes
P. Each attribute can be in turn a simple object or the
reference to a structured object. The list of task descriptors
for the running example is shown in Table 1.

The business process workflow also defines the order
and the conditions for executing tasks, their synchroniza-
tion and the flow of business objects among them. The flow
structure is specified by means of a set of control constructs
including sequences (seq), alternative choices (alt), paral-
lel executions (par) and loops (loop). Control constructs
can be nested to model complex structures as sub-
processes. A sub-process subp is valid if can be expressed
as a nested application of the four control constructs seq,
par, alt and loop, that is

subp ¼ ti 2 T j construct subpfsubpgð Þ j ½cond�subp

construct ¼ seq j par j alt j loop (2)

where {subp} means a list of zero or more subp.
Notation ½cond� subp represents the execution of sub-

process subp if the condition cond is true, i.e., after
the alt construct. For instance, the sequence of tasks t2,
t3 and t4 in Fig. 1 is modeled as seqðt2; t3; t4Þ, the sub-
process composed of tasks t5, t6, t7 and t8 is modeled as
seqðt5; altð½

0
Not available0�t6; ½

0
Available0�t7Þ; t8Þ.

2.2.2 Flow and Data Dependencies

Given two simple tasks ti and tj, a flow dependency holds

between them, denoted with ti !
f
tj, if one of the following

conditions holds: 1) ti and tj are directly connected by

an edge (direct flow dependency, we denote it with ti )
f
tj);

2) ti and tj are respectively the predecessor and the
successor of a split or a join connector (we still denote it

with ti )
f
tj); 3) there is another task tk such that ti !

f
tk and

tk !
f
tj (indirect connection).

Within the business process, each business object gets
through the information life-cycle: it is created, can be
updated and read one or more times, is finally deleted. A
business object can be created or deleted just once within
the scope of the business process. Given a task ti, for each
business object bo 2 ðINti [OUTtiÞ, the CRUD actions in Ati

can be recognized as follows:

. a create action, CðboÞ, is recognized if bo belongs only
to the output set of ti and there is no tj such that

tj !
f
ti and bo belongs to the inputs/outputs sets of tj

(bo is not used before ti);
. a read action, RðboÞ, is recognized if bo belongs only

to the input set of ti;
. an update action, UðboÞ, is recognized if bo belongs

both to the input and to the output set of ti;
. a delete action,DðboÞ, is recognized if bo belongs only

to the input set of ti and there is no tj such that

ti !
f
tj and bo belongs to the input/output sets of tj

(that is, bo is no more used after ti).

We remark that the delete action is considered, within the
scope of the business process BP, as the last action

TABLE 1
Task Descriptors and Data Dependencies in the Running Example

BIANCHINI ET AL.: SERVICE IDENTIFICATION IN INTERORGANIZATIONAL PROCESS DESIGN 267



performed on a business object bo. This not necessarily
means that bo is physically deleted.

Given two tasks ti and tj, a data dependency holds

between them, denoted with ti !
d
tj, if all the following

conditions hold: (a) ti !
f
tj; (b) tj uses (updates, reads or

deletes) at least a business object that is created or updated

by ti. Consider for example in Table 1 the I/Os of tasks t2, t3

and t4. The data dependencies t2 !
d
t3, t2 !

d
t4 and t3 !

d
t4

follow. Data dependencies for the running example are

shown in Table 1.

2.2.3 Services

In SOA, a business process BP can be implemented as a set
of services S, where each Sj 2 S is a valid sub-process of BP
with at most an incoming link which represents the service
request and at most an outgoing link which represents the
service response. We define a service descriptor as follows:

Sj ¼ hdSj
; INSj

; OUTSj
; RSj

; ASj
i (3)

where: dSj
is the vector of terms which describe the service,

obtained as the union set of dti for each task ti in Sj; INSj

(resp., OUTSj
) is the Sj input set (resp. the output set);

among the business objects within INSj
and OUTSj

, we do
not consider those that are used only inside Sj, that is, are
only associated to a control flow from two tasks inside the
service;RSj

is the set of all roles that are responsible of tasks
ti in Sj; ASj

is the set of CRUD actions performed on
business objects in INSj

and OUTSj
. For example, the

descriptor of a candidate service S1 which groups tasks t2,
t3 and t4 (that is, S1 ¼ seqðt2; t3; t4Þ) is the following:

dS1
¼fgenerate; evaluate; list; component;

estimate; priceg

INS1
¼fOrderg

OUTS1
¼fBackboneComp:Spec:; AccessoryComp:Spec:;

Billg

RS1
¼fPurch:Off:g

AS1
¼ RðOrderÞ; RðBackboneComp:Spec:Þ;f

CðAccessoryComp:Spec:Þ; CðBillÞg:

The business object LoC is created, updated and read only
inside S1 and is not considered among service inputs/
outputs.

However, services are not generic valid sub-processes of
BP, since additional properties must be exploited to guide
their identification:

. a service is a minimal set of tasks that performed
together create an output that is a tangible value for
a process actor (property #1);

. services are self-contained and interact among
each other using decoupled message exchanges,
that is, present high cohesion and low coupling
(property #2);

. service design has to lead to high interoperability
through high functionality reuse (property #3).

In the next sections, we will define the notion of value and
we will show how to ensure the above properties.

3 OVERVIEW OF THE P2S METHODOLOGY

The P2S methodology guides the designer to identify
candidate services in the business process ensuring
properties #1-#3 through the execution of three main
phases: business process analysis, candidate service identifica-
tion and candidate service reconciliation.

3.1 Business process analysis

In this phase, task descriptors, flow dependencies and data
dependencies are exploited to analyse the business process
structure, according to two perspectives: value analysis and
task dependency analysis.

During the value analysis, exchanges of business objects
between actors and CRUD actions performed by tasks on
business objects are exploited to identify values, that is,
business objects that are created within the business
process and are provided by one of the process actors
(service provider) to a different actor (service requester) [15].
Values will be used to identify a preliminary set of
candidate services (property #1).

Data dependencies and flow dependencies between
business process tasks are analyzed to identify the
dependency of a task from the execution of other tasks
(task dependency analysis). The result of task dependency
analysis is a matrix of dependencies that will be used in the
next methodological phase to evaluate the process cohesion
and coupling (property #2).

3.2 Candidate Service Identification

In this phase, results from the previous analysis are used to
identify the services that compose the business process.
This phase is composed of the following steps:

a) Value-based service identificationVA preliminary
identification of candidate services is performed
on the basis of the value analysis.

b) Candidate service refinementVAn iterative algo-
rithm is applied to refine the service identification
according to cohesion and coupling metrics,
based on task dependency analysis. The coupling/
cohesion ratio is used as a measure of the quality
of the overall decomposition: the smaller the value
of such ratio the higher the quality of the service
identification procedure.

The service identification performed in this phase aims
at defining, at design time, a set of services that properly
combined are able to execute the process. The use of
metrics such as the coupling/cohesion ratio allows us to
define the suitable granularity that should have a positive
impact on some software engineering measures, such as
reusability and composability (see [29]). Note that the
quality of a portfolio may also depend on the needs
served by the process. For instance, a manufacturing
process like the one we used in the running example
typically takes several days to be completed and a good
decomposition would be the one that minimizes the data
(and thus communication) exchanges between component
services (and related actors). On the other hand, we have
also to consider that fully automated processes should be

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014268



implemented through highly performant services which
reduce the execution time and cost. Highly cohesive and
loosely coupled services ensure limited data exchanges by
definition and, at the same time, reduce the risk of
communication overloading which could decrease the
performance of the overall process. The execution time
and cost related to the implementation of each single
component service will be considered at deployment and
execution time, that are steps which follow service
identification in the service lifecycle we considered in
this paper.

3.3 Candidate Service Reconciliation

Within the whole collaborative business process there can
be tasks or groups of tasks that perform the same or
similar functionalities. Similarity between tasks or groups
of tasks is estimated taking into account both the business
objects on which the tasks work and the actions performed
to increase reuse of the components in the service portfolio
(property #3). The candidate service reconciliation aims at
identifying redundant candidate services viewed as
groups of tasks and reconciling them for enhancing the
service portfolio reuse. The P2S methodology also provides
support for the interactive construction of a semantic
dictionary to enable semantic agreement among all
parties engaged in the process analysis and service
identification. The semantic dictionary is semi-automatically
built before starting the methodological phases. In
the dictionary, business object names and attributes and
task names, after stop word management, camel case
processing and stemming, are stored as terms and
organized by means of synonymy, generalization and
aggregation relationships. The dictionary is built as
described in [9] by relying on a domain-specific ontology
and a general purpose ontology. The domain-specific ontol-
ogy contains terms related to a given application domain
and is built by a domain expert analyzing the terms used
in the business process specification. It offers more
accuracy in the relationships between terms. We use the
WordNet lexical system as general purpose ontology to
offer wider coverage.

The methodology is semi-automatic: candidate services
are presented to the designer, properly motivated through
metrics computation. The designer may confirm or reject
the recommendations.

4 BUSINESS PROCESS ANALYSIS

4.1 Value Analysis

According to the approaches on value network modeling
[15], services are units of work that are invoked by one of
the actors engaged in the business process to obtain
tangible values from another actor. Among the actors, we
always include the external user eu, who interacts with the
whole process (in the running example, the client who
submits the order and receives the sofa). Identification of
value exchanges between actors is based on the analysis of
CRUD actions performed by tasks and on associations
between actors and tasks (represented using swimlanes in
the BPMN). A valuev for an actor r0 produced by another
actor r 6¼ r0 is a business object that is created (for the first
time) by one of the tasks tj such that rtj ¼ r and is used
(read, deleted or updated) by one of the tasks ti such that

rti ¼ r0, that is, there is a data dependency tj !
d
ti and

CðvÞ 2 Atj . The result of the value analysis is a set V of value
exchanges. Specifically, value identification is performed
as follows: 1) tasks tj such that CðboÞ 2 Atj are identified;

2) if there exists a task ti such that tj !
d
ti and r0 ¼ rti 6¼ rtj ,

then bo is recognized as a value for r0; 3) a new value
exchange record is created. Each value exchange record is
described by the business object bo, the task tj that creates
bo, the responsible role rtj which produces the value and
the set of roles r0 which receive the value.

For example, let us consider the business objects Bill

and BackboneComp:Spec in Table 1. The former is created
by task t4 (managed by the purchasing office) and is
used by the Send Invoice task t20 (managed by the sales
office). The latter is created by task t3 (managed by the
purchasing office), updated by task t4 and used by task t5
(managed by the manufacturing department). Therefore,
BackboneComp:Spec: and Bill are two values produced by
the purchasing office for the manufacturing department
and the sales office, respectively. On the other hand,
Materials is created and used only by the manufacturing
department and is not recognized as a value. Table 2 lists
the value exchanges identified for the running example.

4.2 Task Dependency Analysis

Let us consider a pair of tasks ti and tj such that ti !
d
tj (that

is, there is a data dependency from ti and tj). This means
that there are business objects fbog created by ti and

TABLE 2
Values Identified in the Running Example

BIANCHINI ET AL.: SERVICE IDENTIFICATION IN INTERORGANIZATIONAL PROCESS DESIGN 269



updated, read or deleted by tj, according to the definition
of data dependency in Section 2.2, fbog both belong to
OUTti and to INtj . We define the degree of task dependency
from ti to tj as

�ðti; tjÞ ¼ 2 �
boj j

ti!
d
tj

OUTtij j þ INtj

�

�

�

�

2 ½0; 1�; ti 6¼ tj (4)

where jboj
ti!

d
tj
is the number of objects in fbog; �ðti; tjÞ ¼ 1 if

OUTti ¼ INtj .
For example, let us consider the tasks t2, t3 and t4.

Task dependencies t2 !
d
t3 and t2 !

d
t4 hold, since t2

creates LoC that is used by both t3 and t4. In particular,

jboj
t2!

d
t3
¼ jboj

t2!
d
t4
¼ 1. Also t3 !

d
t4 holds, since t3 creates

BackboneComp:Spec: and AccessoriesSpec: and updates

LoC, which are used by t4. In particular, jboj
t3!

d
t4
¼ 3. The

task dependency values are the following:

�ðt2; t3Þ ¼ 2 �
1

1þ 2
¼ 0:67

�ðt2; t4Þ ¼ 2 �
1

1þ 4
¼ 0:40

�ðt3; t4Þ ¼ 2 �
3

3þ 4
¼ 0:86:

Task dependency between t3 and t4 is the highest one, since
all the outputs of t3 are used by t4 and three of the four

inputs of t4 come from t3.
The result of task dependency analysis is a matrix

TD½n�½n�, where TD½i�½j� ¼ �ðti; tjÞ and n is the number of
simple tasks. In Fig. 2 the TDmatrix of the running example
is shown. g

5 CANDIDATE SERVICE IDENTIFICATION

5.1 Value-Based Service Identification

In this step, we consider the values identified in the previous
analysis in order to identify a preliminary set S of services
that will be further refined. The pseuso-code of the
algorithm which implements this step is shown in Fig. 3.
We will explain it with the help of the running example.
First, the set � of tasks that produce a value from the set V is
considered as candidate services Si (rows 3-10). For
example, tasks t3 (which produces the BackboneComp:Spec:

value) and tasks t13, t14 (which produce the Accessory value)
are selected. Therefore, the CANDIDATESERVICEPOPULATION

routine is executed (rows 11-13). This routine recursively
adds to the candidate service Si those tasks ti 2 T that: 1)

present a direct flow dependency towards one of the tasks tj

already included in Si (i.e., ti )
f
tj) and 2) present a data

dependency towards one of the tasks tj already included in

Si (i.e., ti !
d
tj) and 3) do not produce a value from the set V

by themselves (i.e., ti 62 �). For example, consider tasks t13
and t14. They are collected in the same service (that is, SF in

Table 3); moreover, the task t12 is added to SF since t12 )
f
t13

(or, equivalently, t12 )
f
t14), t12 !

d
t13 (see Table 1 on page 4)

and t12 62 � (it does not produce values). Furthermore, t11 is

added to SF since t11 )
f
t12, t11 !

d
t12, t11 62 �. These three

conditions do not hold for other simple tasks and the

CANDIDATESERVICEPOPULATION routine stops for service SF .

Similarly, if we consider the candidate service SC in Table 3,

the task t3 is not added to SC since, although t3 )
f
t4 and

t3 !
d
t4, task t3 produces values by its own (see Table 2). In

this way, SA, SB, SC , SD, SE , SF , SG, SH and SI candidate

services are identified (see Table 3). Finally, those tasks that

are not assigned to any Si yet are considered as additional

candidate services (rows 14-16). Therefore, the other services

in Table 3 are identified.

5.2 Candidate Service Refinement

The algorithm in Fig. 3 has been designed to group, in the
same service, tasks that are linked through a data
dependency, thus enabling a high internal cohesion.
However, the value-based service identification step does
not ensure that identified services are also loosely coupled.
For example, let us consider services SB and SC identified
in the previous section, the data dependency that exists
between tasks t3 and t4 suggests that it would be better to
aggregate SB and SC into the same service. The resulting
service SBC still produces values for the process actors
(BackboneComp:Spec: and Bill), that is, SBC is still in
accordance with property #1. In the P2S methodology, the
choice of the ‘‘best solution’’ (i.e., a high quality service
identification) is driven by a quantitative evaluation of the
overall cohesion and coupling of the identified services.
Cohesion and coupling computation is based on task

Fig. 2. TD matrix of task dependencies �ðti; tjÞ.

Fig. 3. Algorithm for value-based service identification.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014270



dependency defined in Equation (4). The adopted cohesion/
coupling metrics have been inspired by their well-known
application in software engineering [31] and have been
adapted to the problem of service identification and
modified to consider the task dependency coefficient.

The service cohesion quantifies how much the tasks
within the service are tight to provide the value associated
to the service. The higher the dependency between tasks in
the same service S, the higher the service cohesion. Service
cohesion must be maximized. We define the internal

cohesion of a candidate service S as

cohðSÞ ¼

P

i;j
�ðti;tjÞ

jSj� jSj�1ð Þ
2

8 ti; tj 2 S jSj 9 1

1 jSj ¼ 1

8

<

:

(5)

where jSj is the number of tasks in S. The denominator
corresponds to the number of evaluations of the task
dependency coefficient, where for each pair ti and tj (with
ti 6¼ tj), both the task dependency �ðti; tjÞ and �ðtj; tiÞ are
evaluated. The service coupling quantifies how much
distinct services need to interact for providing their
respective values. The higher the dependency between
tasks belonging to two distinct services S1 and S2, the
higher the coupling between S1 and S2. Service coupling
must beminimized. Given two candidate services S1 and S2

(with S1 6¼ S2), the coupling between them is computed as

coupðS1;S2Þ ¼

P

i;j �ðti; tjÞ

jS1j�jS2j
8 ti 2 S1 ^ 8 tj 2 S2: (6)

Also in this case, the denominator corresponds to the
number of evaluations, where dependency between each
task ti 2 S1 and each task tj 2 S2 is evaluated. Service
cohesion and coupling coefficients are used to evaluate the
average cohesion and coupling of the set of identified
services for the process BP, respectively

pcohðBPÞ ¼

P

cohðSiÞ

jSj
(7)

pcoupðBPÞ ¼

P

i;j
coupðSi;SjÞ

jSj� jSj�1ð Þ
2

jSj 9 1

1 jSj ¼ 1

8

<

:

(8)

where jSj is the number of identified candidate services
and, in the evaluation of pcoupðBPÞ, for each pair Si and Sj

(withSi 6¼ Sj) both coupðSi;SjÞ and coupðSj;SiÞ are evaluated.

Process cohesion and coupling coefficients are combined in
the coupling/cohesion ratio G , that must be minimized

G ¼
pcoupðBPÞ

pcohðBPÞ
: (9)

Given the task dependency values shown in Fig. 2
and the candidate services identified in the previous step,
the service cohesion and coupling values are shown
in Fig. 4, where service cohesion values are put on the
diagonal. For example, if we consider SB ¼ seqðt2; t3Þ
and SC ¼ seqðt4Þ ¼ t4, since �ðt2; t4Þ ¼ 0:4 and �ðt3; t4Þ ¼
0:86, then coupðSB;SCÞ ¼

0:4þ0:86
2�1 ¼ 0:63. In the running

example, pcohðBPÞ ¼ 0:877, pcoupðBPÞ ¼ 0:084 and G ¼
0:084
0:877 ¼ 0:09578.

Aggregation of candidate services to minimize G is
implemented by the algorithm whose pseudo-code is
shown in Fig. 5. g

The current coupling/cohesion ratio is computed (row 2).
At each iteration of the procedure, two distinct candidate
services Si and Sj are selected to be aggregated (row 6). The
selection is performed taking into account both the coupling
between identified services and the structure of the process.
To be aggregated, Si and Sj must be:

1. contiguous subprocesses in a sequence, or
2. subprocesses in a parallel or alternative execution, or
3. subprocesses within the same loop execution, or
4. subprocesses within the same swimlane.

TABLE 3
Preliminary Set of Services Identified for the Running Example in the Value-Based Service Identification Step

Fig. 4. Service cohesion and coupling values for the running example.

BIANCHINI ET AL.: SERVICE IDENTIFICATION IN INTERORGANIZATIONAL PROCESS DESIGN 271



Among the pairs of services that can be aggregated, the
ones with the highest coupling are selected first. Condi-
tions 1-4 ensure that the aggregated service is a valid
subprocess of BP. In particular,

condition 1) avoids that, for example, a candidate service
ft2; t4g is identified, upsetting the right sequence ft2; t3; t4g;

condition 2) avoids, for example, that a candidate service
ft5; t6g is identified, splitting the condition checking into
two parts, executed both inside and outside the service;

condition 3) avoids that, for example, a candidate service
ft10; t11g is identified, breaking the loop involving tasks t11,
t12, t13 and t14. Finally,

condition 4) avoids the identification of the service across
different partners.

The conditions are checked by relying on the BP
representation according to Eqn (2).

The services Si and Sj are aggregated into a new service
Sij (rows 11-13). After aggregating the two services, the
new coupling/cohesion ratio G

0 is evaluated (row 14) and,
if G

0
G G , the set of identified services is updated (rows 15-

17) and the aggregation procedure is repeated. Otherwise,
the aggregate flag is put to FALSE and the algorithm stops
(rows 18-20). The procedure continues until the coupling/
cohesion ratio G does not further decrease or all the
candidate services identified in the previous step are
aggregated (see condition on row 4). It is worth mentioning
that, after the execution of the algorithm, services to be
aggregated are suggested to the designer, who may accept
or reject the suggestion. The iterative execution of the
aggregation algorithm produces an aggregation tree,
whose instantiation for the running example is shown in
Fig. 6, with corresponding variations in the coupling/

cohesion ratio from G1 to G6. After aggregation of tasks t17,
t18, t19 and t20 the value of G starts to increase and the
aggregation procedure stops.

6 CANDIDATE SERVICE RECONCILIATION

Candidate service reconciliation is applied to service
descriptors defined according to Eqn (3). It is possible
that some services in the set S overlap, thus denoting: 1) the
execution of the same or similar tasks in different points of
the process; 2) slightly different versions of the same
service [1]. In order to support the designer in identifying
overlapping services, proper coefficients have been intro-
duced to calculate similarity between service descriptors.
Such coefficients enable service similarity computation
independently of service granularity (i.e., the number of
tasks). Similarity between services is estimated by consid-
ering the business objects on which services operate and
actions performed on such objects.

Let us consider two business objects boi and boj.
Similarity between them, denoted with BOSimðboi; bojÞ, is
evaluated as a combination of their name similarity
(NameSim) and structural similarity (StrucSim)

BOsimðboi; bojÞ ¼ � �NameSimðnboi; nbojÞ

þ� � StructSimðboi; bojÞ 2 ½0; 1� (10)

where nboi and nboj are the names of boi and boj,
respectively, 0 � �; � � 1, �þ � ¼ 1 are weights used to
balance the relevance of each kind of similarity (in the
examples we chose � ¼ � ¼ 0:5 since we equally weight
name and structural similarity). Generally speaking, the
name similarity NameSim 2 ½0; 1� function compares two
names and evaluates how similar they are with respect to
their closeness within the semantic dictionary. In the
literature, several approaches are proposed to compute
the similarity between terms, by relying on the relation-
ships between terms in a given reference ontology. We do
not commit to a specific similarity function. In our
experimentation, we used the function defined in [9], given
its proved efficacy in business process reengineering [10]

Fig. 5. Algorithm that suggests service aggregation to minimize the
process coupling/cohesion ratio.

Fig. 6. Service aggregation tree for the running example.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014272



and service discovery [3]. Here we simply state that nboi and
nboj are transformed in two sets of terms by applying stop
word management, camel case processing and stemming.
Similarity of each pair of terms (one from nboi and one from
nboj) is evaluated by seeking a path of relationships between
them in the semantic dictionary. Finally, pairs of terms to be
considered forNameSim computation are selected according
to a maximization function that relies on the assignment in
bipartite graphs and selected term similarity values are
combined through the Dice formula [30] to obtainNameSim.

The structural similarity StructSimðboi; bojÞ is evaluated
in different ways depending on the structure of the business
objects

TypeCompðtboi; tbojÞ boi; boj simple

0 boi simple; boj structured

or viceversa
2�
P

pi;pj
BOSimðpi;pjÞ

PðboiÞj jþ PðbojÞj j
boi; boj structured

8

>

>

>

<

>

>

>

:

(11)

where tboi and tboj are the types of boi and boj, respectively,
and TypeCompðtboi; tbojÞ is a function which measures the
compatibility between types, based on the approach
proposed in [9]; pi 2 PðboiÞ, pj 2 PðbojÞ are the attributes
of boi and boj, respectively, j � j denotes the set cardinality. If
boi and boj are structured objects, BOSim is recursively
applied to their properties, one from PðboiÞ and one from
PðbojÞ. If pi 2 PðboiÞ presents a similarity with more than
one pj 2 PðbojÞ, the pairs of pi and pj to be considered in
computation are selected by applying the same maximiza-
tion function used for NameSim computation.

For example, let us consider the services Si ¼
ft5; t6; t7; t8g and Sj ¼ ft11; t12; t13; t14; t15g identified in the
previous step for the running example. The descriptors
of the two services are the following:

dSi
¼fanalyze; backbone; component; produce;

collect; warehouse; deliverg

INSi
¼fBackboneComp:Spec:g

OUTSi
¼fBackboneComp:; DeliveryNoteg

RSi
¼fSofaManufacturer:ManufacturingDeptg

ASi
¼ RðBackboneComp:Spec:Þ;f

CðBackboneComp:Þ; CðDeliveryNoteÞg

dSj
¼fanalyze; accessory; order; material;

produce; collect; warehouse; deliverg

INSj
¼fAccessoryComp:Spec:g

OUTSj
¼fAccessoryg

RSj
¼fAccessoriesProvider:ManufacturingDeptg

ASj
¼fRðAccessoryComp:Spec:Þ; CðAccessoryÞg:

The Si and Sj inputs/outputs are the following:

BackboneComp:Spec:

¼ fquantity :: number; description :: textg

BackboneComp:

¼ fspecification :: BackboneComp:Spec:;

price :: floatg

DeliveryNote

¼ faddress :: string; totalPrice :: floatg

AccessoryComp:Spec:

¼ fname :: string; model :: string;

description :: string; quantity :: integerg

Accessory

¼ fspecification :: AccessoryComp:Spec:;

price :: floatg:

The NameSim values for this example are shown in
the following table (note thatNameSimðti; tjÞ ¼ 1:0 if ti ¼ tj):
Since TypeCompðnumber; integerÞ ¼ 1:0 and TypeComp

ðstring; textÞ ¼ 1:0, the following similarity values follow:

BOSimðquantity :: number; quantity :: integerÞ

¼ 0:5 � 1:0þ 0:5 � 1:0 ¼ 1:0

BOSimðdescription :: text; description :: stringÞ

¼ 0:5 � 1:0þ 0:5 � 1:0 ¼ 1:0

StructSimðBackboneComp:Spec:; AccessoryComp:Spec:Þ

¼
2 � ½1:0þ 1:0�

2þ 4
¼ 0:67

BOSimðBackboneComp:Spec:; AccessoryComp:Spec:Þ

¼ 0:5 � 0:64þ 0:5 � 0:67 ¼ 0:66

BOSimðspecification :: BackboneComp:Spec:;

specification :: AccessoryComp:Spec:Þ

¼ 0:5 � 1:0þ 0:5 � 0:66 ¼ 0:83

BOSimðBackboneComp:; AccessoryÞ

¼
2 � ½0:83þ 1:0�

2þ 2
¼ 0:92:

Similarity of two services Si and Sj based on the
business objects on which they operate is given by

OSimðSi;SjÞ ¼
2 �

P

ini;inj
BOsimðini; injÞ

INSi
j j þ INSj

�

�

�

�

þ
2 �

P

outi;outj
BOsimðouti; outjÞ

OUTSi
j j þ OUTSj

�

�

�

�

2 ½0; 2� (12)

where ini 2 INSi
, inj 2 INSj

, outi 2 OUTSi
, outj 2 OUTSj

.
Given two CRUD actions ai 2 ASi

and aj 2 ASj
performed

on business objects boi and boj, respectively, the similarity
between ai and aj, denoted with ASimðai; ajÞ 2 ½0; 1�, is
calculated as follows:

ASimðai; ajÞ ¼
0 if ai 6¼ aj
BOSimðboi; bojÞ if ai ¼ aj.

�

(13)

Similarity between services based on actions they perform,
denoted with FSim (functional similarity), is evaluated as
follows:

FSimðSi;SjÞ ¼ SimðdSi
; dSj

Þ

þ
2 �

P

ai;aj
ASimðai; ajÞ

jAij þ jAjj
2 ½0; 2� (14)

where Simðdi; djÞ is the similarity between task descriptions,
obtained by applying the Dice formula to the similarities
between terms in di and dj. The OSim and FSim coefficients

BIANCHINI ET AL.: SERVICE IDENTIFICATION IN INTERORGANIZATIONAL PROCESS DESIGN 273



are normalized in the range ½0; 1� and linearly combined to
obtain a Global SimilarityGSim, defined as follows:

GSimðSi;SjÞ ¼ !1 �NormOSimðSi;SjÞ

þ!2 �NormFSimðSi;SjÞ 2 ½0; 1� (15)

where: 0 � !1, !2 � 1 and !1 þ !2 ¼ 1 are weights used to
assess relevance to each kind of similarity. If GSimðSi;SjÞ
is equal or greater than a similarity threshold � 2 ½0; 1�, then
the two candidate services are proposed to the designer for
their reconciliation. The designer may analyze the pro-
posed similar services and may decide to merge them or
maintain them as distinct candidate services. The setup of
weights !1 and !2 and of the threshold � will be detailed in
the experimental evaluation section. The GSim coefficient
for services Si and Sj considered in the example is the
following:

SimðdSi
; dSj

Þ ¼
2�½1:0þ1:0þ1:0þ1:0þ1:0þ0:64�

7þ8
¼ 0:75

FSimðSi;SjÞ ¼ 0:752þ
2 � ½0:66þ 0:915�

2þ 3
¼ 1:38

OSimðSi;SjÞ ¼
2 � 0:66

1þ 1
þ
2 � 0:915

2þ 1
¼ 1:27

GSimðSi;SjÞ ¼ 0:5 �
1:382

2
þ 0:5 �

1:27

2
¼ 0:66:

Indeed the similarity of these two services was quite
evident: they both perform analysis, production or collec-
tion from warehouse, delivering. Anyway, the manual
identification of service redundancies is made difficult by
different granularities (Si contains four tasks, while Sj

contains five tasks) and by the overall process complexity
(see tests in the next section).

7 SYSTEM EVALUATION

A prototype tool supporting the P2S methodology, called
P2Stool, has been developed in Java, within an Eclipse
BPMN plug-in (http://eclipse.o2rg/bpmn/).2 We ran
several experiments, in order to test: 1) the quality of
service identification obtained with the support of the
P2Stool; 2) how the P2Stool is able to mitigate the gap

between middle-level and high-level skilled users to
perform service identification; 3) the performance of the
P2Stool in terms of time consumed to complete each phase of
the methodology. All the experiments have been performed
on an Intel laptop, with a 2.53 GHz Core 2 CPU, 2GB RAM
and Linux operating system.

7.1 Experimental Setup

To run experiments, we generated a dataset containing 20
processes. In particular, the dataset has been built by
considering: 1) the size of the business processes, comput-
ed as the number of simple tasks (ranging from 5 to 40);
2) their structural complexity, computed as the number of
parallel and alternative branches and the number of loops
(ranging from 3 to 40); 3) their data flow complexity,
computed as the average number of inputs/outputs of
simple tasks in the processes (ranging from 1 to 7). A setup
has been performed on the weights and threshold used for
reconciliation of similar services. To setup the threshold �

for GSim computation (see Equation (15)), we randomly
selected the decompositions of ten processes, obtained
through the identification phase, and we asked the domain
expert to manually detect pairs of similar services. We
repeated the experiment by computing GSim with the
P2Stool by varying the threshold � 2 ½0; 1�. Let be �

ðk�k ¼ mÞ the initial number of services in the decompo-
sition, the total number of pairwise comparisons between
services to evaluate their similarity is n ¼ m�ðm�1Þ

2 ; let be fp

the number of false positives identified by the P2Stool and
fn the number of false negatives: the value Q ¼ 1� fpþfn

n

has to be maximized. As expected, for too high values for �,
only very similar services, with very close descriptors, are
proposed to be reconcilied, that is, more redundant
services are identified as separated ones, thus increasing
the complexity of the service implementation and deploy-
ment. On the other hand, too low � values increase the
complexity during service identification, since very differ-
ent services are proposed to the designer for reconciliation
and very complex merging procedures are required.
Finally, we chose � ¼ 0:5. A setup for weights !1 and !2

with � ¼ 0:5 has been performed too, by varying !1 2 ½0; 1�.
Fig. 7 displays the results. Unbalanced !1 and !2 weighting
decreases the quality of GSim computation. For instance, if
we weight the I/O similarity OSim the most, also services
containing tasks that are functionally different, but operate
on the same I/Os, are candidates for reconciliation (see for
instance t15 and t16 in the running example). On the other
hand, if we weight the functional similarity FSim the most,
we strongly rely on tasks who compose services, thus
reducing the possibility of merging together services
composed of different tasks or structures (see, for example,
services Si and Sj considered in Section 6).

7.2 Quality of Service Identification

We asked a domain expert to manually apply the service
identification on each process in the dataset, following the
guidelines described in [29]. We computed the G value on
the obtained set of candidate services (see Equation (9)). Let
us denote with G i the value on the set of identified services
obtained by the domain expert for the i-th process in the

2. A demo video of the P2Stool can be found here: www.ing.
unibs.it/~bianchin/P2Stool_demo.avi.

Fig. 7. Variation in the quality of service reconciliation with respect to
weights !1 and !2.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014274



dataset ði ¼ 1 . . . 20Þ. We monitored six users, who per-
formed the service identification on each process in the
dataset with and without the support of the P2Stool and
with the support of a system that only provides the
computation of coupling/cohesion metrics (see for exam-
ple [31]). Users have either middle-level (users 1, 4 and 6)
or high-level skill in business process modeling (users 2, 3
and 5). Users with low-level skill have not been considered
since they are not among the target users of our method-
ology. We computed the G

u
i value for the service identifi-

cation performed on the i-th process by user u ði ¼ 1 . . . 20Þ.
Finally, for each user u and each process in the dataset, we
evaluated the percentage error ðjGu

i � G ij=G iÞ � 100.
In Fig. 8 we show the average results for the six users on

20 processes of the dataset. The main difficulty for the user
supported by the system that only provides the computa-
tion of coupling/cohesion metrics is to perform the
identification of an initial set of services, that is further
evaluated in terms of cohesion and coupling. Our system,
on the other hand, also suggests such an initial identifica-
tion, according to the value analysis. Fig. 8 shows that the
adoption of P2Stool also mitigates the skill gap between
different users who perform service identification. Fig. 9
shows how process size, structural complexity and data
flow complexity affect the quality of service identification
with and without the support of P2Stool. To perform
experiments in Fig. 9a, we selected ten processes from the
dataset with comparable structural complexity (20 � 2
gateways and loops) and data flow complexity (4 � 1
average I/Os) and increasing process size (from 20 to 38).
Each process has been decomposed by six users and figure
shows the average results. Experiments whose results have
been shown in Figs. 9b and 9c have been performed in

similar way, limiting the process size to 20 � 2 simple tasks
and varying the structural and the data flow complexity,
respectively. Figures show how the factor that influences
the users the most during service identification without
P2Stool is the structural complexity. This intuitively could
be inferred from the fact that gateways and loops are the
costructs that visually make more complex the BPMN
representation of processes.

7.3 Performance Evaluation

Performance has been evaluated to check the efficiency
of the P2Stool in terms of time consumed to complete
each phase of the methodology. Since the methodology has
been meant to be executed at design-time, the delays
introduced by the designer who is in charge of validating
the suggestions provided by the P2Stool have not been
considered. Since the steps are mainly based on task I/Os
and data dependencies, we expect that execution time is
influenced by the size of the business processes and by
their data flow complexity, and is less influenced by their
structural complexity. In this experiment, the goal was to
evaluate system performances and not its quality. There-
fore, we generated a new synthetic dataset starting from
the 20 processes considered in the previous experiments. In
Fig. 10a each execution time measure has been taken on ten
processes with the same process size and comparable
structural complexity (20 � 2) and data flow complexity
(4 � 1), then the average has been computed. Experiments
in Figs. 10b and 10c have been performed in a similar way
for processes with comparable size (20 � 2).

We observed a small linear increase of the execution
time as the number of simple tasks increases (Fig. 10a).
Nevertheless, also for the biggest processes, the system
scales well and takes no more than 4 seconds during the
most time-consuming phase (that is, the identification of
similar services), that is an acceptable result for a tool to be
used at design-time. Results in Fig. 10c show, as expected,
that the average number of I/Os affects the execution time
of the P2Stool, although the scalability is still preserved,
while the structural complexity slightly affects the execu-
tion time, with only very marginal differences in execution
time (Fig. 10b).

8 RELATED WORK

Service identification is considered as a precondition for a
successful implementation and governance of SOA [7]. It
has a direct impact on the composability of loosely-coupled
services and the reusability of individual services in

Fig. 9. Variation in the quality of service identification with respect to. (a) Process size. (b) Structural complexity. (c) Data flow complexity.

Fig. 8. Quality of service identification with and without P2Stool support
and with the support of a system that only provides the computation of
coupling/cohesion metrics.

BIANCHINI ET AL.: SERVICE IDENTIFICATION IN INTERORGANIZATIONAL PROCESS DESIGN 275



different contexts [17]. Anyway, several comparisons
highlight that the issue of identifying services using an
appropriate granularity has not been satisfactorily ad-
dressed yet [7], [12], [19].

In Table 4 a comparison between the P2S methodology
and some of the most representative service identification
methods is shown. Analysis dimensions in Table 4 are the
ones suggested in [6]: the strategy (top-down, bottom-up,
meet-in-the-middle), the use of quantitative metrics to
evaluate the identification phase, the availability of proce-
dural guidelines and/or tools, and the type of performed
validation. Most of the consolidated approaches either
suggest guidelines for service identification without provid-
ing quantitative metrics to evaluate the quality of the
identified services or use a limited set of metrics, without
providing a service identification procedure. The main
contribution of the P2S approach is the combination of a
methodological perspective with metrics which quantita-
tively guide the designer through the identification phase. A
first attempt to provide this kind of approach has beenmade
in [4]. This paper validates the methodological phases
exposed in [4] and provides a support tool. Moreover,
some aspects of the methodology have been improved: the
service refinement step now takes into account also the
business process structure, while service reconciliation can
be performed here regardless the granularity (i.e., the
number of tasks) of the compared services.

8.1 Service Identification Methodologies

For what concerns service identification strategy, top-
down approaches (also known as domain decomposition)

focus on the analysis of business domains and business
process modeling to identify services, components and
flows that will be used to orchestate them, while bottom-up
and meet-in-the-middle strategies are especially useful in
environments where component services are relatively
fixed and processes are designed on the basis of the
available services [11]. [23] proposes a methodology to
define development principles for Web services on the
basis of the business processes that can be assembled into
business scenarios. [16] and [18] propose other top-down
methodologies based on a goal-based approach for the
identification of service composition, without quantitative
models to support the analysis. The approach described in
[20] provides a set of measures, combined as a multi-
objective problem solving, that allow designers to validate
service identification. With respect to this approach, the
P2S methodology provides a step-by-step procedure to
assist the designer during the identification. As shown by
the experimental evaluation, the structure of the business
process is taken into account and a better feedback is given
to the designer. In [28], several methods are combined in
order to identify services starting from an analysis of
organizational domain and processes. The designer is
guided by the order throughwhich the different techniques
should be used and by some tips for the evaluation of the
results. Finally, in [17] service identification is performed
by considering a business process and using a clustering
algorithm to merge the process tasks included in a single
service. The use of cohesion/coupling metrics in the
service identification has been suggested in several con-
tributions such as [2], [10], [31], but these approaches

Fig. 10. Execution time of the P2Stool with respect to. (a) Process size. (b) Structural complexity. (c) Data flow complexity.

TABLE 4
Comparison of the P2S Methodology with Other Service Identification Approaches

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014276



mainly propose techniques to select the most suitable
identification starting from different available solutions.

Bottom-up approaches focus on existing IT assets and
services; quantitative metrics such as cohesion and cou-
pling are used to evaluate the quality of existing assets and,
eventually, to perform reengineering strategies [13], [21],
[27]. The enrichment of the process description is ad-
dressed by [13], in which the main issue is the identification
of the Web services that match the designer’s specification.
The authors explain how the use of an appropriate
language (i.e., WSMO) gives a unified view on business
processes allowing designers to easily link process activ-
ities to services. In [21] an abstract process represents a
Web process whose control and data flow are defined at
design time, but the actual services are not chosen until
run-time. In [27] the notion of process template is
introduced. Process templates are reusable business pro-
cess skeletons that are devised to reach particular goals and
are made up of states and transitions. A state corresponds
to the execution of a service that is member of aWeb service
community. A community is a collection of services with a
common functionality, but different non-functional prop-
erties (e.g., QoS) that drive the selection of the most suitable
service at run-time. Meet-in-the-middle approaches, also
referred to as goal-service modeling, decompose a general-
ized statement of business goals relevant to the scope of the
business process into subgoals that must be met by existing
services. In [11] a meet-in-the-middle strategy is applied.
The last step is service refactoring and rationalization. The
refactoring is performed by grouping lower-level services
that have some kind of logical affinity. Subsequently, the
rationalization is applied as a set of criteria to resolve
whether a candidate service should be exposed, based on
the evaluation of business alignment, composability,
redundancy.

8.2 Validation of Service Identification

In the literature, most of the service identification ap-
proaches are evaluted putting them into practice [12]. Some
approaches are validated showing their effectiveness in
real life projects or experimenting them in case studies.
Other approaches provide only some examples to explain
the proposed service identification method. For the vali-
dation of the P2S methodology we have used a case study
in order to better explain how the methodology works and
we also evaluate the perfomance and quality of the P2S tool
by using a user-based study.

9 CONCLUDING REMARKS

The P2S methodology aims at providing a semi-automatic
approach to support designers to analyze a business
process and identify subset of functionalities that can be
exported as services. The methodology is designed to be
applied in the first steps of a SOA lifecycle, in a top-down
approach, or in any case in which a portfolio of available
services is not present and the goal is to identify suitable
sub-processes, that fit well defined properties, such as low
coupling and high cohesion. The P2S methodology will be
extended to address issues related to meet-in-the middle
approaches, i.e., in situations in which the service identi-

fication should be driven also by the availability of existing
services. In particular, in [5] a work-in-progress project for
meet-in-the middle service identification is described,
where available services are retrieved by relaxing the
identification obtained through the P2S methodology by
moving on the aggregation tree. This project shows how the
results of the methodology can be used as a starting point
to design a tool that is able to support the designer through
all the activities of the SOA lifecycle. Future efforts will also
be devoted to the study of the relationship between service
identification and process abstraction, that is an orthogonal
issues whose goal is to provide different representations of
the same model according to different abstraction levels, in
order to make the process visualization more readable by
BPM experts [24]. Service identification requires a detailed
specification of the process to deploy it in a SOA context.
However, metrics exposed in this paper could be useful to
define new criteria to perform business process abstraction
and will be investigated. Finally, another open issue
concerns the consistency maintenance between high-level
business process models, as used by BPM experts, and
service composition workflow, as used by IT departments.
To this aim, in [8] the (manual) definition of mappings
between these two levels is proposed. Exploitation of the
identification performed by the P2S methodology to setup
mappings similar to the ones suggested in [8] will be
investigated.

ACKNOWLEDGMENT

This paper has been partially funded by the TEKNE FIRB
project of the Italian Ministry of Education, University
and Research (http://www.tekne-project.it) and the Eu-
ropean Network of Excellence S-Cube (http://www.s-cube-
network.eu).

REFERENCES

[1] V. Andrikopoulos, S. Benbernou, and M. Papazoglou, ‘‘On the
Evolution of Services,’’ IEEE Trans. Softw. Eng., vol. 38, no. 3,
pp. 609-628, May/June 2012.

[2] L. Baresi, F. Casati, S. Castano,M. Fugini, I. Mirbel, and B. Pernici,
‘‘WIDE Workflow Development Methodology,’’ in Proc. WACC,
1999, pp. 19-28.

[3] D. Bianchini, V. De Antonellis, and M. Melchiori, ‘‘Flexible
Semantic-Based Service Matchmaking and Discovery,’’ World
Wide Web J., vol. 11, no. 2, pp. 227-251, June 2008.

[4] D. Bianchini, C. Cappiello, V. De Antonellis, and B. Pernici, ‘‘P2S:
A Methodology to Enable Inter-Organizational Process Design
Through Web Services,’’ in Proc. CAiSE, 2009, pp. 334-348.

[5] D. Bianchini, F. Pagliarecci, and L. Spalazzi, ‘‘From Service
Identification to Service Selection: An Interleaved Perspective,’’
in Proc. Formal Model., Actors, Open Systems, Biol. Syst., 2011,
pp. 223-240.

[6] N. Bieberstein, R.G. Laird, K. Jones, and T. Mitra, Executing SOA:
A Practical Guide for the Service-Oriented Architecture. Boston,
MA, USA: Pearson Education, 2008.

[7] R. Boerner and M. Goeken, ‘‘Service Identification in SOA
Governance Literature Review and Implications for a New
Method,’’ in Proc. IEEE DEST, 2009, pp. 588-593.

[8] S. Buchwald, T. Bauer, and M. Reichert, ‘‘Bridging the gap
Between Business Process Models and Service Composition
Specifications,’’ in Proc. Serv. Life Cycle Tools Technol., Methods,
Trends Adv., 2011, pp. 124-153.

[9] S. Castano, V. De Antonellis, and S. De Capitani di Vimercati,
‘‘Global Viewing of Heterogeneous Data Sources,’’ IEEE Trans.
Knowl. Data Eng., vol. 13, no. 2, pp. 277-297, Mar./Apr. 2001.

BIANCHINI ET AL.: SERVICE IDENTIFICATION IN INTERORGANIZATIONAL PROCESS DESIGN 277



[10] S. Castano, V. De Antonellis, and M. Melchiori, ‘‘A Methodology
and Tool Environment for Process Analysis and Reengineering,’’
Data Knowl. Eng., vol. 31, no. 3, pp. 253-278, Nov. 1999.

[11] S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, K. Holley, and
A. Arsanjani, ‘‘SOMA: A Method for Developing Service-
Oriented Solutions,’’ IBM Syst. J., vol. 47, no. 3, pp. 377-396,
July 2008.

[12] Q. Gu and P. Lago, ‘‘Service Identification Methods: A System-
atic Literature Review,’’ in Proc. ServiceWave, 2010, pp. 37-50.

[13] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel,
‘‘Semantic Business Process Management: A Vision Towards
Using Semantic Web Services for Business Process Manage-
ment,’’ in Proc. ICEBE, 2005, pp. 535-540.

[14] S. Inaganti and G.K. Behara, ‘‘Service Identification: BPM and
SOA Handshake,’’ BPTrends, vol. 3, pp. 1-12, Mar. 2007.

[15] J.L.G. Dietz, ‘‘The Atoms, Molecules and Fibers of Organiza-
tions,’’ Data Knowl. Eng., vol. 47, no. 3, pp. 301-325, Dec. 2003.

[16] R.S. Kaabi, C. Souveyet, and C. Rolland, ‘‘Eliciting Service
Composition in a Goal Driven Manner,’’ in Proc. ICSOC, 2004,
pp. 308-315.

[17] Y. Kim and K. Doh, ‘‘Formal Identification of Right-Grained
Services for Service-Oriented Modeling,’’ in Proc. WISE, 2009,
pp. 261-273.

[18] T. Kohlborn, A. Korthaus, T. Chan, and M. Rosemann, ‘‘Identi-
fication and Analysis of Business and Software ServicesVA
Consolidated Approach,’’ IEEE Trans. Serv. Comput., vol. 2, no. 1,
pp. 50-64, Jan. 2009.

[19] A. Krammer, B. Heinrich, M. Henneberger, and F. Lautenbacher,
‘‘Granularity of ServicesVAn Economic Analysis,’’ Bus. Inf. Syst.
Eng., vol. 3, no. 6, pp. 345-358, June 2011.

[20] Q. Ma, N. Zhou, Y. Zhu, and H. Wang, ‘‘Evaluating Service
Identification with Design Metrics on Business Process Decom-
position,’’ in Proc. SCC, 2009, pp. 160-167.

[21] R. Mulye, J. Miller, K. Verma, K. Gomadam, and A. Sheth, ‘‘A
semantic Template Based Designer for Web Processes,’’ in Proc.
ICWS, 2005, pp. 461-469.

[22] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
‘‘Service-Oriented Computing: A Research Roadmap,’’ Int. J.
Cooper. Inf. Syst., vol. 17, no. 2, pp. 223-255, June 2008.

[23] M.P. Papazoglou and W.J. van den Heuvel, ‘‘Business Process
Development Life Cycle Methodology,’’ Commun. ACM, vol. 50,
no. 10, pp. 79-85, Oct. 2007.

[24] A. Polyvyanyy, S. Smirnov, and M. Weske, ‘‘Business Process
Model Abstraction,’’ in Proc. Int. Handbook Business Process
Managem., 2010, pp. 149-166.

[25] M.A. Serhani, N. Al-Qirim, and A. Benhareef, ‘‘Enterprise
Services (Business) Collaboration Using Portal and Soa-Based
Semantics,’’ in Proc. DEST, 2010, pp. 450-455.

[26] M. Sharifi, S. Mansour, and P. Jamshidi, ‘‘To Establish Enterprise
Service Model from Enterprise Business Model,’’ in Proc. SCC,
2008, pp. 93-100.

[27] Q.Z. Sheng, B. Benatallah, Z.Maamar,M. Dumas, andA.H.H.Ngu,
‘‘Enabling Personalized Composition and Adaptive Provisioning
of Web Services,’’ in Proc. CAiSE, 2004, pp. 322-337.

[28] H.M. Shirazi, N. Fareghzadeh, and A. Seyyedi, ‘‘A Combina-
tional Approach to Service Identification in SOA,’’ J. Appl. Sci.,
vol. 5, no. 10, pp. 1390-1397, Oct. 2009.

[29] R. Sindhgatta, B. Sergupta, and K. Ponnalagu, ‘‘Measuring the
Quality of Service Oriented Design,’’ in Proc. ICSOC-ServiceWave,
2009, pp. 485-499.

[30] C.J. van Rijsbergen, Information Retrieval. London, U.K.:
Butterworth, 1979.

[31] I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst,
‘‘Evaluating Workflow Process Designs Using Cohesion and
Coupling Metrics,’’ Comput. Ind., vol. 59, no. 5, pp. 420-437,
May 2008.

Devis Bianchini is an Assistant Professor in
computer science at the University of Brescia,
Brescia, Italy. His research interests include
ontology-based service matchmaking, service
discovery on emergent communities in P2P
environments, service identification. He is an
author of papers published in international
journals and conference proceedings, and he is
a referee for international journals.

Cinzia Cappiello is an Assistant Professor in
computer engineering at the Politecnico di
Milano, Milan, Italy. Her research interests
regard data and information quality aspects in
service-based and Web applications, Web ser-
vices, sensor data management, and Green IT.
She published papers in international journals
and conference proceedings, and she regularly
serves as a reviewer for international confer-
ences and journals.

Valeria De Antonellis is a Professor of infor-
mation systems at University of Brescia, Brescia,
Italy, Rector’s Delegate for ICT. Her research
interests include advanced databases and web
information systems conceptual modeling and
design, conceptual schema matching and seman-
tic integration, semantic web services match-
making and discovery, and web resources
semantic search and ranking. She participated in
manyEuropean projects, amongwhich INTEROP,
RECITE II-DEAFIN, RENOIR, S-Cube, F3, and

ITHACA. The author of numerous scientific publications, including articles,
book chapters, and books, she is a member of the Steering Committee of
the ER International Conference on Conceptual Modeling.

Barbara Pernici is a Professor of computer
engineering at the Politecnico di Milano, Milan,
Italy. Her research interests include information
systems design, adaptive information systems,
service engineering, data quality, and energy
efficiency in information systems. She has
published more than 50 papers in international
journals, co-edited 26 books, and published
about 350 papers at international level. She
has been elected chair of TC8 Information
Systems of the International Federation for

Information Processing (IFIP), of IFIP WG 8.1 on Information Systems
Design, and vice-chair of the IFIP WG on Services-Oriented Systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014278


