
 
 

           
  
  

 ____________________________ 
   

Service Network Design with 

Resource Constraints   

      
Teodor Gabriel Crainic 
Mike Hewitt 
Michel Toulouse 
Duc Minh Vu 
 
                                
November 2012 
 
 
CIRRELT-2012-63 
 
 
 
 
 

 
                              
 

 
 
 

G1V 0A6 

Bureaux de Montréal : Bureaux de Québec : 

Université de Montréal Université Laval 
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau  2642 
Montréal (Québec) Québec (Québec) 
Canada H3C 3J7 Canada G1V 0A6 
Téléphone : 514 343-7575 Téléphone : 418 656-2073 
Télécopie  : 514 343-7121 Télécopie  : 418 656-2624 
 

 www.cirrelt.ca 



 

Service Network Design with Resource Constraints 

Teodor Gabriel Crainic1,2,*, Mike Hewit3 , Michel Toulouse1,4, Duc Minh Vu1,5 

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 
2 Department of Management and Technology, Université du Québec à Montréal, P.O. Box 8888, 

Station Centre-Ville, Montréal, Canada H3C 3P8 
3 Kate Gleason College of Engineering, Rochester Institute of Technology, James E. Gleason 

Building, 77 Lomb Memorial Drive, Rochester, NY, USA 14623-5603 
4 Department of Computer Science, Oklahoma State University, 700 North Greenwood Avenue, 

North Hall 328, Tulsa, OK 74106-0700, USA  
5 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box 

6128, Station Centre-Ville, Montréal, Canada H3C 3J7 
 
 

Abstract. We first present a new service network design model for freight consolidation 

carriers, one that both routes commodities and the resources needed to transport them 

while explicitly recognizing that there are limits on how many resources are available at 

each terminal. We next present a solution approach that combines column generation, 

meta-heuristic, and exact optimization techniques to produce high-quality solutions. We 

demonstrate the efficacy of the approach with an extensive computational study and 

benchmark its performance against a leading commercial solver. 
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1 Introduction

Service network design formulations are extensively used to address planning issues
within many application fields, in particular for the tactical planning of operations of
consolidation-based modal and multimodal carriers and organizations (e.g., Christiansen
et al., 2007; Cordeau et al., 1998; Crainic, 2000, 2003; Crainic and Kim, 2007; Crainic
and Laporte, 1997). The main goal of such formulations is to produce an operations
(or load) plan that services the estimated demand while achieving the economic and
service-quality targets of the carrier. Building such a plan involves principally selecting
the services to operate and their schedules (departure times) and routing the demand
through the selected service network. Most service network design models proposed in
the literature consider the resources required to perform the services (vehicles, power
units, drivers, etc.) only indirectly, however, which is increasingly inadequate to reflect
the operation strategies of a broad range of transportation systems (e.g., Crainic and
Bektaş, 2008).

Only recently have researchers proposed models and solution methods that recognize
management issues related to the resources needed to implement a service network (e.g.,
Andersen et al., 2009a,b). The range of resource resource-management issues considered
is still very limited, however. Moreover, introducing resource-management considerations
within service network design formulations raises significant methodological challenges far
from being satisfactorily addressed. The goal of this paper is to address these challenges
by enlarging the range of resource-management aspects included into tactical planning
models, and by introducing an efficient and general purpose solution methodology for
the service network design with resource constraints (SNDRC ) formulations.

More precisely, our contributions are to 1) propose a new mathematical formulation
for the scheduled SNDRC problem explicitly accounting for the limited number of re-
sources available at each terminal and taking advantage of the structure introduced into
the model by the resource-management constraints; 2) introduce an advanced matheuris-
tic solution methodology, combining long-term memory-enhanced slope scaling, column
generation, and mathematical programming techniques, which is both general for the
SNDRC problem class and very efficient for the particular problem at hand; 3) demon-
strate this efficiency through a comprehensive experimental study and benchmarking
against a leading commercial software.

The paper is organized as follows. Following a brief literature review in Section 2, we
state the problem and detail the network model and mathematical formulation in Section
3. Section 4 is dedicated to the proposed matheuristic solution approach, while Section
5 presents the experimental study. We conclude in Section 6.
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2 Literature Review

One resource (or asset) management requirement modeled by researchers is that a re-
source must be available at the origin of a service for the service to be performed.
Amongst other things, this enables a model to capture the (sometime) necessity for
a resource to first move empty before it can carry a load. Mathematically, it is modeled
by requiring that the number of resources entering and leaving a terminal must be the
same. Pedersen et al. (2009) refer to these as “design-balance constraints” and present
service network design models based on arc and cycle network formulations. Indeed, the
design-balance constraints induce a cyclic structure for the resource movements support-
ing the service operations and the routing of flow. Pedersen et al. (2009) also proposed a
two-phase tabu search method for the arc-based formulation. Meta-heuristic algorithms
improving over the results of Pedersen et al. (2009) were proposed by Chouman and
Crainic (2010) and Vu et al. (2012), the latter being used as a subroutine in the ap-
proach presented in this paper. This requirement has been modeled for various modes of
transportation, e.g., Barnhart and Schneur (1996); Kim et al. (1999) for air-based express
package delivery, Lai and Lo (2004) for ferries, Andersen and Christiansen (2009); An-
dersen et al. (2009a) for intermodal rail, and Erera et al. (2012); Smilowitz et al. (2003)
for trucking.

The cycle structure induced by the design-balance constraints is actually modeling the
fact that, in most settings, a resource is associated with a specific terminal in a network
and must return there before the end of the planning horizon. An example in trucking
is drivers, who, by federal (and sometimes labor union) regulations, must periodically
return to the terminal closest to their home. Andersen et al. (2009b) thus study the
computational performance of arc and cycle-based formulations, by solving limited-size
instances with a commercial mixed integer programming solver, and concluded that the
latter offers the most promising approach. Recognizing that a priori complete cycle
generation will not scale to large instances, Andersen et al. (2011) then presented an
effective branch-and-price scheme for the cycle-based formulation. The problem is NP-
hard, however, and even more efficient methods are required. This is the goal of this paper
for the problem setting that also extends the range of resource limitations considered.

3 Problem Statement and Model

We model the operations of a carrier with a time-space network, G = (N ,A), where
terminal activities in different periods (likely days) are modeled with different nodes.
Specifically, we assume a set L of terminals in the carrier’s network and that the planning
horizon is divided into T = {1, 2, . . . , TMAX} time periods. We then define the set of
nodes, N , to model the operations of terminals in different periods, i.e. N = L × T =

2
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{lt|l ∈ L, t ∈ T }, where lt represents terminal l at period t.

There are two types of arcs in the set A. The first is a service arc and models the
operation of a service between two terminals at a particular point in time, whereas the
second is a holding arc and models the opportunity for a resource or shipment to idle
at a terminal from one period to the next. With S denoting the set of possible services
between terminals in L, for each s = (l,m) ∈ S and t ∈ 1, . . . , TMAX, we add the
arc (lt,m(t+π)mod TMAX) to A (assuming the arc length is π (in periods)). As in many
transportation planning methods, we assume that the shipment demands seen during the
planning horizon will repeat over time and thus, our time-space network “wraps around.”
Specifically, we model a service in S of length π that departs from a terminal in period t
such that t+π > TMAX as arriving at the destination in period t+π mod TMAX. As
an example, see the arc originating from T1 in period 7 and terminating at T2 in period
1 in Figure 1.

Figure 1: Time-Space Network for Cyclic Service Schedules

We also assume a limit, us, on how much shipment demand can be carried by service s
and set the capacity, uij, of executions of that service at different times to us. Regarding
the holding arcs, we add to A an arc of the form (lt, l(t+1)mod TMAX) for each terminal
l and period t. While we assume these arcs are uncapacitated (both with respect to
shipment demands and resources) in our experiments, terminal capacities (on shipments
or resources) could be modeled by placing capacities on these arcs.

We model a shipment that needs to be delivered from terminal l and available in
period t to terminal, m, by period t

′
as a commodity with index k, origin node o(k) = lt,

and destination node d(k) = mt′ . We denote the size of this shipment as wk. The set of
all shipments is represented by K.

We model three types of costs. The first is a variable cost associated with commodity
k traveling on arc (i, j) ∈ A and is denoted ckij. These costs can model the impact
the weight of a shipment can have on the cost of executing a service or the labor costs

3
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associated with handling a commodity at a terminal. The second is a fixed cost associated
with the use of a resource, and is denoted by F. These costs can model the cost of paying
drivers or the depreciation of a capital asset. The third is a fixed cost associated with
executing a service departing from terminal l and arriving at terminal m and is denoted
by flm. These costs can model the actual transportation cost of a resource traveling from
terminal l to terminal m.

Like many network design models, for a commodity to travel on arc (lt,mt′ ) ∈ A, then
that service must be “executed”, or, the arc must be “installed” in the network. However,
we also model the situation where a resource is needed to execute that service, and these
resources travel in cycles. For our experiments, our rules regarding what constitutes a
valid cycle are that it must begin and end at the terminal l ∈ L and take exactly TMAX
periods. We search for a cycle in G that begins and ends at node lt by creating a second
network, G ′

where we append a copy of G after G and search for a path in this network
from lt to lt+TMAX . We illustrate the network G and a cycle that originates at terminal
1 in period t in Figure 2(a) and the corresponding path in G ′

in Figure 2(b). Thus, we
often describe cycles in G as paths in G ′

.

t

1

TMAX

(a) Cycle in G
t t + TMAXTMAX 2*TMAX

1

(b) Path in G′

Figure 2: Correspondence between cycles and paths

We allow a cycle beginning at lt to return to l multiple times (see the path beginning
at terminal 1 in Figure 3), and if it last returns to l in period t

′
< t+TMAX we append

holding arcs so that it reaches lt+TMAX (see the path beginning at terminal 3 in Figure
3). While our rules governing what is a valid cycle are simple, much of the methodology
we propose still applies to cases where more complicated rules, such as those representing
union or federal regulations of what a driver may do, must be modeled.

We associate with node lt ∈ N a set of cycles, θlt, that depart from terminal l at
period t. We next associate with terminal l ∈ L the set θl = ∪TMAX

t=1 θlt, or, the set of
all cycles that depart from terminal l during the planning horizon. Because a terminal
may have a fixed set of resources available during the planning horizon, we also let ubl
denote the maximum number of resources that can depart from terminal l on cycles in
θl. Finally, rτij is a binary indicator of whether arc (i, j) is contained in cycle τ , and
θ = ∪l∈Lθl.

We have two types of variables in our model. The first, xkij, is a continuous variable

4
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2 4 = TMAX

1

3

1 3 6 85 7

Figure 3: Valid Cycles (shown as paths in G ′
)

that indicates the amount of commodity k that flows on arc (i, j) ∈ A. The second, zτ ,
is a binary variable that indicates whether cycle τ ∈ θ is selected. Thus, the cycle-based
formulation of scheduled service network design with resources constraints (SNDRC),
which seeks to select cycles that can carry all commodities from their origins to their
destinations and route those commodities, seeks to

minimize
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij +

∑
τ∈θ

Fzτ +
∑

(i,j)∈A

∑
τ∈θ

rτijzτfij

subject to

∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A

xkji =


wk if i = o(k)

0 i 6= o(k), d(k)

−wk if i = d(k)

∀i ∈ N , ∀k ∈ K, (1)

∑
k∈K

xkij ≤ uij
∑
τ∈θ

rτijzτ , ∀(i, j) ∈ A, (2)

∑
τ∈θ

rτijzτ ≤ 1, ∀(i, j) ∈ A, (3)

∑
τ∈θl

zτ ≤ ubl, ∀l ∈ L, (4)

xkij ≥ 0, ∀(i, j) ∈ A, k ∈ K, (5)

zτ ∈ {0, 1}, ∀τ ∈ θ. (6)

The objective is to minimize the total cost of using resources (
∑

τ∈θ Fzτ ), operating
services (

∑
(i,j)∈A

∑
τ∈θ r

τ
ijzτfij), and routing commodities (

∑
k∈K

∑
(i,j)∈A c

k
ijx

k
ij). Con-

straint set (1), named the flow balance constraints , ensures that each commodity is
routed from its origin node to its destination node. Constraint set (2), named the weak
forcing constraints , ensures that a service is executed when it is used by a commodity

5
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and that its capacity is not exceeded. Constraint set (3), named the 0-1 service con-
straints , ensures that each service belongs to at most one executed cycle. Constraint
set (4), named the resource bound constraints , ensures that the total number of
resources originating from each terminal does not exceed the number available. Lastly,
constraint sets (5) and (6) define the domains of the variables. While constraints of
the form xkij ≤ min(wk, uij)

∑
τ∈θ r

τ
ijzτ can significantly strengthen the linear relaxation,

there are often too many of them to consider them all explicitly.

4 Solution approach

One of the challenges in producing a high quality solution to the SNDRC is that for even
reasonably-sized instances, the set θ is too large to be enumerated. Thus, to produce a
high-quality solution to the SNDRC, one needs a method for producing the cycles that
appear in good solutions and a method that can produce a high quality solution given a
fixed set of cycles. We illustrate the steps of the solution approach in Figure 4, where the
number next to each step corresponds to the section where it is described. As indicated
in Figure 4, column generation (Barnhart et al., 1998; Desaulniers et al., 2005) is one
method used by the solution approach to generate cycles and we next describe how it is
done for the SNDRC.

4.1 Column generation

We define SNDRC(θ̄) to be the SNDRC restricted to the cycles in θ̄ and its linear re-
laxation to be the SNDRC with the constraints zτ ∈ {0, 1}, τ ∈ θ̄ replaced by 0 ≤ zτ ≤
1, τ ∈ θ̄. The motivation behind how column generation solves a linear program is that
variables need not be explicitly added to the instance until optimality or feasibility con-
ditions dictate that they may be necessary for finding the optimal solution. In particular,
assuming θ̄ contains cycles such that SNDRC(θ̄) is feasible, SNDRC(θ̄) will be repeatedly
solved, with new cycles (zτ variables) added to θ̄ when reduced cost calculations indicate
that they may lead to an improved solution.

Thus, we associate the dual variables αij (≤ 0) with each constraint in set (2), βij (≤
0) with each constraint in set (3), and γl (≤ 0) with each constraint in set (4). Then, the
reduced cost associated with variable zτ is πτ = F −γl+

∑
(i,j)∈τ (fij +αijuij−βij). Given

these dual values, the search for a cycle with negative reduced cost can be performed
by finding the shortest path in the time-space network G ′

with respect to arc costs
fij + αijuij − βij from lt to lt+TMAX for each l ∈ L. We present the algorithm for solving
the linear relaxation of SNDRC in Algorithm 1.

6
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Solve linear relaxation of SNDRC with 
column generation

Initialize linearization factors for slope 
scaling based on SNDRC LP solution

Solve linear approximation of SNDRC, 
AP(SNDRC), with linearization factors

Try to create solution to SNDRC from 
solution to AP(SNDRC) 

Intensification (Int) and diversification 
(Div) if conditions met

If stopping condition met then stop, else 
update linearization factors

4.1

4.2

4.2

4.3

4.4

4.2

Int: Solve restricted SNDRC as a MIP
Div: Perturb linearization factors to 
favor unused cycles

Resolve violations of terminal-level 
resource and 0-1 service constraints

Cycles generated

Figure 4: Steps of solution approach
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Algorithm 1 Column generation procedure for solving the linear relaxation of SNDRC

Find an initial set of cycles θ̄
while have not solved linear relaxation do

Solve linear relaxation of SNDRC(θ̄)
Determine dual values
for all lt ∈ N do

Find the shortest path in G from lt to lt+TMAX with respect to arc costs fij +
αijuij − βij.
if F − γl+ the length of the shortest path < 0 then

Add the corresponding cycle to θ̄
end if

end for
Stop if no variables with negative reduced cost found

end while

At the beginning of Algorithm 1 we generate cycles that can deliver flow for at least
one commodity from its source to its destination. Specifically, for each commodity k ∈ K,
originating at o(k) = lt, we generate λ cycles that begin at o(k), pass through d(k) = mt′

and then return to o(k). We find these cycles by finding λ shortest paths from o(k) = lt
to lt+TMAX in G ′

with respect to the arc costs fij for service arcs, 0 for holding arcs not
associated with terminalm, and a value< −1∗

∑
(i,j)∈A fij for holding arcs associated with

terminal m. A very negative value is assigned to holding arcs associated with terminal
m to ensure each shortest path visits the destination terminal for commodity k. To find
multiple shortest paths, we use Yen’s algorithm (Yen, 1971).

Solving the linear relaxation of SNDRC yields a bound on the optimal value of
SNDRC. However, we also use the cycles generated during this solution process and the
solution to the linear relaxation itself to inform a slope scaling procedure that produces
high-quality primal solutions. We next describe this slope-scaling procedure.

4.2 Slope scaling

When using slope scaling (Kim and Pardalos, 1999; Crainic et al., 2004) to produce
solutions to an integer program, a linear relaxation of the problem is repeatedly solved
with an objective function that is parameterized by linearization factors. Each time the
linear relaxation is solved, a solution to the integer program is constructed (typically
through rounding) and the linearization factors are updated so that the cost of the
solution to the linear relaxation equals the cost of the solution to the integer program.
Our slope scaling approach differs from what is traditionally seen in that instead of solving
the linear relaxation of SNDRC, our approach solves an approximation (which is also a
linear program) and then executes a separate procedure to construct a feasible solution

8
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to SNDRC from a solution to the approximation. We next describe this approximation
problem, called AP(SNDRC).

We build an instance of AP(SNDRC) with a fixed set of cycles θ̃ and solve it to identify
a set of cycles enabling each commodity’s demand to flow from its source to its sink. As
such we introduce additional (continuous) variables xkτij ≥ 0 which indicates the amount
of commodity k′s demand routed on arc (i, j) and carried by cycle τ. We relate these
new variables to the variables xkij with the equation xkij =

∑
τ∈θ̃ x

kτ
ij . With linearization

factors ρkτij (t) that are parameterized by an iteration counter, t, AP(SNDRC(ρ(t))) seeks
to

minimize
∑
τ∈θ

∑
ij∈A

∑
k∈K

xkτij
(
ckij + ρkτij (t)

)
subject to ∑

τ∈θ

rτijx
kτ
ij = xkij,∀(i, j) ∈ A, ∀k ∈ K, (7)

∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A

xkji =


wk if i = o(k)

0 i 6= o(k), d(k)

−wk if i = d(k)

∀i ∈ N , ∀k ∈ K, (8)

∑
k∈K

xkij ≤ uij, ∀(i, j) ∈ A, (9)

xkτij ≥ 0, ∀(i, j) ∈ A, k ∈ K, τ ∈ θ. (10)

Solving AP(SNDRC(ρ)) in iteration t yields the vector x̃kτij (t) which can be used to
produce a (possibly infeasible) solution to SNDRC by setting z̃τ (t) = 1 if

∑
(i,j)∈τ

∑
k∈K x̃

kτ
ij (t) >

0. This solution (x̃(t), z̃(t)) has the objective function value∑
τ∈θ

∑
k∈K

∑
(i,j)∈A

ckijx̃
kτ
ij (t) +

∑
τ∈θ

F z̃τ (t) +
∑
τ∈θ

∑
(i,j)∈A

rτijfij z̃τ (t).

Thus, for a solution x̃(t) of AP(SNDRC(ρ(t))), the values ρkτij (t + 1) are calculated to
satisfy the relation

∑
k∈K

∑
(i,j)∈A x̃

kτ
ij (t)(ckij + ρkτij (t + 1)) =

∑
k∈K

∑
(i,j)∈A x̃

kτ
ij (t)ckij +

F z̃τ (t) +
∑

(i,j)∈A r
τ
ijfij z̃τ (t), which can be done by setting

ρkτuv(t+ 1) =

{ F+
∑

(i,j)∈τ r
τ
ijfij∑

k∈K
∑
ij∈τ x̃

kτ
ij (t)

, if
∑

k∈K
∑

ij∈τ x̃
kτ
ij (t) > 0

ρkτuv(t) , otherwise
, ∀τ ∈ θ, k ∈ K, (u, v) ∈ τ.

(11)
If the cycle τ appears in the solution to the linear relaxation of the SNDRC, we set

ρkτij (0) = 1. Otherwise, we set ρkτij (0) =
(
F +

∑
(i,j)∈S r

τ
ijfij

)
�
∑

(i,j)∈S r
τ
ijuij.

When the solution (x̃(t), z̃(t)) violates the 0-1 service constraints (constraint
set (3)), or the resource bound constraints (constraint set (4)), our approach next

9
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executes the following procedures to try and construct a feasible solution to SNDRC from
(x̃(t), z̃(t)).

4.3 Creating a feasible solution to SNDRC from a solution to
AP(SNDRC)

Because the AP(SNDRC) does not include all the constraints that are present in the
SNDRC (constraint sets (3) and (4)), and unlike most slope scaling approaches, round-
ing procedures are not sufficient to construct a feasible solution to the SNDRC from a
solution, (x̃(t), z̃(t)), to the AP(SNDRC). Instead we must execute another procedure
to construct a feasible solution to the SNDRC. Our procedure, instead of modifying the
solution to the AP(SNDRC) directly, creates a subgraph, Ḡ of G that contains the nodes
N and a subset, Ā, of the arcs, A, that can be decomposed into cycles. Then, the pro-
cedure attempts to extract cycles from this subgraph that can be used to construct a
feasible solution to the SNDRC.

We create Ḡ by first adding to Ā all service arcs (i, j) in A such that either x̃(t)kij > 0
for some k ∈ K, or they belong to a cycle used in the AP(SNDRC) solution. We also add
all holding arcs to Ā. Next, if in the solution (x̃(t), z̃(t)), there are terminals where the
resource bound constraint is violated (i.e.

∑
τ∈θl z̃l(t) > ubl), we solve an optimization

problem to add service arcs that are in A\Ā to Ā that will enable an unused resource at
one terminal to move to a terminal where an excess number of resources is used. Finally,
we solve another optimization problem to add service arcs in A\Ā to Ā to ensure that Ḡ
can be decomposed into cycles in such a way that each service arc appears in at most one
cycle but holding arcs may appear in multiple cycles, as doing so maximizes the number of
cycles that can be extracted from Ḡ. The objective of both of these optimization problems
is to minimize the total cost of the arcs added with respect to the cost coefficient fij.
Lastly, we note that we formulate and solve both of these optimization problems as a
minimum cost, maximum flow problem (Ahuja et al., 1994). See Vu et al. (2012) for
details of how a similar procedure was done for a network design problem with Eulerian-
type constraints.

After creating Ḡ, we next extract a set of cycles from this network that are guaranteed
to satisfy all the constraints of the SNDRC other than the flow conservation constraints.
Specifically, to extract cycles from Ḡ into the set θ̄ we execute Algorithm 2.

With steps 3 and 8 of Algorithm 2 and the condition of the for loop in step 5, we
ensure that at most ul resources from each terminal l are used. Similarly, step 10 ensures
that each service arc in Ḡ will appear in at most one cycle in θ̄. As a result, setting
zτ = 1 ∀τ ∈ θ̄ will not violate either the resource bound (4) or 0-1 service (3) constraints
of the SNDRC. To see if the flow conversation constraints can be satisfied using the

10
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Algorithm 2 Cycle extraction procedure

Require: Graph Ḡ
Require: An ordering ON of the nodes N
1: Set θ̄ = ∅
2: for all l ∈ L do
3: Set κl = ubl
4: end for
5: for all lt ∈ ON such that κl > 0 do
6: Perform depth-first search from lt to identify a feasible cycle τ in Ḡ.
7: Add τ to θ̄
8: Set κl = κl − 1
9: for all service arcs (i, j) ∈ τ do
10: Remove (i, j) from Ā.
11: end for
12: end for
13: Repeat steps 5 to 12 until no cycles found

cycles in θ̄ we solve a minimum-cost multicommodity network flow problem (Ahuja et al.,
1994) with respect to the arc costs ckij on the network induced by those cycles. If the
flow conservation constraints can be satisfied, we have a new feasible solution. Finally,
to generate a diverse set of solutions, we call Algorithm 2 multiple times, each time
perturbing the ordering ON of how nodes are processed and the ordering in which nodes
are considered during the execution of the depth-first search.

We illustrate this procedure in Figures 5(a) to 5(d). In Figure 5(a) we depict a solution
to the AP(SNDRC) that violates both the resource bound constraints (two cycles depart
from T3 at period 2 when there is only one located at that terminal) and the 0-1 service
constraints (they depart on the service arc from T3 at period 2 to T2 at period 3). Next,
we depict in Figure 5(b) the addition of the arc from T1 at period 1 to T3 at period 2 to
enable the unused resource at T1 to move to T3 where an excess number of resources are
used. Next, in Figure 5(c) we show the arcs that are added to ensure that the subgraph
may be decomposed into cycles, and in Figure 5(d) we illustrate the cycles that are
extracted from that graph. While we do not illustrate this, the last step executed is to
solve a minimum-cost multicommodity network flow problem to determine whether the
flow balance constraints can be satisfied using only these two cycles.

4.4 Intensification and Diversification

Metaheuristics (Glover and Laguna, 1997) have long included intensification procedures,
wherein a region of the solution space is explored deeply, and diversification procedures,
wherein the search is directed towards regions of the solution space that have not been
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Figure 5: Converting a solution to AP(SNDRC) to a solution to SNDRC
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thoroughly searched. Because such procedures often enable the search to find high quality
solutions in limited times we have included them in our solution approach. We first
present our intensification procedure and then the diversification procedure.

For intensification, we introduce an exact optimization step into the search, wherein
SNDRC(θ̃) is solved (for what is presumably a set of cycles, θ̃, of very limited cardinality)
with a commercial mixed integer progrmaming solver. See De Franceschi et al. (2006);
Archetti et al. (2008); Hewitt et al. (2010); Erera et al. (2012) for other examples of
heuristics that find high-quality solutions by solving a restriction of the original problem.
To create the set of cycles θ̃, our intensification procedure first chooses the cycles that
appear in the last q solutions to AP(SNDRC). Then, a subgraph of G is created based
on the arcs that appear in those cycles. Because some cycles may share arcs, this graph
may not be Eulerian and thus we next add arcs to the subgraph to make it Eulerian
with the procedure presented in Vu et al. (2012). Finally, a depth-first search-type
approach is performed on this subgraph to extract cycles which are TMAX periods
long. These extracted cycles are used to construct the set θ̃ which is then used to create
SNDRC(θ̃). This mixed integer program (MIP) is then solved with the value of the best-
known solution as an upper bound on the objective function value and time limit tint (in
seconds). The intensification procedure is executed when an improved solution has not
been found after a predefined number of iterations.

For diversification, because it is the cycles in the solution to AP(SNDRC) at a given
iteration that dictate the structure of the resulting solution to SNDRC, we periodically
modify the objective function of AP(SNDRC) to avoid frequently used cycles. To do so,
we collect the number of times, freτ , each cycle τ appears in a solution to AP(SNDRC).
Then, if the diversification condition is met for each cycle τ in the current solution of the
approximated problem AP(SNDRC), we set the linearization factor ρkτuv(t) to ρkτuv(t)(1+ε∗
freτ ) where ε is an algorithm parameter. We continue to update ρ(t) in this manner for
a fixed number of iterations that is dictated by the algorithm parameter Idivermax . Lastly, it
is possible for two consecutive solutions of AP(SNDRC) to be the same, in which case the
slope-scaling procedure will terminate. To continue the execution of slope-scaling when
this occurs, we add a penalty value P to the linearization factors as seen in (12). In our
experiments, P is set to the objective value of the current solution to AP(SNDRC).

ρkτuv(t) =

{P+F+
∑

(i,j)∈S r
τ
ijfij∑

k∈K
∑
ij∈τ x̃

kτ
ij

, if
∑

k∈K
∑

ij∈τ x̃
kτ
ij > 0

ρkτuv(t− 1) , otherwise
,∀τ ∈ θ, k ∈ K, (u, v) ∈ τ (12)
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5 Computational experiments

The purpose of the computational experiments is to determine the effectiveness of the
solution approach presented in Section 4 and to understand which of its features con-
tribute to its effectiveness. We performed all experiments on a cluster of computers with
2 Intel Xeon 2.6 GHz processors and 24 GB of RAM that were running Scientific Linux
6.1. We used CPLEX 12.4 to solve linear and mixed integer programs. Initial calibration
experiments on a small number of instances yielded the parameter values displayed in In
Table 5.

Parameter Description Section Value
λ Number of initial cycles created for each

commodity
4.1 3

Idivermax Number of diversification iterations 4.4 5
ε The effect of frequency on linearization fac-

tor during diversification
4.4 1

tint Time limit for MIP solved during intensi-
fication

4.4 600 sec.

q Number of iterations from which
AP(SNDRC) solution cycles are used

4.4 1

Table 1: Algorithm parameter values

We execute the solution approach on three sets of instances. The first is a set of
instances that are small enough that all cycles can be enumerated and a commercial MIP
solver can quickly solve nearly all of the resulting instances of the SNDRC to optimality.
The second is the set of instances used in Andersen et al. (2011) and are based on a
case study in rail transportation. In these instances the resource fixed cost (F ) is the
driving factor in the cost structure, with the cost coefficient fij = 0, ∀(i, j) ∈ A. Thus,
to see whether the performance of the algorithm is dependent on this cost structure we
created a third set of instances that are exactly the same as those in Andersen et al.
(2011) except that the cost parameters fij > 0 are set to a value that is proportional to
the duration (in periods) of the service.

5.1 Benchmarking the approach

We first compare the performance of the solution approach against near-optimal solutions
produced by a commercial MIP solver. We present characteristics of the five instances
used for these tests in Table 2.
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Instance Terminals Services Periods Service+Holding arcs Commodities
1 5 10 15 150+75 20
2 5 15 20 300+100 25
3 5 15 25 375+125 25
4 5 15 15 225+75 100
5 5 15 15 225+75 200

Table 2: Characteristics of “small” instances.

In Table 3 we report the value of the best solution found by the MIP solver when
run for 10 hours (Best sol), the value of the best solution found by our solution approach
(SSCG), a comparison of the quality of the solutions (Gap) calculated as 100*(SSCG -
Best sol)/(SSCG), the cardinality of θ, (|θ|), the number of cycles generated by SSCG
(SSCG-Cycles), and a comparison of the number of cycles generated (% of cycles) cal-
culated as 100*(SSCG-Cycles/|θ|). The MIP solver is able to solve nearly all of the
instances in one hour, except for instance 3, for which the cardinality of θ led to memory
problems. However, our solution approach was very competitive, producing solutions
that are on average only 1.27% worse. We also note that our solution approach typically
finds this best solution in less than thirty minutes. What is also interesting to note is
that while our approach generates very few cycles, it still generates cycles that can yield
a high quality solution.

Instance Best sol SSCG Gap |θ| SSCG-Cycles % of cycles
1 45,748 45,748 0.00% 5,520 100 1.81%
2 41,656 42,838 2.76% 126,040 238 0.19%
3 n/a 39,796 n/a 1,655,800 275 0.02%
4 162,865 164,210 0.82% 8,985 412 4.59%
5 370,160 375,888 1.52% 8,985 1,242 13.82%

Table 3: Results for “small” instances

We next benchmark the approach on the instances from Andersen et al. (2011). This
test set includes 7 classes of 5 randomly generated instances based on a real-life case study
in rail transportation planning, albeit with an increased numbers of terminals, services,
time periods, and commodities than seen in the study. For these instances the resource
fixed cost, F, is much higher than the routing cost, ckij, and the service fixed cost, fij is
assumed to be 0. The number of resources at each terminal is a random number in the
interval [5,10]. Other characteristics of these instances are given in Table 4.
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Instance Class Terminals Services Periods Service+Holding arcs Commodities
6 5 15 40 600+200 200
7 5 15 50 750+250 400
8 7 30 30 900+210 200
9 7 30 30 900+210 400
10 7 30 50 1500+350 300
11 10 40 30 1200+300 200
12 10 50 30 1500+350 100

Table 4: Characteristics of rail-based instances

We benchmark against a MIP solver solving SNDRC(θ̄) where θ̄ contains the cycles
generated by the column generation portion of our approach. We execute the MIP solver
for ten hours and record the best solution found at the end of one hour and ten hours. We
also execute our solution approach twice, once for one hour and once for ten hours. For
both executions of our approach we also terminate after 500 iterations of slope scaling
or 100 iterations without finding an improved solution.

In Table 5 we compare the quality of the solutions produced by our solution approach
when executed for one and ten hours (rows SSCG 1 Hour and SSCG 10 Hours) with
the solutions produced by the MIP solver after one and ten hours (columns MIP 1 Hour
and MIP 10 Hours). We report the average gap in solution quality over all 35 instances
(column Gap), the number of instances where SSCG produced a better solution (# SSCG
better), and the number of instances where the MIP solver could not find a feasible
solution (# MIP no solution). Finally, because our approach begins by solving SNDRC
with column generation, we have a dual bound on the optimal value of the instance and
thus we can report (column Opt. gap) an optimality gap for the solutions produced by
our approach. We see in Table 5 that our approach significantly outperforms the MIP
solver, including producing in one hour solutions that are 4.5% better than the MIP
solver can produce in 10 hours. Looking at the Opt. gap column we conclude that while
better quality solutions are found when executing our approach for 10 hours, limiting the
method to one hour does not prevent it from finding high quality solutions.

MIP 1 Hour MIP 10 Hours
Gap # SSCG # MIP no Gap # SSCG # MIP no Opt.

better solution better solution gap
SSCG 1 Hour -16.16% 23 14 -4.49% 5 2 10.31%

SSCG 10 Hours -20.14% 26 14 -7.72% 11 2 7.79%

Table 5: Results for rail-based instances

Because our approach generates cycles throughout its execution (and after the linear
relaxation of SNDRC is solved), we also solved SNDRC(θ̄) as a MIP for 10 hours for
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each of the 35 instances where θ̄ contains all the cycles generated by our approach. We
found that, on average, in 10 hours our approach produced a solution that was 2.70%
worse than what the MIP solver could produce. This suggests that the cycles produced
by our approach after the column generation procedure are critical for its success and
that our approach is capable of producing high-quality solutions given the set of cycles
it generates.

We next study in Table 6 the performance of SSCG on the instances from Andersen
et al. (2011) where the cost coefficients fij are positive. We see that while SSCG still
performs well compared to the MIP solver it does not do as well (in comparison) as it
does on the instances where fij = 0. Comparing the # MIP no solution columns in Tables
5 and 6 suggests that instances with fij > 0 are, in a sense, more difficult.

MIP 1 Hour MIP 10 Hours
Gap # SSCG # MIP no Gap # SSCG # MIP no Opt.

better solution better solution gap
SSCG 1 Hour -45.32% 8 15 13.65% 0 7 17.11%

SSCG 10 Hours -58.98% 14 15 4.20% 2 7 9.62%

Table 6: Results for rail-based instances with fij > 0

We next study how sensitive SSCG’s performance is to the distribution of resources
across the network. We consider three cases: (1) each terminal is assigned the same
number of resources (recall that we do not differentiate one resource from another), (2),
the number of resources assigned to a terminal is proportional to the total volume of all
shipments originating at that terminal, and, (3) the number of resources assigned to a
terminal is determined randomly. We note that in each of these cases the instances are
more constrained than those reported on in the previous tables as the total number of
resources assigned to terminals is much lower. We again compare the performance of
SSCG with a MIP solver given the cycles produced by SSCG during its execution. In
this case we ran the approaches for 10 hours on the rail-based instances with fij = 0. We
report in Table 7 the results of our experiments for each of the three cases, including,
for each approach, the (average) optimality gap of the solutions produced (as measured
against the dual bound produced by SSCG), and the number of instances wherein it
produced a feasible solution.

Equal distribution Proportional distribution Random distribution
Opt. # Soln Opt. # Soln Opt. # Soln
gap found gap found gap found

SSCG 7.26% 32 7.30% 32 7.19% 29
MIP 7.30% 31 7.23% 28 7.58% 23

Table 7: Results for different distributions of resources
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We see that the performance of SSCG is robust with respect to the distribution of
resources as the optimality gaps and number of instances wherein the approach was able
to produce a solution are roughly the same across all three cases. While the performance
of SSCG, in terms of the quality of solutions produced, is comparable to the MIP solver,
for every case SSCG is able to produce a feasible solution for more instances than the
MIP solver.

5.2 Understanding why the approach works

We next study the impact of using the cycles generated by solving the linear relaxation of
SNCRC with column generation, initializing the linearization factors based on the solu-
tion to the linear relaxation of SNDRC, and using the diversification and intensification
procedures.

To study the impact of using the cycles generated with column generation on the
quality of the solution produced by the approach we ran the approach on the instances
from Andersen et al. (2011) but skipped solving the SNDRC with column generation.
Instead we began the approach with the cycles generated through the multiple shortest
paths procedure described at the end of Section 4.1. We found that using the cycles
generated by column generation enabled the approach to find solutions that were 5.16%
better on average.

We next focus on understanding whether setting ρkτij (0) = 1 when τ appears in the
solution to the linear relaxation of SNDRC enables the approach to find higher quality
solutions. To do so, we ran the approach on the instances from Andersen et al. (2011) but

set ρkτij (0) =
(
F +

∑
(i,j)∈S r

τ
ijfij

)
�
∑

(i,j)∈S r
τ
ijuij ∀(i, j) ∈ A, k ∈ K, τ ∈ θ. We found

that initializing the linearization factors based on the solution to the linear relaxation of
SNDRC enabled the approach to find solutions that were 3.84% better on average.

Lastly, we focus on understanding the impact of using the diversification and inten-
sification procedures described in Section 4.4. To do so, we ran the algorithm on each of
the 35 instances from Andersen et al. (2011) two more times. The first time, neither the
diversification or intensification procedures are used. The second time, the diversification
procedure is used. Comparing the quality of the solutions produced when the diversifi-
cation procedure is used with when it is not, we saw that solutions were 3.58% better
on average when the diversification procedure is used. Next, comparing the quality of
the solutions produced when only the diversification procedure is used with when it and
the intensification procedure is used, we saw that solutions were 6.41% better on average
when both the diversification and intensification procedures were used.
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6 Conclusions and future work

We extended existing service network design models that recognize the need to manage
facility-based resources when routing commodities to also recognize that there are limits
on the number of resources available at each terminal. Due to the cycle-based nature
of the model proposed, there can be a huge number of variables for instances of even
modest size, too many to enumerate in a reasonable period of time. Thus, for a solution
approach to produce good solutions it must both generate cycles that appear in high-
quality solutions and use them in an effective manner. We presented a solution approach
that combines techniques from multiple research areas to perform both of those tasks.
We next presented an extensive computational study to demonstrate that the method
can produce high quality solutions.

We demonstrated the effectiveness of the approach by comparing the quality of the
solutions it produced with those produced by a state-of-the art commercial solver. To un-
derstand whether the approach is capable of generating “good” cycles, we first considered
instances that were small enough that all the cycle-based variables could be enumerated
and that a commercial solver was able to (usually) solve to optimality. Our experiments
indicated that our approach, while only generating a small fraction of the possible num-
ber of cycles, was still able to produce high quality solutions (as measured against the
near-optimal solution produced by the commercial solver).

We next benchmarked our approach on a set of realistically-sized instances from the
literature. Here, because all variables could not be enumerated, we executed the commer-
cial solver on instances derived from the cycles produced by our approach. We found that
our approach produced both high-quality solutions (as measured against the dual bound
our approach produces) and those solutions were typically better than those produced by
the commercial solver. We conclude from these experiments that our approach is capable
of producing the cycles necessary to produce a high quality solution and of using those
cycles in an effective manner. Finally, like many solution methods, ours relies on various
parameters and design choices. We finished our computational study with experiments
that showed how our choices are critical to the success of the approach.

The primary focus of our next work in this area is to extend the model to also allocate
resources to facilities. Whereas the model we have studied focuses more on integrating
operational-type decision-making into tactical planning formulations, this new model will
instead recognize operational realities when making strategic (fleet dimensioning) and
tactical decisions. While similar to location routing and location-allocation problems, we
believe such a model has not yet been studied and could have many practical uses, such
as helping a trucking company determine driver hiring strategies.
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T. G. Crainic and T. Bektaş. Logistics Engineering Handbook, chapter A brief overview
of intermodal transportation, pages 1–16. Taylor and Francis Group, Boca Raton, FL,
USA, 2008.

T. G. Crainic and K. H. Kim. Intermodal transportation. Transport, Handbooks in
Operations Research and Management Science., 14:467–537, 2007.

T. G. Crainic and G. Laporte. Planning models for freight transportation. European
Journal of Operational Research, 97(3):409–438, 1997.

T. G. Crainic, B. Gendron, and G. Hernu. A slope scaling/lagrangean perturbation
heuristic with long-term memory for multicommodity capacitated fixed-charge network
design. Journal of Heuristics, 10:525–545, 2004.

R. De Franceschi, M. Fischetti, and P. Toth. A new ILP-based refinement heuristic for
vehicle routing problems. Mathematical Programming B, 105:471–499, 2006.

G. Desaulniers, J. Desrosiers, and M. Solomon. Column generation, volume 5. Springer-
Verlag New York Inc, 2005.

A. Erera, M. Hewitt, M. Savelsbergh, and Y. Zhang. Improved load plan design through
integer programming based local search. Transportation Science, to appear, 2012.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
1997.

M. Hewitt, G. Nemhauser, and M. Savelsbergh. Combining Exact and Heuristic Ap-
proaches for the Capacitated Fixed-Charge Network Flow Problem. INFORMS Jour-
nal on Computing, 22(2):314–325, 2010.

D. Kim and P. Pardalos. A solution to the fixed charge network flow problem using a
dynamic slope scaling procedure. Operations Research Letters, 24:195–203, 1999.

D. Kim, C. Barnhart, K. Ware, and G. Reinhardt. Multimodal express package delivery:
a service network design application. Transportation Science, 33:391–407, 1999.

21

Service Network Design with Resource Constraints

CIRRELT-2012-63



M. F. Lai and H. K. Lo. Ferry service network design: optimal fleet size, routing, and
scheduling. Transportation Research Part A: Policy and Practice, 38(4):305–328, 2004.

M. B. Pedersen, T. G. Crainic, and O. B. G. Madsen. Models and tabu search meta-
heuristics for service network design with asset-balance requirements. Transportation
Science, 43(2):158–177, 2009.

K. Smilowitz, A. Atamtürk, and C. Daganzo. Deferred item and vehicle routing within
integrated networks. Transportation Research Part E: Logistics and Transportation
Review, 39(4):305–323, 2003.

D.M.. Vu, T.G. Crainic, and M. Toulouse. A Three-Stage Matheuristic for the Capaci-
tated Multi-commodity Fixed-Cost Network Design with Design-Balance Constraints.
Technical report, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la
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