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We study large-scale service systems with multiple customer classes and many statistically identical servers.
The following question is addressed: How many servers are required (staffing) and how does one match

them with customers (control) to minimize staffing cost, subject to class-level quality-of-service constraints? We
tackle this question by characterizing scheduling and staffing schemes that are asymptotically optimal in the
limit, as system load grows to infinity. The asymptotic regimes considered are consistent with the efficiency-
driven (ED), quality-driven (QD), and quality-and-efficiency-driven (QED) regimes, first introduced in the con-
text of a single-class service system.

Our main findings are as follows: (a) Decoupling of staffing and control, namely, (i) staffing disregards the
multiclass nature of the system and is analogous to the staffing of a single-class system with the same aggregate
demand and a single global quality-of-service constraint, and (ii) class-level service differentiation is obtained
by using a simple idle-server-based threshold-priority (ITP) control (with state-independent thresholds); and
(b) robustness of the staffing and control rules: our proposed single-class staffing (SCS) rule and ITP control are
approximately optimal under various problem formulations and model assumptions. Particularly, although our
solution is shown to be asymptotically optimal for large systems, we numerically demonstrate that it performs
well also for relatively small systems.
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1. Introduction
Modern service systems strive to provide customers
with personalized service, which is customized to
the customers needs. Recent trends include self-
selecting market segmentation, multilingual customer
support, and customized cross-sales offerings. With
this growing level of service customization, the vari-
ety of services provided by any given organization
is increasingly high. This variety requires service per-
sonnel to possess a large skill set. It has been long
recognized that to avoid overstaffing it is impor-
tant to cross-train customer-service representatives
and maintain server flexibility. However, to take full
advantage of this high flexibility level, one needs
to make efficient customer-server assignments and
sensible staffing and cross-training decisions. These
staffing and control problems are now receiving
increasing attention, and is where this work’s contri-
bution lies.

Our work is largely motivated by modern call cen-
ters which often consist of dozens, hundreds, or even

thousands of agents, and who strive to meet a large
variety of customers needs. Examples include direct
banking, multilingual services, and help desks. In
such centers, a customer class may be characterized
by its members special-service needs, their relative
importance to the organization, or their quality-of-
service expectations or guarantees. We model such
systems by a multiclass multiserver queue with many
servers, which we call the V-model. This model is
depicted in Figure 1.

Naturally, call center managers strive to provide a
high quality of service in terms of operational per-
formance measures and other less tangible quality-
of-service criteria. From an operational point of view,
quality of service is expressed in terms of various per-
formance measures. Those include the average speed
of answer (ASA), the fraction of abandoning calls
(Abn %), and the service level (SL). The latter mea-
sures the fraction of calls that are answered within
a prespecified “service-level” target. For example, a
call center may wish to have at least 80% of its calls
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Figure 1 The V-Model: Multiple Customer Classes and
a Single-Server Type
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answered within 20 seconds. SL targets may be speci-
fied internally by the call center or, alternatively, they
may be based on contractual agreements between the
call center and its clients.

To determine staffing levels that will provide callers
with the desired quality of service, many call cen-
ters today use the Erlang-C model, which is based
on a single-class M/M/N queueing system and its
corresponding steady-state performance. To general-
ize this approach, researchers have proposed using
the Erlang-A model, which includes also customer
abandonment (see, for example, Garnett et al. 2002;
Mandelbaum and Zeltyn 2006; Whitt 2004, 2006). This
model has been increasingly adopted by developers
of workforce management tools and is consequently
becoming more prevalent in call centers. But what if
the call center manager wishes to provide a differen-
tiated service level to different customer classes? The
V-model studied in this paper is a natural extension of
the single-class Erlang-C and Erlang-A models, which
allows one to handle situations in which service-level
differentiation is desired.

In multiclass call centers, customers have already
learned to expect a differentiated service level. Some
organizations have special class designations (such as
Platinum, Gold, Sliver, Economy, etc. in banks and
airlines) where customers receive a differentiated
quality of service depending on their class designa-
tion. Also, some contact centers provide service via
multiple channels. Here too customers will experience
different quality of service depending on the channel
they have selected. For example, many contact cen-
ters answer phone calls within seconds or minutes but
will answer e-mail inquiries after a few hours.

To capture the service-level differentiation element
in our model, we assign an SL constraint to each of

the customer classes, which are relatively important to
the organization. In addition, we impose a global ASA
constraint, which is much less restrictive than the SL
constraints. The classes who do not have an individual
SL constraint are referred to as the best-effort classes.
This formulation is natural in an outsourcing environ-
ment, where the outsourcer is likely to have a global
quality-of-service constraint in addition to customer-
specific contracts.

With respect to this V-model, we ask the following
question: How many servers are required (staffing)
and how does one match them with customers (con-
trol) to minimize the staffing costs, subject to the SL
and ASA constraints?

The staffing and control decisions are generally
made at different time scales. While the control deci-
sions are made online in real time, the staffing
decisions are often made on a weekly basis, or even
less frequently. Consistently with this difference in
time scale, we show that to make the staffing deci-
sion it is sufficient to know only aggregate call vol-
ume, while the specific class-level arrival rates are only
used later for the purpose of control. Specifically, the
staffing rule is robust with respect to class-level arrival
rates, as long as their sum can be forecasted accurately.
Even though the staffing and control decisions involve
different time scales, it is important to consider these
problems together in a common framework to avoid
suboptimal solutions. Nevertheless, due to the relative
complexity of the joint staffing-control problem, they
have generally been considered separately in the litera-
ture. Recent exceptions include Armony and Maglaras
(2004a, 2004b), Armony (2005), Armony and Mandel-
baum (2007), Bassamboo et al. (2006a, 2006b), Harrison
and Zeevi (2005), Wallace and Whitt (2005), as well as
this paper.

Our approach in addressing the staffing and con-
trol question is an asymptotic one; specifically, we
characterize scheduling and staffing schemes that
are asymptotically optimal as the aggregate arrival
rate increases to infinity. The analysis following this
approach is technically deep, but the final results are
simple enough to be stated in a very accessible man-
ner, enough for managers to apply directly (for exam-
ple, the square-root safety staffing)—hence, we expect
this paper to be useful in applications; consequently,
the paper is structured such that the technicalities are
discussed in the end. The main asymptotic framework
considered in this work is the many-server heavy-
traffic regime, first introduced by Halfin and Whitt
(1981). Within the general framework of the many-
server heavy-traffic regime, we focus on the following
three more-specific regimes: quality-and-efficiency-
driven (QED), quality-driven (QD), and efficiency-
driven (ED).



Gurvich, Armony, and Mandelbaum: Service-Level Differentiation
Management Science 54(2), pp. 279–294, © 2008 INFORMS 281

1.1. Main Results
The main results of this paper are as follows:

(1) The joint problem of staffing and control is
decoupled into two separate problems, where

(a) The staffing level is the same as in a single-
class system with a common total arrival rate, and the
global ASA constraint. We call this rule the single-class
staffing (SCS) rule.

(b) The online control provides quality-of-service
differentiation between the various customer classes
via an idle-server-based threshold priority (ITP)1 schedul-
ing rule, where the threshold is on the minimal num-
ber of idle servers before customers of a particular
class may be assigned to servers. The thresholds asso-
ciated with this rule are state-independent and their
values are easily determined as a function of the sys-
tem parameters.

Thus, the staffing rule has the desirable property
that it only requires partial demand information.
Particularly, no class-level arrival-rate information is
needed. When these arrival rates become known in
real time, the control decisions make full use of this
new information.

(2) Robustness of staffing and control: the SCS
rule together with the ITP control are shown to be
asymptotically optimal (under all three asymptotic
regimes) for a variety of problem formulations and
model assumptions, including our original constraint
satisfaction problem, but also cost-minimization and
profit-maximization problems, with or without cus-
tomer abandonment.

The simplicity of the suggested staffing rule is of
great importance. A priori, staffing decisions that
need to take into consideration the service require-
ment of multiple customer classes can potentially be
very complex. Our result, that only total arrival rate
and the global ASA constraint are needed, simpli-
fies the staffing decision tremendously. Moreover, the
form of this SCS rule as a function of these two argu-
ments is also very simple. For example, a special
case of the SCS rule is the familiar square-root safety
staffing rule (see Borst et al. 2004).

The dynamic control we propose of matching
servers to customers is based on priorities and thresh-
olds. In a nutshell, according to the ITP control, cus-
tomer classes are prioritized with respect to their SL
targets, with lowest priority to the best-effort cus-
tomers. A customer of a certain priority can enter
service only if there are no higher-priority customers
waiting, and the number of idle servers exceeds a
class-dependent threshold. A similar threshold policy

1 We use the acronym ITP to describe this rule instead of simply TP
(for threshold priority) to differentiate from the queue-length-based
threshold priority rule (QTP), which has been suggested in other
contexts (e.g., Bell and Williams 2001).

has also been proposed in a call blending environ-
ment (i.e., call centers that handle both inbound and
outbound calls) (Bhulai and Koole 2003, Gans and
Zhou 2003). The role of the thresholds is to ensure
that enough servers are available to serve future
arrivals of higher priorities. This resembles the princi-
ple of capacity reservation in telecommunication net-
works (Puhalskii and Reiman 1998) and also of stock
rationing in make-to-stock systems (Deshpande et al.
2003, de Véricourt et al. 2004). The thresholds in ITP
can be easily adjusted to provide the right level of
service.

The rest of this paper is organized as follows: The
introduction is concluded with a brief literature
review. We formally introduce the joint staffing and
control problem in §2. The threshold-priority (ITP)
rule and the corresponding queueing model (denoted
by M/M/N/�Ki�), as well as the single-class staffing
(SCS) rule are also introduced in §2. Section 3 then
presents a numerical example to illustrate the applica-
bility of our solution to both large and moderate-size
systems. Section 4 introduces the asymptotic frame-
work used in this paper. Section 5 establishes the
asymptotic feasibility of our proposed joint staffing
and control policies. Section 6 then shows the asymp-
totic optimality of SCS and ITP. In §7, staffing and
control are discussed for an extension of the original
model that includes customer abandonment. To con-
clude, §8 discusses the results and suggests directions
for further research.

Due to the technical nature of our results, our
approach in their presentation is to state them for-
mally and precisely in the body of the paper, but the
formal proofs appear in the online technical appendix
(provided in the e-companion).2

1.2. Literature Review
There is extensive literature dealing with the V-model
both in terms of performance analysis and in terms of
performance optimization and control. However, little
work has been done on the staffing problem and espe-
cially on the combined solution of staffing and con-
trol. Next, we mention only the papers most closely
related to our work.

In the context of performance analysis, exact steady-
state performance analysis of the V-model, under the
threshold-priority scheme that we use in this paper,
is given in Schaack and Larson (1986).

In the context of control, to differ from much of
the literature on the V-model, our model formulation
is characterized by imposing quality-of-service con-
straints rather then by assigning costs to the quality of

2 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.



Gurvich, Armony, and Mandelbaum: Service-Level Differentiation
282 Management Science 54(2), pp. 279–294, © 2008 INFORMS

service and aiming at the overall cost minimization.
There is vast literature on control of the V-model
under cost-minimization objectives, and due to space
limitations we do not give a comprehensive list here;
instead, we refer the interested reader to Gurvich
(2004) for a detailed survey of relevant papers both in
the context of cost minimization as well as asymptotic
performance analysis of the V-model under given
policies. An example for the use of the same solution
approach used here, to solve a different constraint
satisfaction problem, can be found in the papers by
Armony and Maglaras (2004a, 2004b), who were the
first to consider dynamic control in the QED regime.
Maglaras and Zeevi (2005) consider profit maximiza-
tion for a loss system two-class V-model with pric-
ing, sizing, and admission control. To distinguish this
paper from our setting, the server-allocation scheme
(Maglaras and Zeevi 2005) is fixed rather than a deci-
sion variable.

Choosing the quality-of-service constraints to use
is not a trivial task because the obvious formulation
leads to some undesirable performance characteris-
tics. This issue is addressed by both Koole (2003),
which is dedicated to the discussion of quality-of-
service performance measures for call centers, and
Milner and Olsen (2008), which deals with this issue
in the context of contracts in the call center industry.

Finally, the literature on staffing of single-class sys-
tems is extremely relevant to this paper due to the
structure of our suggested staffing rule, which is
based on single-class considerations. The most rel-
evant references in this context are the papers by
Borst et al. (2004) and Mandelbaum and Zeltyn (2006),
which cover in great generality staffing problems for
the single-class M/M/N and M/M/N+G systems.

2. Model Formulation
Consider a large service system modelled as a mul-
ticlass queueing system with J customer classes and
N statistically identical servers. Customers of class i
arrive according to a Poisson process with rate 
i,
independently of other classes. We define 
 =∑J

i=1 
i

to be the aggregate arrival rate. Service times are
assumed to be exponential with rate � for all cus-
tomer classes. Delayed customers of class i wait in an
infinite buffer queue i.

We start by assuming that customers do not aban-
don (the model which includes abandonment is
described in §7). We consider the minimization of the
number of servers (staffing level) subject to quality-
of-service constraints. These constraints are expressed
in terms of the fraction of class i customers who wait
more than Ti units of time before starting service. We
refer to Ti as the SL target and to the set of con-
straints as the SL constrains. Customer classes who

do not have an SL constraint associated with them
are referred to as the best-effort classes. Because we
do not differentiate between the different best-effort
classes in terms of quality-of-service constraints, we
may assume, without loss of generality (w.l.o.g), that
there is a single best-effort class which is class J . In
addition, we impose a constraint on the average speed
of answer (ASA) of the entire customer population.
This constraint is referred to as the global ASA con-
straint. Let W and Wi be, respectively, the steady-state
waiting time of the entire customer population and
the steady-state waiting time of class i customers. Let
�i be class i target SL probability. The problem is for-
mally given as follows:

minimize N

subject to E�W�≤ T �

P�Wi > Ti�≤ �i� i = 1� � � � � J − 1�

N ∈�+� � ∈�� (1)

We refer to (1) as the combined best-effort/SL con-
straints formulation, or the best-effort formulation, for
short. Here T and the SL targets Ti, i = 1� � � � � J − 1,
are strictly positive constants and 0 < �i < 1. We
assume w.l.o.g that classes are ordered in increas-
ing order of Ti, that is, T1 ≤ T2 ≤ · · · ≤ TJ−1 < T ,
and �i < �i+1 if Ti = Ti+1. For a given staffing level N , a
control policy, �, is a set of rules that determine how
to match calls with servers at any given time. The set
of admissible policies, �, is defined as follows:
Definition 2.1 (Admissible Policies). We say that

� is an admissible scheduling policy if it is nonpre-
emptive nonanticipating and it satisfies the following
two conditions:

(1) Class FCFS: Customers are served first-come
first-served (FCFS) within each class.

(2) All Customers are Served: We assume that it is not
allowed to block customers or send them elsewhere.3

Here, informally, nonanticipation means that sched-
uling decisions at time t can be based only on infor-
mation that is available up to time t. For the sake of
coherence, we postpone the discussion of the model
formulation and the restriction on admissible policies
to the end of §2.1.

2.1. The Proposed Solution
We provide here an informal description of our
solution. This description is sufficient for practical
purposes and does not require the use of asymptotic

3 Formally, we assume that Q�t� = A�t�−D�t�−Z�t� ∀ t ≥ 0, where
A�t� and D�t� are, respectively, the cummulative number of arrivals
and service completions up to time t, and Z�t� and Q�t� are, respec-
tively, the number of busy agents and the overall number of cus-
tomers in all the J queues at time t.
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framework or terminology. A more formal descrip-
tion is given in §5. Clearly, any solution to the staffing
problem should specify both the staffing rule and the
control to be used in real time. We will end the sec-
tion with a complete description of the solution. We
start, however, by introducing the control rule that we
use and some of its characteristics that are essential
to the understanding of our complete solution and its
good performance. The control we use is called the idle-
server-based threshold priority �ITP� rule and is defined
as follows:

Upon a customer arrival or a service completion,
assign the head-of-the-line class i customer to an idle
server if and only if (1) queue j is empty for all
classes j , such that j < i, and (2) the number of idle
servers exceeds a threshold Ki, where, 0 = K1 ≤ K2
≤ · · · ≤ KJ . We denote the queueing model associated
with this policy as M/M/N/�Ki�.

Exact analysis of the M/M/N/�Ki� was conducted
in Schaack and Larson (1986). Theoretically, then, for
fixed-system parameters and staffing levels and under
a given set of threshold levels �Ki�, one could use
the results of Schaack and Larson (1986) to calculate
P�Wj > Tj� for each j . We claim that staffing and rout-
ing using the M/M/N/�Ki� model is approximately
optimal for problem (1). That is, to solve (1), one could
use the following recipe: Assuming ITP is used, find
the least staffing level N for which there exists a set of
thresholds �Ki� so that E�W� ≤ T and P�Wj > Tj� ≤ �j

∀ j ≤ J − 1.
This, however, is not a particularly practical solu-

tion because calculating the correct optimal parame-
ters N and �Ki� requires an extensive search. It turns
out, however, that one can approximate the perfor-
mance measures under M/M/N/�Ki� in a way that
simplifies the solution tremendously. Specifically, we
show in subsequent sections that a good approxima-
tion for the tail probabilities, P�Wj > Tj�, under the
ITP rule is given by the following simple recursion:

P�Wj > Tj� ≈ P�Wj+1 > 0�!
Kj+1−Kj

j
�F �N · Tj# !j�!j−1�

∀ j ≤ J − 1� (2)

where !j =
∑j

k=1 %k. Also, for given values 0 < y <

x < 1, F �·#x�y� is a distribution function ( �F �·#x�y�
is its complement) with Laplace transform (�s/N#
!i�!i−1�/s, where

(�s#!i�!i−1�=




��1−!1�

s�s +��1−!1��
� i = 1�

��1−!i��1− �*i�s��

s�s − 
̂i + 
̂i �*i�s��
�

i = 2� � � � � J − 1�

(3)

and

�*i�s�=
s +�

2!i−1�
+ 1

2
−
√(

s +�

2!i−1�
+ 1

2

)2

− 1
!i−1

� (4)

By setting Tj = 0 in (2), we have that

P�Wj > 0�≈ P�Wj+1 > 0�!
Kj+1−Kj

j � (5)

The important thing to note here is that the approx-
imate waiting-time distribution of class j does not
have any evident dependence on the thresholds
of class i = 1� � � � � j − 1. This is not entirely true
because some dependence exists through the value of
P�WJ > 0� which is required to initialize the recursion,
and P�WJ > 0� is indeed dependent on the thresh-
old values. It turns out, however, that this depen-
dence can be approximately removed. Specifically, we
show that using the ITP rule with appropriately cho-
sen thresholds, one has that the probability of delay
of class J , P�WJ > 0�, can be approximated by the
probability of delay in a simple M/M/N FCFS queue.
That is,

P�WJ > 0�≈ P�W FCFS

�� > 0�� (6)

where W FCFS

�� is the steady-state waiting time in an

M/M/N FCFS queue with arrival rate 
, service
rate �, and N agents. Considering (2) again, one can
now see that the waiting-time distribution of class j
is easily approximated using only the performance of
class j + 1.

Recall that our problem formulation requires also
the calculation of the global average waiting time.
This calculation is rather involved under the M/M/N/
�Ki� model, but turns out to have also a very simple
approximation that uses the M/M/N model. Specif-
ically, when the thresholds are appropriately chosen,
we show that

E�W�≈ E�W FCFS

�� �� (7)

Having these approximations in mind, a naive
solution procedure would first find the number of
agents required to satisfy the global ASA constraint
E�W�≤ T . By Equation (7), we can find this number of
agents approximately using a simple M/M/N model.
To this end, we redefine W FCFS


�� �N � to be the steady-
state waiting time in an M/M/N system as a function
of the number of agents, N . Once we find the optimal
M/M/N staffing level, we can determine the thresh-
olds using our recursive expression (2) to determine
the thresholds.

It turns out that this naive procedure works ex-
tremely well, and is indeed the solution procedure we
propose. Specifically, we propose using an SCS rule
and a proper use of the ITP rule: under the assump-
tion that Ti � T for all i = 1� � � � � J − 1 (i.e., that T is
orders of magnitude greater than the Tis, e.g., minutes
versus seconds, respectively), the following staffing
and control procedure is approximately optimal:

• Staffing: Find the staffing level through the sin-
gle class M/M/N (or Erlang-C) model with arrival
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rate 
, service rate �, and FCFS service. Specifi-
cally, let

N ∗ =Min�N ∈�++ E�W FCFS

�� �N ��≤ T �� (8)

• Control: Use the ITP rule with the differences
�Kj+1 −Kj�j≤J−1 chosen recursively for j = J − 1� � � � �1
in the following manner:

Compute

Kj+1−Kj =
⌈ln��j/�P�Wj+1 >0� �F �N ∗ ·Tj#!j�!j−1���

ln�!j�

⌉
∨0�

j = J − 1� � � � �1� (9)

Set
P�Wj > 0�= P�Wj+1 > 0�!

Kj+1−Kj

j � (10)

In the above, we set P�WJ > 0� += P�W FCFS

�� �N ∗� > 0�,

and for two real numbers x and y, x∨ y =+ max�x�y�.
The actual threshold values are then determined by
setting K1 = 0.

It is important to note that, as mentioned in the
introduction, the staffing step in the above proce-
dure requires only the knowledge of the aggregate
arrival rate, while the individual class arrival rates
are needed only to determine the threshold values
in the control step. This way, the joint solution of
staffing and control is decoupled into two indepen-
dent decisions. This property is highly desirable for
practical purposes because the information available
to the manager when making staffing decisions is lim-
ited, but more is revealed when control decisions are
made in real time.
Remark 2.1. An alternative equation for the thresh-

old, that does not use the distribution function �F and
hence does not require a Laplace transform inversion,
is given by

Kj+1−Kj =
⌈ ln��jTj/�P�Wj+1 >0� �w�N ∗�!j�!j−1���

ln�!j�

⌉
∨0�

j=1�����J −1� (11)

where �w�N�!j�!j−1�= �N��1−!j��1−!j−1��
−1.

However, the simpler formula comes at the cost of
a less-precise outcome. Specifically, thresholds calcu-
lated using (11) are expected to be significantly less-
precise (with respect to the true optimal policy) than
those obtained through Equation (9). Formula (11) is
obtained using Markov’s inequality, so that the inac-
curacy of the threshold is influenced by the inaccu-
racy of Markov’s inequality. Nevertheless, for large
systems, the thresholds that are calculated through
(11) will be approximately optimal.
Remark 2.2. It should be intuitively clear that the

staffing level suggested by this procedure is actually
a lower bound on the required number of agents.

To see this, note that for a fixed value of N , and
because we have a single service rate �, the overall
average queue length (and by Little’s law—also the
overall average waiting time) is minimized by any
work conserving policy, and in particular, by FCFS.
Consequently, the number of agents needed to sat-
isfy the global ASA constraint is at least as large as
needed for the same purpose under FCFS. Our claim
is that, using our policy, the lower bound is approxi-
mately achieved. That is, using the lower bound, one
can approximately satisfy all of the constraints.
Remark 2.3. Note that W FCFS


�� �·� is easily calculated
through any of the available Erlang-C calculators.
For our numerical experiments, we used the free-
ware 4CallCenters (4CC)4 which has a tool, Advanced
Queries, that solves, among other problems, the prob-
lem given in (8). When using 4CC, one can get as part
of the output the value P�WJ > 0� ≈ P�W FCFS


�� �N � > 0�,
which is the probability of delay in the corresponding
M/M/N queue.
Remark 2.4. The family of threshold policies is

rather large, including controls that use thresholds on
the queue length (QTP), rather than on the number
of idle agents (ITP). To illustrate what kind of con-
trols belong to the class QTP, consider a two-class
model; a possible control is then the following: serve
class 2 as long as the queue length of class 1 is less
than K, for some integer number K, otherwise, serve
class 1. When setting K = 0, the resulting control is
a static priority with high priority given to class 1.
Alternatively, one might consider the following con-
trol scheme: give absolute priority to class 1 all the
time and admit class 2 customers to service only when
their queue is longer than some value K.

In the so-called conventional heavy traffic literature,
thresholds on the queue lengths are widely used (e.g.
Bell and Williams 2001 and Teh and Ward 2002).
A natural question is then, why does our solution
recommend using thresholds on the number of idle
servers rather than thresholds on the queue lengths?
Alternatively, one might ask if the same performance
achieved through ITP can be achieved through QTP.
The answer is no. In particular, for the simple two-
class example introduced above, one can show that
ITP can achieve better performance for class 1 than
the best achievable performance using any of the sug-
gested QTP controls. The implication of the above is
that in a strong service-level differentiation setting,
the use of a QTP-type control will be suboptimal. On
the other hand, using ITP in the many-server heavy-
traffic regime is natural, taking advantage of the fact
that idling some servers might not affect the overall
performance of the system. This is, of course, not the

4 The software is available at http://iew3.technion.ac.il/serveng/
4CallCenters/Downloads.htm.
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case in conventional heavy traffic where the number
of servers is fixed, and idling even one server will
result in a significant loss of service capacity.

Before we present our numerical results, we would
like to briefly discuss the model formulation and the
restrictions on the set of admissible policies. We start
with the model formulation and assumptions. First,
note that our assumption that the service-time dis-
tribution for all customer classes is the same (repre-
sented by a single service rate �). This assumption
may be realistic in some contexts (e.g., a multilin-
gual call center or centers providing similar service
but to customers of different importance), but may be
less realistic in others (e-mail versus phone conver-
sation). If one assumes class-dependent service rates,
the resulting problem is much more difficult (see Atar
et al. 2004 and Harrison and Zeevi 2004), and the
solution no longer possesses the great simplicity that
the solution to our model does, which enables us to
jointly solve the staffing and control problem.

With respect to model formulation, a common for-
mulation used in the call center industry is actu-
ally slightly different than the one we propose in (1),
and is given by a pure SL constraint formulation as
follows:

minimize N

subject to P�Wi > Ti�≤ �i� i = 1� � � � � J �

N ∈�+� � ∈�� (12)

Note the differences between (12) and (1). The formu-
lation in (12) contains an SL constraint for all classes,
including class J , while in our formulation (1) the
constraint for class J is replaced with a global ASA
constraint.

When considering the pure SL constraint formu-
lation (12) in detail, one finds that a true optimal
solution to this formulation might have characteristics
that are highly undesirable from the practical point
of view. Problems with this formulation have already
been identified by Milner and Olsen (2008), and also
by Koole (2003). We illustrate these issues through
the following simple example which emphasizes the
fact that in a multiclass setting, unlike the single-class
M/M/N model, optimal solutions to (12) can lead to
extremely bad performance when measured by other
performance measures such as the mean waiting time.

To this end, consider a two-class model with
the following parameters: 
1 = 
2 = 200/hour, �1 =
�2 = 2/hour, and assume we impose the following
QoS constraints: P�W1 ≥ 1 minute� ≤ 0�6 and P�W2 ≥
1 minute� ≤ 0�6. Then, because both classes have
the same constraint, one might suggest to combine
them into one queue and transform the problem
into a single-class problem in which the constraint is

P�W > 1 minute�≤ 0�6 (here W would be the steady-
state waiting time of the merged customer class).
Using any Erlang-C calculator, one can find that the
minimum staffing level required to satisfy the con-
straint in the single-class model is 205 agents. Also,
the average waiting time when using 205 agents
will be less than four minutes. Note that so far we
have approached the problem by merging the two
customer classes into one class using a single-class
staffing problem. We claim, however, that in the orig-
inal multiclass setting, the minimal staffing level that
will render the system stable will be optimal. In par-
ticular, the minimum staffing required for stability in
this case, N = 201, will also be optimal. The reason
for optimality is that one can use the following alter-
nating priority scheme: at each excursion of the num-
ber of customers in system above 201, the system will
give absolute priority to a different class. This way,
half of the time class 1 will have absolute priority
and half of the time class 2 will have absolute prior-
ity. Focusing on a particular class i—half of the time
these customers experience a service level of high pri-
ority in a two-class multiserver queue, and the other
half of the time they experience a service level of
low priority. Using the expression for M/M/N pri-
ority systems given by Kella and Yechiali (1985), one
can conclude that under this scheme, indeed, P�Wi >
1 minute� ≤ 0�6, i = 1�2, so that both constraints are
satisfied. It can be also shown, however, that under
this “optimal” staffing level, the average waiting time
of each class is approximately half an hour or 30 times
the tail constraint we imposed, and this is clearly not
acceptable. It is worthwhile mentioning that although
the above example uses symmetric constraints, sim-
ilar arguments can be constructed for nonsymmetric
constraints.

The bottom line, as illustrated by the above exam-
ple, is that considering a pure SL constraint formula-
tion might lead to results in which there are extreme
inconsistencies between the SL constraints we impose
for a fixed Ti and other performance measures such
as the average waiting times, or even tail constraints
for other values �Ti �= Ti. Indeed, in the above exam-
ple, 60% will wait less than one minute but more than
20% will wait more than 45 minutes!

As will be shown in §5, the best-effort formu-
lation (1) leads to a solution in which consistency
between different measures of performance is pre-
served. Specifically, classes that have small Tis, thus
reflecting the management’s desire to give them high
quality of service, will experience high quality of
service across different performance measures. In
particular, a small Ti will lead to a small average wait-
ing time.
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As for the admissible set of policies, it is rather
simple to see why one might expect undesirable out-
comes in the absence of the assumption that all cus-
tomers are served. To this end, consider the following
staffing and control procedure. Staff with any num-
ber of agents. Upon a customer arrival, reject the
customer if there are no agents available. This pro-
cedure transforms the system into a loss system in
which the waiting time is identically zero and the con-
straints are formally met even if we set the number of
agents to be zero. This is, of course, an extreme exam-
ple because a large portion of the customers are not
served. Note, however, that if one is willing to reject a
certain portion of the customers, then one can choose
the number of agents for the loss system so that only
a fraction - of the customers are not served and - can
be made arbitrarily small. Specifically, given an arrival
rate 
 and service rate �, and using a loss system with
�
/��1− -�� agents, the percent of rejected customers
will be approximately - (see, for example, Whitt 1984).
Our assumption that all customers are served is equiv-
alent to saying that deliberate rejection is not accept-
able and is intended to prevent outcomes of this sort.
Finally, note that if we define the waiting time of a
customer that does not get served to be �, then the
assumption that all customers are served is redun-
dant because the global ASA constraint will force the
system to give service to all the customers.

The Class FCFS assumption seems to be natural
from the practical point of view because it is consid-
ered fair (see, for example, Rafaeli et al. 2005) and
it would seem inappropriate to prioritize customers
within one homogenous class. It is not, however,
optimal from a purely mathematical point of view.
Indeed, for single-server settings, Towsley and Bac-
celli (1991) formally establish that the last-come first-
served (LCFS) rule outperforms FCFS in terms of the
fraction of customers that miss their deadlines. This is
intuitive because LCFS tends to first serve customers
who have not yet missed their deadlines. In particular,
it is plausible that when removing the FCFS restric-
tion, one can construct, based on LCFS, a feasible
solution for (1) that will use fewer agents than under
FCFS. This lower staffing level, however, will come
at the price of extremely high mean and variance of
the waiting time. That is, the policy might be incon-
sistent across performance measures, and one might
meet the constraints in (1) for given values of Ti,
while experiencing bad performance under other per-
formance measures, such as the mean waiting time,

Table 1 Staffing Values of the M/M/N Lower Bound

Offered load 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Staffing 17 22 27 32 37 43 48 53 58 63 68 73 78 83 88 93 98 103
Threshold 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

or even SL constraints with other values of Ti. This
should come as no surprise because it is well known
that, within a large class of policies, FCFS minimizes
the inconsistency or variance of the service level that
customers experience (see, for example, Chap. 5 in
Wolff 1989).

3. Numerical Study
Our proposed staffing and control described in the
previous section is approximately optimal for large
systems. Our purpose in this section is to show that
our proposed solution performs extremely well, even
for moderate-size systems. In particular, we show an
example in which our proposed staffing differs by
at most one agent from the staffing level associated
with the optimal solution. Our numerical investiga-
tion is, by no means, an exhaustive one. However,
based on our own experience as well as on other
works that use similar methodologies to ours, such as
Borst et al. (2004), we have a good reason to believe
that our approximations perform extremely well, and
that the numerical example given below is a repre-
sentative one.

We apply our proposed solution to a simple three-
class example. Specifically, consider a V-model with
three classes such that 
1 = 
2 = 
3 = 1

3
, and an
average handling time of three minutes, i.e., � =
20/hour. Assume that the overall average waiting time
is required to be less than one minute. Also assume
that a 80% of class 2 customers are expected to wait
less than 20 seconds and 80% of class 1 customers are
expected to wait less than 10 seconds. Formally, we
consider the problem

minimize N

subject to E�W�≤ 1 min�

P�W1 > 10 sec�≤ 0�2�

P�W2 > 20 sec�≤ 0�2�

N ∈�+� (13)

In this example, it is not completely obvious that
the difference between one minute and 10 or 20 sec-
onds is consistent with our assumption that Ti � T .
Indeed, one might regard one minute and 10 or
20 seconds as being of the same order of magnitude.
Still, we show that even in this seemingly ambivalent
setting, our solution procedure works extremely well.
By the argument given in Remark 2.2, for each value
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Table 2 Thresholds for Class 3 Using (11)

Offered load 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Threshold 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1

of 
 a lower bound on the staffing level in (13) is given
by considering an M/M/N system with arrival rate 
,
service rate �, and FCFS service, in which we wish
to find the minimal required staffing so that the aver-
age wait is less than one minute. The values of the
required staffing levels for this simplified problem can
be obtained easily by using any Erlang-C calculator.
We used for this purpose the Advanced Queries fea-
ture of the 4CC software,5 where we consider 
 values
between 500 arrivals to 2,000 arrivals per hour. This
way, we start with a medium-size system of less than
20 agents. To emphasize the size of systems consid-
ered here, we give the numerical results as a function
of the offered load, which is the amount of work arriv-
ing per unit of time, given by R = 
/�, which is also
a lower bound on the number of agents required for
stability. Because the M/M/N staffing levels required
to achieve the waiting-time constraints are typically
close to R, this parameter gives a good indication of
system size. Table 1 displays the output of the 4CC
software, which indicates, for each value of R, the
minimum required number of agents. Also, the third
row gives the threshold for class 3 (K3) that is recom-
mended by our procedure, while the thresholds for
classes 1 and 2 are recommended to be identically
zero for all values of the offered load.

We now use inversion of the exact Laplace trans-
forms given in Schaack and Larson (1986) to evaluate
the performance experienced by the different cus-
tomer classes. Figure 2(a) shows the performance
levels experienced by classes 1 and 2 when using
the staffing levels as given by the lower bound and
employing a simple static priority rule with the high-
est priority given to class 1 and the lowest to class 3,
that is, no thresholds are employed. As one can see,
the policy is feasible for all values of R > 35.6

We next use the threshold priority control recom-
mended by our procedure, with the same priority
ordering but with a threshold of one applied to class 3
(for R ≤ 35)—that is, a customer of class 3 will be
admitted into service only if there is more than one
free agent and queues 1 and 2 are empty. In this case,
as depicted in Figure 2(b), we can see that feasibility
holds for classes 1 and 2 for all values of R, but at the
price of a slight violation of feasibility in terms of the
global ASA constraint.

5 http://ie.technion.ac.il/serveng.
6 One can observe a jump down of the average waiting time when
the offered load is 40. This is merely a result of the integral nature
of the staffing levels and the transition, at R= 40, from staffing with
two additional agents above R, to three additional agents above R.

The above might be satisfactory. However, we
might do a great deal better by adding just a single
agent. Figure 3(a) shows that, indeed, the addition of
a single agent is sufficient for all values of R between
15 and 35, while using a static priority scheme (the
same holds for a threshold policy).

Hence, we can summarize with Figure 3(b) that
shows that the lower bound staffing given by the
M/M/N single-class model and used by our solution
procedure differs by at most one from the feasible
solution given by adding one agent, and in particular,
it differs by at most one from the optimal solution.
Remark 3.1. In our calculation, we used the thresh-

old as determined through Equation (9). As sug-
gested in Remark 2.1, one can also use the less-precise
formula given by Equation (11). When following this
formula, the thresholds for class 3 are given in Table 2
(the thresholds for classes 1 and 2 are still zero).

The use of the these thresholds will, naturally, lead
to a greater violation of the ASA global constraint for
small systems. According to our calculations, how-
ever, feasibility is maintained for all values of offered

Figure 2 Constraint Satisfaction for Classes 1 and 2: (a) Using Static
Priority and (b) Using Thresholds
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Figure 3 (a) Constraint Satisfaction After Staffing Refinement;
(b) Optimality of Staffing Levels
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load strictly greater than 35. Overall, the simplicity
of the alternative threshold formula (9) comes at the
price of being less precise for small systems. It will,
however, work well for large systems and is proved
to be approximately optimal for large systems.

4. The Asymptotic Framework
So far our references to the term “approximately opti-
mal” have not been formally defined. To make these
statements results formal, we need to first introduce
our asymptotic framework. In this framework, we
consider a sequence of systems with increasing arrival
rates, and characterize staffing and control schemes
which are asymptotically optimal, as the arrival rates
increase to �. The original system of interest is
assumed to be a member in this sequence. If the total
arrival rate for this system is sufficiently large, then an
asymptotically optimal policy is expected to be nearly
optimal for this original system.

There are several reasons why it makes sense to
consider an asymptotic approach to this problem
instead of an exact one. First, it is clear from Yahalom
and Mandelbaum (2004) that an optimal control pol-
icy that minimizes waiting costs must be highly
dependent on system parameters and system state.
Particularly, implementing such a control is difficult

due to the large state space and the large number of
system parameters. Even if attention is restricted to
the threshold-priority (ITP) rule, the actual threshold
values need to be determined. In addition, for staffing
purposes, one would need to evaluate the system
performance given different values of N . An exact
approach would lead to very complicated expres-
sions, and is not likely to provide useful and general
insights.

Following the asymptotic approach, we consider a
sequence of systems indexed by r = 1�2� � � � (to appear
as a superscript) with an increasing total arrival rate

r =∑J

i=1 
r
i and a fixed service rate �r ≡�. Let Rr =


r/� be the total system load; then, without loss of
generality, we assume that the index r is selected
such that

r ≡Rr� (14)

The arrival rates to the different classes may be quite
general. We only assume that the arrival rate of the
lowest priority is comparable to 
r for each r . More
formally, we assume that there are J numbers 0k ≥ 0,
k = 1� � � � � J , with

∑J
k=1 0k = 1, such that the arrival rate

of each class behaves according to the following rule:

lim
r→�


r
k


r
= 0k� k = 1� � � � � J �

0J > 0� 0i ≥ 0� i = 1� � � � � J − 1�

(15)

For every fixed r , the service-level differentiation
between classes 1� � � � � J −1 is mathematically imposed
through the following asymptotic formulation:

minimize N

subject to E�W r�≤ T r�

P�W r
i > T r

i �≤ �i� i = 1� � � � � J − 1�

N ∈�+� � ∈�� (16)

where we assume, w.l.o.g, that classes i = 1� � � � � J − 1
are ordered in nondecreasing order of T r

i , with �i <
�i+1 whenever T r

i = T r
i+1. Also, the informal assump-

tion that the constraint for classes i = 1� � � � � J − 1 are
of smaller order of magnitude than the global con-
straint, is formally given through the following:

Assumption 4.1. T r = �T /r* , T r
i = �Ti/r*i , and *i > *

for all i < J and * ∈ �0���.

In what follows, we assume that Assumption 4.1 is
satisfied. The results will be given for arbitrary * ∈
�0���. Our experience, as reflected also by the evi-
dence given in Borst et al. (2004), indicates, however,
that the results obtained from fixing * = 1/2 are typi-
cally extremely close to the true, nonasymptotic opti-
mal results.

In terms of the asymptotic framework, the SCS and
ITP rules are given as follows: Consider a sequence of
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systems, indexed by r , with service rate � and aggre-
gate arrival rate 
r for the rth system, and such that
(15) holds. Then, the SCS staffing rule and the ITP
control rule are given as follows:

• Staffing (SCS): Find the staffing level through
the single-class M/M/N (or Erlang-C) model with
arrival rate 
r , service rate �, and FCFS service.
Specifically, let

N ∗r =Min�N ∈�++ E�W FCFS

r �� �N ��≤ T r�� (17)

• Control: Use the ITP rule with the differences
�Kr

j+1 −Kr
j �j≤J−1 chosen recursively for j = J − 1� � � � �1

in the following manner:
Compute

Kr
j+1 −Kr

j

=
⌈ ln��j/�P�W r

j+1 > 0� �F �N ∗r · T r
j #!r

j �!r
j−1���

ln�!r
j �

⌉
∨ 0�

j = J − 1� � � � �1� (18)

Set

P�W r
j > 0�= P�W r

j+1 > 0��!r
j �Kr

j+1−Kr
j � (19)

In the above, we set P�W r
J > 0� += P�W FCFS


r �� �N ∗r � > 0�

and !r
j =∑j

k=1 %r
k =

∑j

k=1�

r
k/N r��. The actual thresh-

old values are then determined by setting Kr
1 = 0.

Remark 4.1. Note that the staffing and control
rules above are defined through the true parameters
T r and T r

i , �i, i = 1� � � � � J − 1, and independently of
the scaling parameters *i, i = 1� � � � � J . In particular,
the implementation of the policy is straightforward
and there is no need to know or guess the scaling
factors.

5. Asymptotic Feasibility of
SCS and ITP

In this section, we establish that our proposed SCS
rule and ITP control are asymptotically feasible
for (16).

We start by defining asymptotic feasibility. For r =
1�2� � � �, consider a sequence of systems with a fixed
number of customer classes J and a fixed service rate.
Let 
̄r = �
r

1� � � � �
r
J � be a sequence of arrival rates

with a total arrival rate 
r =∑J
i=1 
r

i , which is increas-
ing to � as r→�. Let �N r��r� be a joint staffing and
control pair associated with the rth system.
Definition. The sequence ��N r��r�� is asymptoti-

cally feasible with respect to 
̄r and ��r = ��r
1� � � � ��r

J � if
the following conditions apply:

• limsupr→� E�W r�/T r ≤ 1, and
• limsupr→� P�W r

i > T r
i �≤ �i ∀ i = 1� � � � � J − 1�

From now on, when using ITP and SCS, we refer
to the asymptotic version as given in Equations (17)
and (18). The asymptotic feasibility of ITP and SCS is
stated in Theorem 5.1, which is given at the end of
this section. This theorem is based on Propositions 5.1
and 5.2 that are given below. In what follows, for two
sequences �ar � and �br �, we say that ar ≈ br if ar/br → 1
as r →�.

Proposition 5.1. Consider a sequence of systems in-
dexed by r = 1�2� � � �, with service rate � for all classes,
and class i arrival rates 
r

i , i = 1� � � � � J , which satisfy (15).
Fix the values of �T , *, �Ti, i = 1� � � � � J − 1 and *i, i =
1� � � � � J − 1, and assume that N r is determined according
to SCS and ITP is used with thresholds Kr

i , i = 1� � � � � J
determined through (18). Then,

P�W r
J > 0�≈ P�W FCFS


r �� �N r� > 0� (20)

and

P�W r
i > 0� ≈ P�W FCFS


r �� �N r� > 0� ·
J−1∏
j=i

�!r
j �Kr

j+1−Kr
j �

i = 1� � � � � J − 1� (21)

Proposition 5.1 evaluates the delay probability for
the different customer classes under the SCS and
ITP policies. But what about the actual waiting time,
given that a customer is indeed delayed? Proposi-
tion 5.2 provides expressions for the limiting distribu-
tion of the normalized waiting times (conditional on
a positive wait). In this proposition and throughout,
we use⇒ to denote weak convergence.

Proposition 5.2. Under the assumptions of Proposi-
tion 5.1 and assuming that SCS are ITP are used, both
r*W FCFS


r �� �N r� and r*W r
J converge weakly to the same limit.

That is, both

r*W FCFS

r �� �N r� ⇒ W as r →�� and

r*W r
J ⇒ W as r →��

(22)

where the limit W is a proper random variable. In addition,
the steady-state waiting times of the higher priorities i =
1� � � � � J − 1 satisfy

N r · �W r
i �W r

i > 0� ⇒ �Wi �Wi > 0� as r →�� (23)

where the limit Wi is a proper random variable and the
density of �Wi �Wi > 0� has the Laplace transform

(�s#!i�!i−1�=




��1−!1�

s�s +��1−!1��
� i = 1�

��1−!i��1− �*i�s��

s�s − 
̂i + 
̂i �*i�s��
�

i = 2� � � � � J − 1�

(24)
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with

!i = lim
r→�

i∑
j=1


r
i

N r�
� !0 = 0� 
̂i = lim

r→�

r

i

N r
�

and

�*i�s�=
s +�

2!i−1�
+ 1

2
−
√(

s +�

2!i−1�
+ 1

2

)2

− 1
!i−1

� (25)

Also, for i = 1� � � � � J −1, the limits of the first and second
moments of the conditional waiting time satisfy

N rE�W r
i �W r

i > 0�→ ���1−!i��1−!i−1��
−1

as r →�� and

�N r�2E��W r
i �2 �W r

i > 0�

→ 2�1−!i!i−1�
[
���2�1−!i�

2�1−!i−1�
3
]−1

as r →��

(26)

In particular,

E�W r�≈ E�W FCFS

r �� �N r��� (27)

Remark 5.1. Note that the Laplace transform
depends only on the global parameter � and on !i

and !i−1. Hence, we can use a common function
F �·# ·� ·� to describe the approximate distribution func-
tion of N r�W r

i � W r
i > 0� for different i. In particular,

�W r
i � W r

i > 0� will have approximately a distribution
function F �N r ·#!i−1�!i� that has the Laplace trans-
form (�s/N r#!i�!i−1�/s. This Laplace transform can
be numerically inverted using any numerical inver-
sion package.

As a direct consequence of Proposition 5.2, one can
conclude that the order of magnitude of the queue
lengths associated with the higher-priority classes,
i = 1� � � � � J − 1, is 3�1�, where for two nonnegative
sequences �an�n≥1 and �bn�n≥1, we say that an = 3�bn�
if lim supn→� an/bn < � and lim infn→� an/bn > 0. The
details are stated in the following corollary.

Corollary 5.1. Under the assumptions of Proposi-
tion 5.1, and assuming that SCS and ITP are used, the
class-level queue lengths for the high-priority classes sat-
isfy E�Qr

i � Qr
i > 0� = 3�
r

i /N r�� i = 1�2� � � � � J − 1. In
particular, for i = 1� � � � � J − 1, and using the notation of
Proposition 5.2,

E�Qr
i �Qr

i > 0�= 
r
i E�W r

i �W r
i > 0�

→ 
̂i���1−!i��1−!i−1��
−1 as r →�� and

E�Qr
i �≈


r
i

N r
P�W r

i > 0����1−!i��1−!i−1��
−1�

(28)

An important implication of Proposition 5.2 and
Corollary 5.1 is that the queue length of class J is of
order r1−* , while the queue lengths of other classes are

of smaller order. Hence, if queue lengths are scaled
by r1−* , only the queue length of the lowest priority J
does not disappear in the limit as r→�. This essen-
tially implies that, when r is very large, it is sufficient
to know the total queue length to deduce the class-
level queue lengths. This result is summarized in the
following proposition.

Proposition 5.3 (State-Space Collapse). Under the
assumptions of Proposition 5.1, and assuming that SCS
and ITP are used,

1
r1−*

Qr
i ⇒ 0� i = 1� � � � � J − 1� (29)

The following proposition formally states the asym-
ptotic feasibility of SCS and ITP and is a summary of
Propositions 5.1 and 5.2 above.

Theorem 5.1. Consider a sequence of systems indexed
by r = 1�2� � � � �with service rate � for all classes, and
class i arrival rate 
r

i , i = 1� � � � � J , which satisfy (15).
Fix the values of �T , *, �Ti, i = 1� � � � � J − 1 and *i, i =
1� � � � � J − 1, and assume that N r is determined according
to SCS and ITP is used with thresholds Kr

i , i = 1� � � � � J ,
determined through (18). Then, we have asymptotic feasi-
bility, i.e.,

• limsupr→� E�W r�/T r ≤ 1, and
• limsupr→� P�W r

i > T r
i �≤ �i ∀ i = 1� � � � � J − 1�

Having the feasibility of SCS and ITP, Remark 2.2
can be used to argue that SCS and ITP are actually
optimal. We make this assertion formally in the next
section.

6. Asymptotic Optimality of
SCS and ITP

In this section, we establish the asymptotic optimality
of SCS and ITP as a joint staffing and control solution
to problem (16).

First, to ensure stability, a reasonable staffing level
would be of at least the order of 
r . Hence, differ-
ent staffing-level propositions are expected to all be of
the same order of magnitude. Therefore, to obtain a
meaningful form of asymptotic optimality, one must
compare normalized staffing costs that measure the
difference between the actual staffing costs and a base
cost of the order of 
r , which is a lower bound of the
staffing cost.

To define asymptotic optimality, let �Kr = �Kr
1� � � � �

Kr
J � and 
̄r = �
r

1� � � � �
r
J � be the thresholds and arrival

rates in the rth system. Note that Rr = 
r/� is a lower
bound on the value of the objective function in (16)
because at least Rr servers are required for stability.
Definition. An asymptotically feasible sequence

�N r��r� is asymptotically optimal with respect to
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̄r � ��r = ��r
1� � � � ��r

J �, if for any other asymptotically
feasible sequence of policies � �N r� ��r�, we have

lim inf
r→�

�N r −Rr

N r −Rr
≥ 1�

We will now turn to the solution of (16). The follow-
ing theorem states the asymptotic optimality of SCS
and ITP as a solution for (16).

Theorem 6.1. Under (15) and Assumption 4.1, the
SCS and ITP staffing and control as defined in (17) and
(18) are asymptotically optimal for problem (16).

Remark 6.1 (Intuitive Explanation of Theo-
rem 6.1). This theorem is an immediate consequence
of Theorem 5.1. To see this, let us consider the fol-
lowing reasoning: an intuitive lower bound for the
required staffing would be to solve a different con-
straint satisfaction problem, in which all classes are
treated as a single class with a constraint imposed
only on the overall average waiting time. Hence,
as suggested also by Remark 2.2, the staffing levels
determined by SCS are a lower bound for (16). The-
orem 5.1 ensures, then, that using the same lower
bound staffing level for the original multiclass sys-
tem, together with appropriately chosen thresholds,
is asymptotically feasible. Hence, the lower bound is
achieved and the policy is asymptotically optimal.

6.1. Discussion of Operational Regimes
So far, in an attempt to state our results in the highest
degree of generality, the choice of a specific asymp-
totic regime has not been specified. In particular, our
SCS staffing rule is given in terms of an associated
M/M/N system without specifying in what regime
the M/M/N system operates. For M/M/N systems,
however, there is a precise characterization of asymp-
totic operational regimes, which is fully given in Borst
et al. (2004). In particular, the regime spectrum is
divided into three possible outcomes: the efficiency-
driven (ED) regime, the quality-and-efficiency-driven
(QED) regime, and the quality-driven (QD) regime.
The different regimes may be characterized by the
probability of delay experienced by different cus-
tomers. In particular, in the ED regime the probabil-
ity of delay is close to one, and in the QD regime
it is close to zero, while in the QED regime there
is a delicate combination of high efficiency with a
probability of delay that is strictly between zero and
one. Can we construct a parallel characterization for
the V-model operating under an ITP policy (and
denoted by M/M/N/�Ki�)? The answer is yes, and
the characterization is actually given implicitly in
Proposition 5.1. Specifically, one can show that if the
M/M/N/�Ki� model is used with Kr

J � r* , then, anal-
ogously to Halfin and Whitt (1981), we have that

P�W r
J > 0�→ �� 0 < � < 1� (30)

if and only if
√

N r�1−%r�→ 5 > 0� (31)

which corresponds to * = 1/2. In which case, we
would have � = ��5�, where the Halfin-Whitt delay
function ��·� is given by

��5��

[
1+ 56�5�

7�5�

]−1

� (32)

Here 7�·� and 6�·� are, respectively, the standard nor-
mal density and distribution functions.

Moreover, because our staffing solution to (16) is
strongly related to an optimization problem for an
associated single-class M/M/N queue, it can be stated
in terms of orders of magnitude along the lines of
Borst et al. (2004). In particular, according to Borst
et al. (2004), the SCS rule reduces to staff with N =
R+5r

√
R, where 5r is the unique solution to

�*�5r�
1

5r�
√

R
= T r� (33)

where

�*�5r�=




1 if * < 1/2�

7�5r�

5r
if * > 1/2�

��5r� if * = 1/2�

(34)

Here, 7�·� is the standard normal density function.
Note that for * > 1/2, we will have 5r → �, as

r →�, and the probability of delay (which is approx-
imated using the tail of the normal distribution) will
converge to zero as r →�. If * = 1/2, the procedure
results in the well-known square-root safety staffing
rule, and the optimal staffing level is given by N =
R+5

√
R for some 5 > 0.

Our results on the convergence of the waiting time
of class J can also be stated in terms of the operational
regime as follows:

r*W r
J ⇒ W� (35)

where W has the distribution function

P�W ≤ t�=



1−��5̃� if t = 0�

��5̃��1− e−0J 5̃�� otherwise�
(36)

Here, 5̃= limr→� 5r and 0J are defined in (15).
To conclude this section, note that Equation (34)

maps * into the corresponding operational regime.
Specifically, * = 1/2 leads to the QED regime, while
* > 1/2 leads to the QD regime and * < 1/2 leads
to the ED regime. It is also important to note that
Equation (36) implies that, under ITP, * determines
the order of magnitude of the waiting time of class J
(which is of order 1/r*), while for the other customer
classes, ITP allows us to achieve extremely good ser-
vice levels.
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7. Adding Abandonments
Our results can be extended to the case where cus-
tomers might abandon the system if their service does
not begin within a certain time. Due to space con-
siderations, we state here only our proposed solution
while relegating the detailed analysis of this model to
the online appendix. Consider, then, the same mul-
ticlass model studied so far, with the addition that
class i customers have a finite patience which is expo-
nential with rate 9i. We assume the following ordering
with respect to the abandonment rates 9i, i = 1� � � � � J .

Assumption 7.1. The best-effort classes are the most
patient ones, i.e., 9J =mini 9i.

Assumption 7.1 holds trivially if 9i ≡ 9 for some
9 ≥ 0. For the abandonment model, we consider the
following formulation:

minimize N

subject to P�Ab�≤ ��

P�Wi > Ti�≤ �i� i = 1� � � � � J − 1�

N ∈�+� � ∈�� (37)

where P�Ab� is defined as the steady-state fraction of
customers that abandon before receiving service and
0 < � < 1.
Remark 7.1. Note that (37) differs from the non-

abandonment formulation given in (1) with respect
to the global constraint, which in (37) is associated
with the fraction of abandoning customers rather than
with the average waiting time in (1). This formulation
is very natural in an environment that includes cus-
tomer abandonment. Specifically, the fraction of aban-
doning customers is a very important measurement
in call centers with impatient customers because it
reflects, in some sense, the way that customers per-
ceive the waiting time they experience. Hence, it is
only natural to bound the fraction of abandoning cus-
tomers rather than the waiting time itself. Moreover,
in systems where each service rendered is associated
with revenue, the number of abandoning customers
becomes a measurement of economic importance.
Remark 7.2 (Admissible Policies). Naturally, in a

finite patience setting, one can no longer expect all
customers to be served because some will abandon
(unless we have an infinite-server system). Instead,
we require that customers cannot be blocked or
routed somewhere else, and, formally, that Q�t� =
A�t�−D�t�−Z�t�− L�t� ∀ t ≥ 0, where, in addition to
the previously defined notation, L�t� is the number
of customers that abandoned by time t. That is, we
require that all nonabandoning customers are served.
Having this, we modify � by replacing the require-
ment that all customers are served by the requirement
that all nonabandoning customers are served. As

before, we still require that the policies be nonantic-
ipative and nonpreemptive, and that customers are
served FCFS within each class.

Recalling that our staffing solution was based on
a staffing problem for an associated M/M/N queue,
one would expect that in the abandonment case
the solution would be based on a staffing prob-
lem for some M/M/N+M (Erlang-A) system. This is
indeed the case. To be able to formulate our solu-
tion, we define P�Ab�FCFS


���9J
�N � to be the steady-state

probability of abandonment in a single-class FCFS
M/M/N+M queue with arrival rate 
, service rate
�, patience rate 9J , and N agents. We also redefine
W FCFS


���9J
�N � to be the steady-state waiting time for

an M/M/N+M single-class FCFS queue with arrival
rate 
, service rate �, patience rate 9J , and N agents.
Then, considering formulation (37) for the abandon-
ment case, we have the following approximately opti-
mal solution:

• Staffing: Find the staffing level through the
single-class M/M/N+M (or Erlang-A) model with
arrival rate 
, service rate �, abandonment rate 9J ,
and FCFS service. Specifically, let

N ∗ =Min�N ∈�++ P �Ab�FCFS

���9J

�N �≤ ���7 (38)

• Control: Use the ITP rule with the differences
�Kj+1 −Kj�j≤J−1 chosen recursively for j = J − 1� � � � �1
in the following manner:

Compute

Kj+1−Kj =
⌈ln��jTj/�P�Wj+1 >0� �w�N ∗�!j�!j−1���

ln�!j�

⌉
∨0�

j = J − 1� � � � �1� (39)

where �w�N ∗�!j�!j−1�= �N ∗��1−!j��1−!j−1��
−1.

Set
P�Wj > 0�= P�Wj+1 > 0�!

Kj+1−Kj

j � (40)

In the above, we set P�WJ > 0� = P�W FCFS

���9J

�N ∗� > 0�,
and for two real numbers x and y, x∨ y =+ max�x�y�.
The actual threshold values are then determined by
setting K1 = 0.
Note that in the abandonment setting, we only have
the version of the threshold formula that uses the
function �w (as in Remark 2.1 for the nonabandonment
case) rather than any distribution function. The rea-
son is that in the abandonment case, we do not have
precise approximations for the waiting-time distribu-
tions of classes i = 1� � � � � J −1. The threshold formula
is based on Markov’s inequality and is hence less pre-
cise than the formula we gave for the nonabandon-
ment case. Still, using the thresholds given above is
proved to be approximately optimal.

7 This quantity can be calculated using the 4CC freeware introduced
in Remark 2.3.
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To conclude this section, we should point out that
by using the relation 
P�Ab� = 9E�Q� (which holds
for queues with exponential patience), one can easily
generalize our results above to a variant of formu-
lation (37) in which the individual waiting-time con-
straints are replaced with abandonment constraints
of the form Pi�Ab� ≤ �i. Here, Pi�Ab� is the steady-
state fraction of abandoning customers from class i.
Analogously to the waiting-time constraints, requir-
ing that �i is smaller in orders of magnitude than �,
the ITP and SCS solution will be asymptotically opti-
mal also for this variant of the formulation. Specifi-
cally, one would use SCS for staffing and choose the
thresholds for classes i = 1� � � � � J − 1 so that Pi�Ab� =
9iE�Qi�/
i ≤ �i.

8. Conclusions and Further Research
We study large-scale service systems with multiple
customer classes and fully flexible servers. For such
systems, we investigate the question of how many
servers are needed and how to match them with cus-
tomers so as to minimize staffing costs subject to ser-
vice level, average speed of answer, and abandonment
probability constraints. We find that a single-class
staffing (SCS) rule and an idle-server-based threshold-
priority (ITP) control are asymptotically optimal in the
many-server heavy-traffic limiting regime. While the
asymptotic optimality is established as the number of
agents grows indefinitely, our proposed solution per-
forms extremely well even for small and medium-
sized systems.

The staffing level determined by the SCS rule is
shown to depend on the overall system demand,
and a global quality-of-service constraint only. This
implies that because the staffing level does not
depend on the class-level constraints, one may say
that service-level differentiation is obtained “for free,”
in the sense that no additional servers are needed to
satisfy those class-level constraints. Moreover, even if
the class-dependent arrival rates or performance tar-
gets are unknown at the time when staffing decisions
are made, the staffing levels remain unchanged.

Practically, the demand uncertainty becomes even
more of an issue when the service is performed by a
third party who has no access to demand information.
This problem appears to be of increasing importance
due to the proliferation of call center outsourcing. As
it is often the case with subcontracting, the uncer-
tainty associated with future demand together with
information asymmetry can cause incentive misalign-
ments between the two parties, which may result
in system inefficiencies (e.g., Cachon and Lariviere
2001). To resolve these inefficiencies, a mechanism
needs to be designed that would enforce the multi-
dimensional demand information to be shared truth-
fully. But such multidimensional signalling problems

are notoriously hard. Our insight reduces the prob-
lem into a one-dimensional one, that may be more
tractable.

8.1. Directions for Future Research
While we believe that the managerial insights ob-
tained through our analysis of a relatively simple
model extend to more general settings, staffing and
control solutions are still out of reach for the more gen-
eral case where service rates depend on the customer
class as well as the server pool. Even for the simplest
extension of the V-model studied in this paper, one
where the service rates are class-dependent, asymp-
totically optimal staffing and control are unknown at
this point.

If one assumes further that not all servers can serve
all customers, the problem then becomes even more
complicated. Partial cross-training is not only a real-
istic scenario, but it was also shown by Wallace and
Whitt (2005) and Pinker and Shumsky (2000) to be
sufficient in obtaining satisfactory performance. This
more general problem is difficult, and our paper is
a step toward solving it, assuming servers are fully
flexible. Our initial investigation suggests that the
insights gained from studying the V-model are use-
ful in analyzing more complicated network structures
(Gurvich 2004). Other researchers have also tackled
this general skill-based routing (SBR) problem (e.g.,
Bassamboo et al. 2006a, 2006b; Atar 2005; Tezcan and
Dai 2007; Gurvich and Whitt 2006), but many issues
remain unresolved.

Finally, our solution in this paper assumes that
the global quality-of-service constraint is much less
restrictive than the class-level constraints. But what if
some of the classes have constraints associated with
them that are as loosely restrictive as the global con-
straint? Or, what if the constraints are of a different
form (e.g., P�exists i+ Wi > Ti�≤ �)? In these scenarios,
it is unclear what are asymptotically optimal staffing
and control. We propose such problems as a topic for
further investigation.

Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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