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Abstract

Jobs submitted into a cluster have varying requirements

depending on user-specific needs and expectations. There-

fore, in utility-driven cluster computing, cluster Resource

Management Systems (RMSs) need to be aware of these re-

quirements in order to allocate resources effectively. Ser-

vice Level Agreements (SLAs) can be used to differentiate

different value of jobs as they define service conditions that

the cluster RMS agrees to provide for each different job.

The SLA acts as a contract between a user and the cluster

whereby the user is entitled to compensation whenever the

cluster RMS fails to deliver the required service. In this pa-

per, we present a proportional share allocation technique

called LibraSLA that takes into account the utility of ac-

cepting new jobs into the cluster based on their SLA. We

study how LibraSLA performs with respect to several SLA

requirements that include: (i) deadline type whether the job

can be delayed, (ii) deadline when the job needs to be fin-

ished, (iii) budget to be spent for finishing the job, and (iv)

penalty rate for compensating the user for failure to meet

the deadline.

1 Introduction

Clusters [15] have been rapidly utilized for an expand-

ing range of applications that demand high-performance,

high-throughput and high-availability computing services.

They are not only used for computation-intensive applica-

tions, but also as replicated storage and backup facilities

that provide essential fault tolerance and reliability.

The advent of service-oriented Grid computing [10]

where geographically distributed resources such as clusters

can be shared across various organizations, reinforces the

importance for utility-driven cluster computing. Commer-

cial vendors are now progressing aggressively towards pro-

viding a service market that provides dynamic service de-

livery where users only pay for what they use and thus save

from investing heavily on computing facilities. Some exam-

ples include IBM’s E-Business On Demand [2], HP’s Adap-

tive Enterprise [1] and Sun Microsystem’s pay-as-you-go

[3].

Grid service brokers [22] and workflow engines [25]

submit and monitor jobs with their service requirements

via the local cluster RMS. To support utility-driven cluster

computing, clusters need to differentiate utility or values for

different service requests. Service level agreements (SLA)

with precise Quality of Service (QoS) parameters need to be

supported and enforced by the cluster RMS so as to fulfill

the contractual obligations negotiated and agreed upon by

both the cluster and users. In other words, the cluster RMS

has to balance competing service requests, while ensuring

that agreed levels of service performance are achieved.

However, existing cluster RMSs still adopt system-

centric resource allocation approaches that maximize over-

all job performance and system usage, and thus are not

ready to provide service-on-demand computing. On the

other hand, market-based approaches [23] can support

utility-driven computing where the utility or value is the

monetary payment paid by the users for accessing the com-

puting services. Using computational economy to support

utility-driven resource allocation within clusters can regu-

late supply and demand of limited cluster resources at mar-

ket equilibrium and differentiate service requests based on

their utility.

Although market-based approaches have long been pro-

posed, there are yet any actual implemented market-based

RMSs that can demonstrate they work in practice due to

the lack of enabling technologies. But, with numerous re-

cent technological advances that can aid actual deployments

of market-based RMSs [18], it is now timely to examine



how market-based solutions can be applied effectively even

though there still remains some key challenges [18] that

need to be overcome first.

This paper focuses on a proportional share resource allo-

cation technique called LibraSLA that applies market econ-

omy to achieve utility-driven cluster computing. The key

contributions of this paper are:

• Defining a simple SLA with four basic QoS parame-

ters: (i) deadline type whether the job can be delayed,

(ii) deadline when the job needs to be finished, (iii)

budget to be spent for finishing the job, and (iv) penalty

rate for compensating the user for failure to meet the

deadline. The penalty rate is represented by a linear

penalty function that reduces the budget of the job over

time after the lapse of its deadline.

• Developing an admission control and resource allo-

cation mechanism that determines whether accepting

a new job will enhance the aggregate utility of the

cluster: The admission control examines how the new

job will affect the SLA conditions of other accepted

jobs, in particular how penalties incurred will decrease

their utility. For resource allocation, LibraSLA al-

locates processing resources proportionally to job re-

quests based on their deadline SLA property. In ad-

dition, LibraSLA allocates additional processing re-

sources if available to the job with the highest return

so as to achieve its utility faster.

• Analyzing the performance of LibraSLA based on

varying SLA properties: (i) deadline type, (ii) dead-

line, (iii) budget, and (iv) penalty rate.

The rest of this paper is organized as follows. Section

2 discusses related work. Section 3 outlines a simple SLA

supporting four QoS parameters. Section 4 describes how

LibraSLA examines and enforces SLA. Section 5 discusses

performance evaluation results and Section 6 concludes this

paper.

2 Related Work

Existing cluster RMSs such as Condor [21], LoadLeveler

[11], Load Sharing Facility (LSF) [16], Portable Batch Sys-

tem (PBS) [5], and Sun Grid Engine (SGE) [19] still adopt

system-centric approaches that optimize overall cluster per-

formance. Cluster performance is often aimed at maximiz-

ing processor throughput and utilization for the cluster, and

minimizing average waiting and response time for the jobs.

They are thus not suitable for utility-driven cluster comput-

ing since they do not differentiate and thus neglect varying

levels of utility or value that different cluster users have for

each job request. Maui [20] is an advanced cluster sched-

uler that is designed to be highly configurable and exten-

sible. It can be extended to build customized user-level

schedulers that incorporate fine-grained policies and exam-

ine numerous resource allocation parameters such as QoS

and advanced reservation. Currently, no market-based ap-

proaches have been designed for Maui to improve utility for

either the cluster or users.

Numerous market-based approaches [23] have been pro-

posed for resource management in parallel and distributed

computing. REXEC [8] is a remote execution environment

for a cluster of workstations that adopts market-based re-

source allocation. It assigns resources proportionally to jobs

based on their users’ bid (valuation) for each job. Tycoon

[14] also adopts the same bid-based proportional share tech-

nique as REXEC, but extends it with continuous bids for

allocating resources in a Grid of distributed clusters. In

contrast, our LibraSLA prioritizes each job based on its

SLA parameters that address two additional perspectives:

(i) deadline when a job has to be finished and (ii) penalty

rate to compensate the user if the deadline is not met. In ad-

dition, we aim to improve the aggregate utility of the clus-

ter thru the consideration of penalties defined for respective

SLA of different jobs.

Cluster-On-Demand [12] adopts distributed market-

based task services to create a service market where penal-

ties are incurred if jobs finish later than their required run

times. It demonstrates the importance of balancing the re-

ward against the risk of accepting and executing jobs, es-

pecially in the case of unbounded penalty. It also uses a

discount rate based on present value to reduce future gains

of a job in order to differentiate between delays in job ex-

ecution. Similarly, our LibraSLA also consider penalties

incurred on already accepted jobs by accepting a new job.

But in our case, a job is penalized after the lapse of its dead-

line, instead of immediately after its run time. In addition,

we also determine which job has higher return so that the

job with the highest return is assigned additional resources

if available to realize its utility faster. LibraSLA also studies

resource allocation at a more fine-grained level as compared

to Cluster-On-Demand. LibraSLA determines acceptance

at the node level depending on available nodes within the

cluster to execute a job. On the other hand, Cluster-On-

Demand decides at the cluster level whether to accept a job

into the cluster.

QoPS [13] is a QoS based scheduling technique for par-

allel jobs. It uses an admission control to guarantee the

deadline of every accepted job by accepting a new job only

if its deadline can be guaranteed without violating the dead-

lines of already accepted jobs. QoPS uses a slack factor

for each job to represent the maximum delay that can be

accommodated after its deadline. This allows earlier jobs

with slack to be delayed if necessary so that future more



urgent jobs can be accepted. On the other hand, our ser-

vice model defines two types of deadlines: (i) hard deadline

where the job has to be finished before the deadline and

(ii) soft deadline where the job can finish anytime after the

deadline. Instead of a slack factor, LibraSLA incorporates a

SLA parameter called penalty rate to denote the user’s flex-

ibility with delays for soft deadlines through compensation.

For the same job, a higher penalty rate means less flexibil-

ity than a lower penalty rate. Thus, LibraSLA attempts to

minimize penalty to improve the cluster’s aggregate utility.

Another difference is that QoPS employs a kill-and-restart

mechanism where a running job can be terminated to allow

another job to be started so that a different schedule enables

a new job to be accepted, while LibraSLA uses proportional

share to vary the amount of resources for each job depend-

ing on their QoS needs.

Libra [17] is an earlier work done that successfully

demonstrates that a market-based cluster scheduler is able

to deliver more utility to users based on their QoS needs

compared to traditional system-centric scheduling policies.

Its market model is based on a commodity market [23]

where Libra computes the price that users have to pay for

their jobs be completed according to their QoS constraints.

An enhanced pricing function [24] that is flexible, fair, dy-

namic and adaptive has also been proposed to improve the

pricing scheme of the cluster so that the quoted price varies

according to the workload of the cluster and prevents the

cluster from overloading. LibraSLA incorporates a penalty

function (thru the penalty rate parameter in the SLA) where

the utility or value of the user will decrease over time after

the deadline of the job has lapsed. Libra assumes that all

jobs have hard deadlines and guarantees that accepted jobs

will be finished within their hard deadlines. In contrast, Li-

braSLA allows jobs with soft deadlines to be delayed and

compensated to accommodate jobs with hard deadlines. Fi-

nally, Libra only accepts jobs based on the workload of the

cluster, whereas LibraSLA also examines the return of ac-

cepting each new job with respect to the current aggregate

utility and workload of the cluster.

3 Service Level Agreement (SLA) for Utility-

driven Cluster Computing

In utility-driven cluster computing, clusters provide

computing services to users who perceive varying utility or

value for completion of jobs. Clusters need to have knowl-

edge of the types of service demanded by different users for

each job in order to prioritize jobs according to user’s needs.

Clusters should thus support SLA that provides a means

for users and the cluster to agree upon the service quality

to be offered. In other words, SLA acts as a contract that

outlines obligations that both users and the cluster have to

enforce and fulfill. For example, users have to pay for the
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Figure 1. Impact of penalty function on utility.

service provided, while the cluster needs to be penalized to

compensate users for failing to offer the required service.

This also means that users can negotiate with the cluster

about the service quality to be provided before accepting

the SLA.

We define a simple SLA for each job i that consists of

four QoS parameters:

1. deadline type deadline typei: A deadline can be hard

or soft. A hard deadline denotes that the user wants

the job to be finished before the deadline, whereas a

soft deadline means that the user can accommodate

delay. However, for soft deadline, the delay can be

unbounded depending on the penalty rate of the job.

Therefore, the user can give an appropriate penalty rate

value to possibly limit the maximium delay.

2. deadline deadlinei: The time period in which the job

needs to be finished.

3. budget budgeti: The maximum amount of currency

that the user is willing to pay for the job to be com-

pleted.

4. penalty rate penalty ratei: The penalty rate penal-

izes the cluster to compensate the user for failure to

meet the deadline of the job. It also reflects the user’s

flexibility with delayed deadline of the job. A higher

penalty rate limits the delay to be shorter than that of a

lower penalty rate.

The key aspect of our SLA is that it incorporates a

penalty function (thru the penalty rate QoS parameter). This

is realistic as users need to have assurance that their required

services will be maintained by the cluster. The penalty func-

tion not only penalizes the cluster for its service failure, but

compensates the users for tolerating the service failure. For

simplicity, we model the penalty function as linear, as in



other previous works [9][12]. Our penalty function reduces

the budget of the job over time after the lapse of its dead-

line, rather than after its run time in [12]. Figure 1 shows

the impact of the penalty function on utility.

For each job i, the cluster achieves a utility utilityi de-

pending on its penalty rate penalty ratei and delay delayi:

utilityi = budgeti − (delayi ∗ penalty ratei) (1)

Job i has delay delayi if it takes longer to complete than

its given deadline deadlinei:

delayi = (finish timei − submit timei) − deadlinei

(2)

where submit timei is the time when job i is submitted

into the cluster and finish timei is the time when job i
is completed. So, Job i has no delay (ie. delayi ≤ 0) if

it completes before the deadline, with the cluster achieving

the full budget budgeti as utility utilityi. If there is a delay

(ie. delayi > 0), utilityi drops linearly till it becomes neg-

ative and transform into a penalty (ie. utilityi < 0) after it

exceeds budgeti.
Since penalties are unbounded depending on the penalty

rate and delay of each job, the cluster needs to be careful

about accepting new jobs into the cluster. Failure to de-

liver the required service due to accepting too many jobs

may result in heavily penalized jobs that can dramatically

erode previously achieved utility. Therefore, we develop a

SLA based proportional share technique called LibraSLA

(described in section 4) that considers the risk of penalties

to improve aggregate utility for the cluster.

In addition to the SLA requirements, LibraSLA consid-

ers the following job details:

1. run time runtimei: The run time for job i is the time

period required to complete job i on a computation

node provided that it is allocated the node’s full pro-

portion of processing power. Thus, the run time varies

on nodes of different hardware and software architec-

ture and does not include any waiting time and com-

munication latency. The run time may also be ex-

pressed in terms of the job length in million instruc-

tions (MI).

2. number of processors numproci: The number of pro-

cessors requested by job i. A sequential job will

need only a single processor (ie. numproci = 1),

while a parallel job will request multiple processors

(ie. numproci > 1).

4 SLA Based Proportional Share with Utility

Consideration

We consider utility-driven resource management and al-

location in a cluster with the following assumptions:

• Users express utility as the budget or amount of real

money (as in the human world) they are willing to pay

for the service. Real money is a well-defined currency

[18] that will promote resource owner and user par-

ticipation in distributed system environments. A user’s

budget is limited by the amount of currency that he has

which may be distributed and administered through

monetary authorities such as GridBank [6]. Since our

focus is on resource allocation (which job to accept and

which nodes to execute the accepted job), we do not

venture further into other market concepts such as user

bidding strategies and auction pricing mechanisms.

• Users only gain utility and thus pay for the service

(based on QoS parameters in SLA) upon the comple-

tion of their jobs. For simplicity, the user pays the full

budget for a job to the cluster if its deadline is fulfilled.

But, if a job is delayed, the cluster will achieve a re-

duced utility or incur a penalty depending on length of

the delay.

• The estimated run time of each job provided during

job submission is accurate. Estimated run times can

be predicted in advance based on means such as past

execution history.

• The deadline given by a user for the job must be more

than its run time; otherwise it is not accepted into the

cluster.

• The SLA of a job does not change after job acceptance.

This means that the QoS parameters specified by the

user during job submission do not change after the job

is accepted.

• Users can only submit jobs into the cluster through the

cluster RMS. This means that the cluster RMS has full

knowledge of allocated workload currently in execu-

tion and remaining available resources on each com-

putation node.

• The computation nodes can be homogeneous (have the

same hardware architectures) or heterogeneous (have

different hardware architectures). In the case of het-

erogeneous computation nodes, the estimated run time

needs to be converted to its equivalent on the allocated

computation node.

• The operating system at each computation node uses

time-shared scheduling support where multiple pro-

cessor time partitions can be assigned to different jobs.

Bid-based proportional share [8][14] allocates propor-

tions of a resource such as processor time to users based on

their bids (budget QoS parameter in SLA) for each job. In

other words, the resource share assigned to a job is propor-

tional to the user’s bid value in comparison to other users’



bids. However, this approach does not take into considera-

tion the characteristics of the job and its other essential SLA

properties such as deadline and penalty rate.

To address this for SLA support, LibraSLA adopts the

proportional share approach in Libra [17] that allocates pro-

cessor time share shareij to job i on node j based on

its remaining run time remain runtimeij and remaining

deadline QoS remain deadlineij , rather than users’ bids

budgeti:

shareij =
remain runtimeij

remain deadlineij

(3)

where initially, remain runtimeij = runtimei and

remain deadlineij = deadlinei. shareij also denotes

the minimum share that is required by job i in order to en-

force its deadline deadlinei. Proportional share based on

deadline not only allows more jobs to be accepted (since the

allocated processor time shares are spread across the dead-

lines), but also ensures that their deadlines are met.

Therefore, the total processor time share total sharej

required to meet all deadlines of nj jobs allocated to node j
is:

total sharej =

nj∑

i=1

shareij (4)

Delays occur when total sharej exceeds the maximum

processor time that node j can offer.

4.1 Computing Return for Jobs and Nodes

In order to improve aggregate utility for the cluster, Li-

braSLA needs to consider the utility of each job to deter-

mine which job has a higher return. The return returnij of

a job i allocated to run on node j is computed as:

returnij = utilityij/runtimei/deadlinei (5)

Recall that it is possible for a job i allocated to node j
to have negative utility (ie. utilityij < 0), also known as a

penalty as defined in (1). Thus, in this case, job i will also

have negative return (ie. returnij < 0).

LibraSLA regards jobs that have shorter deadlines for an

expected utility per unit of run time (utilityij/runtimei)

to have a higher return. Jobs with shorter deadlines re-

quire a shorter commitment period as compared to those

with longer deadlines. Thus, it increases the flexibility of

accepting later arriving but possibly jobs with higher return

as a full schedule of jobs with long deadlines may result in

these future jobs being blocked by the admission control.

Jobs with shorter deadlines are also penalized more

heavily than those with longer deadlines. This discourages

accepting more jobs that can delay other accepted urgent

jobs and jeopardize the cluster’s aggregate utility.

LibraSLA can thus compute the return returnj of node

j to determine whether node j is improving the aggregate

utility of the cluster or not:

returnj =

nj∑

i=1

returnij (6)

returnj also gives an indication of whether node j is

overloaded with too many jobs and failing to satisfy their

SLA. returnj will be lower when the workload on node j
is higher since insufficient resources will result in jobs being

delayed and thus having lower utility.

4.2 Admission Control and Resource Allocation

Algorithm 1: Pseudo-code for admission control and resource

allocation of LibraSLA.

for j ← 0 to m− 1 do1

add job new temporarily into ListJobsj ;2

new returnj ← compute new return3

(ListJobsj );

remove job new from ListJobsj ;4

if new returnj ≥ returnj then5

if deadline typenew is SOFT then6

place node j in7

ListHigherReturnNodesnew ;

else if deadline typenew is HARD and8

delaynew ≤ 0 then

place node j in9

ListHigherReturnNodesnew ;

endif10

endif11

endfor12

if ListHigherReturnNodesnew size ≥ numprocnew13

then

sort ListHigherReturnNodesnew by new returnj14

in descending order;

for j ← 0 to numprocnew − 1 do15

allocate job i to node j of16

ListHigherReturnNodesnew ;

endfor17

else18

reject job new;19

endif20

Since the SLA of each job incorporates a penalty func-

tion (as described in section 3), LibraSLA implements an

admission control to ensure that more utility is achieved,

instead of less utility due to accepting too many jobs and

failing to meet their deadlines. The admission control de-

termines whether a new job new should be accepted into

the cluster depending on:

• numprocnew: A new job is not accepted if there are

not enough available processors to run it. This often

happens to parallel jobs as they require more proces-

sors.



• deadline typenew: If the new job requires hard dead-

line and there are no nodes that can fulfill its deadline,

then it is not accepted.

• returnj : This denotes whether each node j will in-

crease or decrease the aggregate utility if it is allocated

this new job. Therefore, a new job can be accepted into

the cluster depending on the return of each individual

node.

Algorithm 1 shows how LibraSLA decides whether to

accept a new job based on nodes with the highest return.

Assuming that the cluster has m nodes, LibraSLA first de-

termines the return of each node (using compute new return

function in Algorithm 2) for accepting the new job new
(line 2–4). A node is suitable if it has higher return after

accepting the new job and can satisfy its hard deadline if re-

quired (line 5–11). The new job is then accepted if there are

enough suitable nodes as requested (line 13) and allocated

to the node with the highest return (line 14–17).

Algorithm 2: Pseudo-code for compute new return(

ListJobsj ) function.

new returnj ← 0;1

total sharej ← 0;2

set first job in ListJobsj to be job with the highest return;3

for i← 0 to ListJobsj size −1 do4

total sharej ← total sharej + shareij ;5

returnij ← budgeti/runtimei/deadlinei;6

if job i has higher return then7

set job i to be job with the highest return;8

endif9

endfor10

if total sharej ≥ maximum processor time of node j then11

increase share of job with the highest return by remaining12

unallocated processor time;

for i← 0 to ListJobsj size −1 do13

new returnj ←14

new returnj + budgeti/runtimei/deadlinei;

endfor15

else16

for i← 0 to ListJobsj size −1 do17

if job i is job with the highest return or job i has18

HARD deadline then

new returnj ← new returnj +19

budgeti/runtimei/deadlinei;

else20

decrease share of job i by shortfall proportion of21

processor time;

compute delayi;22

compute utilityij ;23

new returnj ← new returnj +24

utilityi/runtimei/deadlinei;

endif25

endfor26

endif27

return new returnj ;28

Algorithm 2 computes the new return of a node for ac-

cepting a new job. It first determines total processor time

share required to fulfill the deadlines of its allocated jobs

plus the new job (line 5). It also identifies the job with the

highest return based on the budget (line 6–9). If there is

any remaining unallocated processor time, the job with the

highest return is given this additional remaining share to re-

alize its utility faster (line 11–12). In this case, the return

of the node is computed with the utility of each job same

as its budget (line 13–15). If there is insufficient proces-

sor time, only the job with the highest return and jobs with

hard deadlines are not delayed (line 18–19), while the other

jobs with soft deadlines shares the shortfall processor time

proportionally (line 21). The return of these delayed jobs is

then computed accordingly (line 22–24).

5 Performance Evaluation

In this section, we discuss and evaluate the performance

of LibraSLA. We first explain our experimental method-

ology, followed by detailed performance analysis of Li-

braSLA with respect to varying SLA properties: (i) dead-

line type, (ii) deadline, (iii) budget, and (iv) penalty rate.

5.1 Experimental Methodology

We use GridSim [7] to simulate a cluster RMS environ-

ment that utilizes LibraSLA for resource allocation. Our

experiments employ real workload trace from Feitelson’s

Parallel Workload Archive [4]. The selected subset of the

last 1000 jobs in the SDSC SP2 trace from April 1998 to

April 2000 has the following properties:

• Average inter arrival time: 2276 seconds (37.93 min-

utes)

• Average run time: 10610 seconds (2.94 hours)

• Average number of allocated processors: 18

The 128-node IBM SP2 located at San Diego Supercom-

puter Center (SDSC) has the following characteristics:

• SPEC rating of each node: 168

• Number of computation nodes: 128

• Processor type on each computation node: RISC Sys-

tem/6000

• Operating System: AIX

The real workload trace does not contain any information

about users’ SLA parameters including deadline type, dead-

line, budget, and penalty rate. But, results are dependent on

distributions of these four QoS parameters as they deter-

mine how LibraSLA allocate resources to jobs. Therefore,

we follow a similar experimental methodology in Cluster-

On-Demand [12] to represent SLA properties for the work-

load:



• 20% of the jobs belongs to a high urgency job class

with a hard deadline of low deadlinei/runtimei,

a high budgeti/f(runtimei) and a high

penalty ratei/g(runtimei), where f(runtimei)
and g(runtimei) are functions to represent the

minimum budget and penalty rate that the user will

quote with respect to runtimei.

• 80% of the jobs belongs to a low urgency job class

with a soft deadline of high deadlinei/runtimei,

a low budgeti/f(runtimei) and a low

penalty ratei/g(runtimei).

• The deadline high:low ratio refers to the ratio of

the means for high deadlinei/runtimei and low

deadlinei/runtimei, likewise for budget high:low

ratio and penalty rate high:low ratio. For the exper-

iments, the jobs have a deadline high:low ratio of 7, a

budget high:low ratio of 7, and a penalty rate high:low

ratio of 4.

• Values are normally distributed within each high and

low deadlinei/runtimei, budgeti/f(runtimei) and

penalty ratei/g(runtimei) respectively.

• The high urgency and low urgency job classes are ran-

domly distributed in arrival sequence.

Our performance evaluation examines the relative per-

formance of LibraSLA with respect to Libra under varying

cluster workload for the following SLA properties: (i) dead-

line type (section 5.3), (ii) deadline (section 5.4), (iii) bud-

get (section 5.5), and (iv) penalty rate (section 5.6). Libra

does not differentiate between hard and soft deadlines, thus

accepting a new job only if there are sufficient nodes as re-

quested to fulfill its deadline. Another key difference is that

Libra selects nodes based on the best fit strategy. In other

words, nodes that have the least available processor time af-

ter accepted the new job will be selected first. This ensures

that nodes are saturated to their maximum so that more later

arriving jobs may be accepted.

To demonstrate the effectiveness of resource allocation,

we need to model a heavy workload scenario where the de-

mand for cluster resources exceeds the supply. We use ar-

rival delay factor with the inter arrival time of jobs (avail-

able from the trace) to model the cluster workload. For ex-

ample, an arrival delay factor of 0.01 means that a job with

400 seconds of inter arrival time from the trace now has a

simulated inter arrival time of 4 seconds. Thus, an increas-

ing arrival delay factor represents decreasing workload.

We use a mean factor to denote the mean value for the

normal distribution of deadline, budget and penalty rate

SLA parameters. A mean factor of 2 represents having

mean value double than that of 1 (ie. higher).

5.2 Overview of Performance Results

Generally, the improvement of LibraSLA over Libra de-

creases as the arrival delay factor increases. This is because

Libra can also complete more jobs and achieve more utility

when the workload is not heavy (higher arrival delay factor).

Thus, we are able to demonstrate that LibraSLA is effective

in differentiating jobs with higher utility in heavy workload

situations.

5.3 Impact of Deadline Type

We vary the proportion of jobs belonging to the high ur-

gency job class with hard deadlines at 20%, 50%, and 80%

to examine the impact of deadline type on LibraSLA. Fig-

ure 2 shows that when there are more jobs with hard dead-

line (eg. 80%), the improvement over Libra is lower since

there are less jobs with soft deadline to accommodate the re-

quired delays without risking the aggregate utility achieved.

We can see that on average LibraSLA completes about 20%

more jobs (Figure 2(a)) and achieves 10% more utility (Fig-

ure 2(b)) than Libra when there are 20% jobs with hard

deadline as compared to 80%.

5.4 Impact of Deadline

We study how LibraSLA performs for different dead-

lines using the deadline mean factor of 1, 2, and 3. Fig-

ure 3 shows that LibraSLA has a substantial large improve-

ment over Libra for a deadline mean factor of 1 when the

arrival delay factor is lower (0.005–0.025). This is be-

cause LibraSLA determines utility based on the deadline

of the jobs, and thus can differentiate jobs with high utility

and short deadline when the workload is high. However,

with higher deadline mean factor of 2 and 3, the improve-

ment over Libra is lower over increasing arrival delay factor

since Libra is also able to complete more jobs with longer

deadlines. We can also see that LibraSLA has a more con-

stant improvement over Libra for sufficiently long deadlines

(deadline mean factor of 2 and 3) as opposed to short dead-

lines (deadline mean factor of 1). This highlights that the

deadline QoS has a strong impact on the performance of

LibraSLA.

5.5 Impact of Budget

We investigate the performance of LibraSLA for differ-

ent budgets with budget mean factor of 1, 2, and 3. Fig-

ure 4(a) shows that LibraSLA completes more jobs than Li-

bra for higher budget mean factors. When jobs have higher

budgets, LibraSLA can accommodate more soft deadline

jobs with delays which in turn improves the aggregate util-

ity (Figure 4(b)). However, the utility improvement also
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Figure 2. Impact of deadline type on increasing workload.
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Figure 3. Impact of deadline mean factor on increasing workload.
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Figure 4. Impact of budget mean factor on increasing workload.

diminishes with increasing arrival delay factor (0.03–0.04)

as Libra can also accept more jobs to increase utility.

5.6 Impact of Penalty Rate

We observe how LibraSLA performs with changing

penalty rate mean factor of 1, 2, and 3. Figure 5 shows

that LibraSLA has less improvement over Libra for increas-

ing penalty rate mean factor. With higher penalty rate, Li-

braSLA is limited to accepting fewer jobs in order to pre-

serve the aggregate utility. This explains the lower improve-

ment in utility achieved as well since jobs with soft dead-

lines now has higher penalty rate and can potentially risk

the aggregate utility.

6 Conclusion

This paper has presented an approach to handle penal-

ties incorporated in SLAs in order to enhance the utility of

the cluster. We have also outlined a basic SLA with four

QoS parameters: (i) deadline type, (ii) deadline, (iii) bud-

get, and (iv) penalty rate, before describing a proportional

share technique called LibraSLA that considers these QoS

parameters. Simulation results show that LibraSLA per-

forms better than Libra by accommodating more jobs thru

soft deadlines and minimizing penalties. This work has thus

reinforced the need to employ and consider SLAs in cluster-

level resource allocation in order to support utility-driven

cluster computing for service-oriented Grid computing.
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