
Service Level Agreement Monitor (SALMon)

David Ameller, Xavier Franch

Universitat Politècnica de Catalunya, Spain

{dameller, franch}@lsi.upc.edu

Abstract

One of the most successful architectural styles

nowadays is Service Oriented Architecture (SOA). In

this type of architecture there are a lot of dependencies

between services, but each service is an independent

element of the system. In this situation we need some

way to ensure that every service is working correctly

and to take actions when something goes wrong to

evolve the architecture as fast as we can. For example,

if one of the lower level services of the service

composition stops working, it could lead to a total or

partial system malfunction. In this situation there is a

need to be able to build reliable SOA systems.

Our proposal, SALMon, is based on monitoring the

services for Service Level Agreement (SLA) violations.

The SALMon architecture is composed of three types of

components: Monitors that are composed of measure

instruments, the measured quality attributes being

taken from an ISO/IEC 9126-1-based service oriented

quality model; Analyzers that check the SLA rules; and

Decision Makers that perform corrective actions to

satisfy SLA rules again. These 3 types of components

are mostly technology-independent and they act as ser-

vices inside of a SOA system making our architecture

very scalable and comfortable for its purpose.

1. Introduction

Service-Oriented Architecture (SOA) [1] is an

emerging software architecture; systems based on this

architecture consist in multiple services working

together. SOA systems must fulfill some Quality of

Service (QoS) [2] requirements and as a result, each

service QoS is specified in a contract which is known

as Service Level Agreement (SLA) [3]. Services can

change their QoS in runtime due to environmental

issues or to changes made by the provider of the

service. In this situation, SOA systems need to be

adaptable in runtime, and in fact new service

technologies like Web services are already prepared to

substitute one Web service by another at runtime, using

standard protocols like UDDI [4] and WSDL [5] and

because it is common to have Web services with the

same interface and the same functionality. We can do

the same for other kinds of services like databases but

in a non-standardized and more complex way.

In this paper we will show a concrete tool called

SALMon, which uses the flexibility provided by SOA

to make SOA systems capable to adapt themselves in

order to maintain the requirements stated in SLA

specifications. SALMon uses a monitoring technique to

provide runtime QoS information that is needed to

detect SLA violations.

The rest of this paper is divided into two main

sections: first we provide a framework for metrics

definition based on previous works and the second part

is dedicated to the details of SALMon architecture.

Finally there is a section for the conclusions.

2. QoS and monitorable quality attributes

The first two questions that we faced were: “What

do we want to monitor?” and “What can we monitor?”.

To answer the first question we have built a quality

model [6] for software services based in previous work

done in our group [7], and quality-related standards

especially in the domain of web services. This model

was part of our participation in a ITEA European

project, SODA (Services Oriented Devices & Delivery

Architectures, www.soda-itea.org), in which we

participated with the responsibility of identifying and

classifying the characteristics needed for defining the

quality of Web services. The model (Figure 1) is based

on the ISO/IEC 9126 standard [8]. However, since this

standard focuses just on the technical aspects of

software, we have used some previous work to enlarge

this model including non-technical aspects [9].

We have opted by an ISO/IEC 9126-based standard

due to: 1) its generic nature: the standard fixes some

high-level quality concepts, and therefore quality

models can be tailored to specific domains; 2) it allows

creating hierarchies of quality features, which are

essential for building structured quality models; 3) the

standard is widespread.

Figure 1: Quality model for services

ISO/IEC 9126-1 specifically addresses quality

model definition and its use as a framework for

software evaluation. A 9126-1-based quality model is

defined by means of general software characteristics,

which are further refined into subcharacteristics, which

in turn are decomposed into attributes, yielding to a

multilevel hierarchy. At the bottom of the hierarchy

appear measurable software attributes, whose values

are computed using some metric. Throughout this

paper, we refer to characteristics, subcharacteristics,

and attributes as quality entities.

In the proposed quality model, as an example, one

characteristic is Efficiency and one of its

subcharacteristics is the Time Behaviour, but time

behaviour itself is not a single measurable concept,

therefore we need to define attributes to decompose

this subcharacteristic. The attributes are normally

dependent on what we want to measure. In our case,

since we are focusing on Web services, Response Time

and Execution Time are good examples of measurable

attributes for Time Behaviour.

At this point we have a lot of attributes that can be

measured in some way, but we are interested only in

those that can be measured using a monitoring

technique. Maintainability, portability, usability and

reliability are groups of characteristics that cannot be

monitored, basically because they are software design

characteristics, they are not supposed to change during

execution time. Therefore, we concluded that just a

small set of attributes are monitorable, namely those

related to the subcharacteristics Availability, Time

Behaviour and Accuracy. We remark that Accuracy

may be difficult to measure because it needs a lot of

information of the concrete Web service; to monitor the

accuracy we need to know the concrete functionality of

the service and have available concrete predefined tests

to run on it.

Next it is necessary to define metrics for these three

monitorable attributes. The Table 1 is an example of

metrics that could be used for the Response Time

attribute belonging to the Time Behaviour

Characteristic.

Metric Description

Current response

time

It measures the current response time in

milliseconds to access to a Web Service.

Minimum response

time

It measures which is the lowest response

time in milliseconds to access to a Web

Service.

Maximum response

time

It measures which is the maximum

response time in milliseconds to access

to a Web Service.

Average response

time

It measures which is the average

response time in milliseconds to access

to a Web Service.

R
e
s
p
o
n
s
e
 t
im

e

Table 1: Response time metrics

3. SALMon Architecture

The architecture of our tool is a SOA; this decision

makes SALMon very easy to install on a running SOA

system. SOA is a component-based architecture; this

means that we can change some of the components by

others that have the interfaces defined for the SALMon

architecture.

In the Figure 2 the proposed architecture is shown.

We may observe that it is composed of three types of

services: Monitor, Decision Maker and Analyzer.

The Monitor service is composed of Measure

Instruments; these components will bring the measures

to the Monitor that has the responsibility to maintain

this information updated. The update process is an

iterative call to each Measure Instrument in different

intervals of time, saving the results in a database. The

intervals of time are part of the information provided

with each metric.

Figure 2: SALMon architecture

Measure Instruments are components instantiated in

each monitored service to get all the basic metrics of

the selected quality attributes (basic metrics are the

ones that allow to calculate the rest of derived metrics,

for example Current Response Time is the basic metric

for Response Time attribute; others metrics such as the

Minimum, Maximum and Average Response Time may

be computed from it). While the interface for the

Measure Instruments is independent of the technology,

their implementation is technology-dependant because

they are built to support one kind of services (e.g., Web

services, HTTP services, DBMS services). They can be

seen as plugins to support specific service technology.

Measure Instruments have the responsibility to

minimize the number of interactions performed with

the monitored service.

The Decision Maker service selects the best

treatment to solve the SLA violations detected by the

Analyzer in a concrete SOA system. Each Decision

Maker is related with only one SOA System and it is

preferred to place the service inside the concrete SOA

system where it is taking decisions for security reasons.

The Decision Maker service could use a repository

of treatments and alternative services for a concrete

SOA system and it will automatically select and

execute the best treatment for the reported SLA

violations.

The Analyzer manages Monitors and checks for

SLA violations in concrete SOA systems. When a

violation is detected it is notified to the Decision Maker

of the affected SOA system. In general an Analyzer can

handle multiple SOA systems using one Monitor and

one Decision Maker for each one. Anyway the use of

Decision Maker services is optional but in this way the

SALMon user is limited to monitoring.

The SLA can be configured manually with the

interface provided by the Analyzer or automatically

with a SLA standard document for each service (e.g.,

WSLA [10] for the case of Web services). We

understand SLA as a set of conditions that must be true

in some time interval. A condition is composed of the

evaluated metric, a relational operator and a value for

the comparison (i.e. “current response time < 100ms” is

a condition that must be true for the specified service

during the specified time interval).

The SALMon architecture includes the use of two

services that are common to the majority of SOA

systems therefore they can be shared. The first one is a

database used by the Monitors to store the measures

which are processed by the Analyzer in order to detect

SLA violations. This service is mandatory. The second

external service is for authentication and authorization

of SALMon users; these users could be normal users or

administrators. Normal users will be able to set SOA

systems and SLA while administrators will set the

configuration of the SALMon system. This service is

optional.

The first implementation of SALMon is part of a

joint work between our Software Engineering for

Information Systems Group (GESSI) at the Universitat

Politècnica de Catalunya (UPC), Spain, and the

Institute for Systems Engineering and Automation

(SEA) at the Johannes Kepler University (JKU) in Linz

(Austria). Some details of this collaboration may be

found at [11]. In this context, SALMon architecture

will be only focused on Web services (see Figure 3).

Measure Instruments will be prepared to measure

Response Time and Availability (Accuracy is omitted

in this first implementation due to its complexity as

commented above). This combination will make this

implementation easy to install on a running Web

service-based SOA system.

For the database we have selected a stream database

for two reasons, first because the type of information to

be stored fits with the one expected in this kind of

database to perform queries efficiently, and second

because the kind of queries that the Analyzer needs are

easy to express using the extended SQL provided by

this technology.

Figure 3: Implementation of SALMon architecture

Finally the Decision Maker service will be

developed as a set of two plug-ins for an existing tool

called Decision King [12], the first plug-in is to make

an interconnection layer between the Analyzer and

Decision King and the second one is for the adaptation

of the monitored SOA system.

4. Conclusion

Being able to build self-adaptive SOA systems is a

major undertaking that requires tools to evolve. In the

context of SOA systems the dynamic changes are

needed in order to keep fulfilling the QoS requirements

stated in SLAs. SALMon provides a method based in

the current SLA standards and the monitored

information to make self-adapting SOA systems.

The SALMon architecture can be used for all type

of services due to its high technologic independence.

SALMon services have general interfaces that allow

us to adapt existing tools to be used as part of our

architecture. We are demonstrating this in our current

implementation for Web services.

Because SOA systems many times are composed of

services with different technologies, as future work we

plan to support monitoring of multiple types of services

using the same monitor with different kinds of Measure

Instruments, so we will be able to monitor an entire

heterogeneous SOA system. On the other hand, our

current monitoring strategy can be labeled as active

measurement, it means that we are establishing a

connection to the monitored service. This method has

its benefits but it is not always the best choice because

it could interfere with the obtained QoS measurements,

for this reason we plan to build measure instruments

capable to work according to conservative strategies

which won’t need to establish connections but require

to be placed nearer in the client or the service network.

5. Acknowledgments
This work has been supported by the research projects

UPIC, TIN2004-07461-C02-01, MCyT, Spain, and

SODA FIT-340000-2006-312 (PROFIT programme).

6. References

[1] M.P. Papazoglou. “Service-Oriented Computing:

Concepts, Characteristics and Directions”. In Proceedings of

the Fourth International Conference on Web Information

Systems Engineering, p.3, December 10-12, 2003.

[2] P. Ferguson, G. Huston, Quality of service: delivering

QoS on the Internet and in corporate networks, John Wiley

& Sons, Inc., New York, NY, 1998

[3] D. Verma, Supporting Service Level Agreement on IP

Networks. New York: Macmillan, 1999.

[4] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M.

Hondo, Y.L. Husband, K. Januszewski, S. Lee, B. McKee, J.

Munter, C. Riegen. 2002. “Universal Description Discovery

& Integration (UDDI) Specification”, http ://www.oasis-

open.org, February 2005.

[5] E. Christensen et al., “Web Services Description

Language (WSDL) 1.1,” W3C Note, 15 Mar. 2001;

http://www.w3.org/TR/wsdl (current June 2002).

[6] International Organization for Standarization. ISO

Standard 8402: Quality management and quality assurance-

Vocabulary, 1986.

[7] J.P. Carvallo, X. Franch, C. Quer. “Determining Criteria

for Selecting Software Components: Lessons Learned”. IEEE

Software, 24(3), 2007.

[8] International Organization for Standarization. ISO/IEC

Standard 9126: Software Engineering – Product Quality,

part 1. 2001.

[9] J.P. Carvallo, X. Franch, C. Quer. “Towards a Unified

Catalogue of Non-Technical Quality Attributes to Support

COTS-Based Systems Lifecycle Activities”. In Procs. 6th

International Conference on COTS-Based Systems

(ICCBSS), Banff (Canada), 2007.

[10] A. Keller, H. Ludwig (IBM). “The WSLA Framework:

Specifying and Monitoring of Service Level Agreements for

Web Services”, IBM research report RC22456, 2002.

[11] R. Clotet, X. Franch, P. Grünbacher, L. López, J.

Marco, M. Quintus, N. Seyff, “Requirements Modeling for

Multi-Stakeholder Distributed Systems: Challenges and

Techniques”. In Procs. 1st Int. Conf. on Research Challenges

in Information Science (RCIS), Quarzazate (Morocco), 2007.

[12] D. Dhungana, P. Grünbacher, R. Rabiser,

"DecisionKing: A Flexible and Extensible Tool for

Integrated Variability Modeling.". In Procs. 1st International

Workshop on Variability Modelling of Software-intensive

Systems (VaMoS), Limerick (Ireland), 2007.

