
The VLDB Journal (2007) 16:389–415
DOI 10.1007/s00778-007-0044-3

REGULAR PAPER

Service oriented architectures: approaches, technologies
and research issues

Mike P. Papazoglou · Willem-Jan van den Heuvel

Received: 6 June 2005 / Accepted: 1 August 2005 / Published online: 3 March 2007
© Springer-Verlag 2007

Abstract Service-oriented architectures (SOA) is an
emerging approach that addresses the requirements of
loosely coupled, standards-based, and protocol-
independent distributed computing. Typically business
operations running in an SOA comprise a number of
invocations of these different components, often in an
event-driven or asynchronous fashion that reflects the
underlying business process needs. To build an SOA
a highly distributable communications and integration
backbone is required. This functionality is provided by
the Enterprise Service Bus (ESB) that is an integration
platform that utilizes Web services standards to support
a wide variety of communications patterns over multiple
transport protocols and deliver value-added capabilities
for SOA applications. This paper reviews technologies
and approaches that unify the principles and concepts
of SOA with those of event-based programing. The
paper also focuses on the ESB and describes a range of
functions that are designed to offer a manageable, stan-
dards-based SOA backbone that extends middleware
functionality throughout by connecting heterogeneous
components and systems and offers integration services.
Finally, the paper proposes an approach to extend the
conventional SOA to cater for essential ESB require-
ments that include capabilities such as service orches-
tration, “intelligent” routing, provisioning, integrity and
security of message as well as service management. The
layers in this extended SOA, in short xSOA, are used to
classify research issues and current research activities.

M. P. Papazoglou (B) · W.-J. van den Heuvel
INFOLAB, Tilburg University, PO Box 90500,
5000 LE, Tilburg, The Netherlands
e-mail: mikep@uvt.nl

Keywords Service oriented architecture ·
Asynchronous and event-driven processing ·
Application and service integration · Enterprise bus ·
Web services

1 Introduction

Modern enterprises need to respond effectively and
quickly to opportunities in today’s ever more competi-
tive and global markets. To accommodate business agil-
ity, enterprises are supposed to streamline (existing)
business processes while exposing the various packaged
and home-grown applications found spread throughout
the enterprise in a highly standardized manner. A con-
temporary approach for addressing these critical issues
is embodied by (Web) services that can be easily assem-
bled to form a collection of autonomous and loosely
coupled business processes.

The emergence of Web services developments and
standards in support of automated business integration
has driven major technological advances in the integra-
tion software space, most notably, the service-oriented
architecture (SOA) ([15,18]). The purpose of this archi-
tecture is to address the requirements of loosely coupled,
standards-based, and protocol-independent distributed
computing, mapping enterprise information systems
(EIS) appropriately to the overall business process flow.

In an SOA, software resources are packaged as “ser-
vices”, which are well defined, self-contained modules
that provide standard business functionality and are
independent of the state or context of other services.
Services are described in a standard definition language,
have a published interface, and communicate with each



390 M. P. Papazoglou, W.-J. van den Heuvel

other requesting execution of their operations in order
to collectively support a common business task or pro-
cess [41]. Services that utilize Web services standards,
e.g., Web Services Description Language (WSDL), Sim-
ple Object Access Protocol (SOAP), and Universal
Description, Discovery and Integration registry (UDDI),
are the most popular type of services available today.

An SOA is designed to allow developers to over-
come many distributed enterprise computing challenges
including application integration, transaction manage-
ment, security policies, while allowing multiple plat-
forms and protocols and leveraging numerous access
devices and legacy systems [1]. The driving goal of SOA
is to eliminate these barriers so that applications inte-
grate and run seamlessly. In this way an SOA can deliver
the flexibility and agility that business users require,
defining coarse grained services, which may be aggre-
gated and reused to facilitate ongoing and changing
needs of business, as the key building blocks of enter-
prises.

In contrast to conventional software architectures pri-
marily delineating the organization of a system in its
(sub)systems and their interrelationships, the SOA cap-
tures a logical way of designing a software system to
provide services to either end-user applications or other
services distributed in a network through published and
discoverable interfaces. SOA is focused on creating a
design style, technology, and process framework that will
allow enterprises to develop, interconnect, and maintain
enterprise applications and services efficiently and cost-
effectively. While this objective is definitely not new [66],
SOA seeks to eclipse previous efforts such as modular
programing, code reuse, and object-oriented software
development techniques.

The SOA as a design philosophy is independent of any
specific technology, e.g., Web-services or J2EE enter-
prise beans. This is achieved by limiting the number of
implementation restrictions to the level of the service
interface. SOA requires that functions, or services, are
defined by a description language (WSDL [30] in the
case of Web services) and have interfaces that perform
useful business processes. The fundamental intent of a
service in an SOA is to represent a reusable unit of busi-
ness-complete work. A service in SOA is an exposed
piece of functionality with three essential properties.
Firstly, an SOA-based service is self-contained, i.e., the
service maintains its own state. Secondly, services are
platform independent, implying that the interface con-
tract to the service is limited to platform independent
assertions. Lastly, the SOA assumes that services can be
dynamically located, invoked and (re-)combined.

Logically, a service in an SOA is a bound pair of a
service interface and a service implementation. Service

interface defines the identity of a service and its invo-
cation logistics. Service implementation implements the
work that the service is designated to do. Because inter-
faces are platform independent, a client from any com-
munication device using any computational platform,
operating system and any programing language can use
the service. These two facets of the service are designed
and maintained as distinct items, though their existence
is highly interrelated.

An SOA provides a flexible architecture that unifies
business processes by modularizing large applications
into services. A client from any device, using any oper-
ating system, in any programing language, can access
an SOA service to create a new business process. An
SOA creates a collection of services that can commu-
nicate with each other using service interfaces to pass
messages from one service to another, or coordinating
an activity between one or more services.

Services used in composite applications may be brand
new service implementations, they may be fragments
of old applications that were adapted and wrapped,
or they may be combinations of the above. Often the
designers for the client of the service do not have direct
access to the service implementation, other than indi-
rectly through its interface. External Internet-based ser-
vice providers and SOA packaged applications simply
offer the interfaces without revealing the inner work-
ings of their environment. Thus, with SOA, an enter-
prise can create, deploy and integrate multiple services
and choreograph new business functions by combining
new and existing application assets into a logical flow.
Accordingly, for well defined and semantically unam-
biguous applications an SOA can serve as an enabler
of just-in-time integration and interoperability of legacy
applications; a key consideration for enterprises that are
seeking to deploy demand driven computing environ-
ments.

Services in an SOA exhibit the following main char-
acteristics [47]:

− All functions in an SOA are defined as services
[7]. This includes pure business functions, business
transactions composed of lower-level functions, and
system service functions as well.

− All services are autonomous. Their operation is per-
ceived as opaque by external components. Service
opaqueness guarantees that external components
neither know nor care how services perform their
function, they merely anticipate that they return the
expected result. The implementation and execution
space of the application providing the desired func-
tionality is encapsulated behind the service inter-
face.



Service oriented architectures 391

− In the most general sense, the interfaces are invo-
cable. This implies that it is irrelevant whether ser-
vices are local or remote, the interconnect scheme
or protocol to effect the invocation, nor which infra-
structure components are required to establish the
connection.

The SOA’s loose-coupling principle—especially the
clean separation of service interfaces from internal
implementations—to guide planning, development,
integration, and management of their network applica-
tion platforms make them indispensable for enterprise-
wide and cross-enterprise applications [7].

Web services seem to become the preferred imple-
mentation technology for realizing the SOA promise
of maximum service sharing, reuse, and interoperabil-
ity [56]. Web services and SOA reduce complexity of
enterprise application eco-systems by encapsulation and
minimizing the requirements for shared understanding
by defining service interfaces in an unambiguous and
transparent manner. Also Web services enable just-in-
time integration and interoperability of legacy appli-
cations. Based on open and pervasive standards, Web
services seem poised for success, as these are only built
on top of existing, ubiquitous infrastructure like HTTP,
SOAP, and XML.

In this article, we survey the underpinnings of SOA,
assessing methodologies and technologies that serve as
the enabling springboard for business integration pro-
jects and deliver a flexible and adaptable environment.
This survey is unique in that it unifies the principles,
concepts and developments in the area of application
integration, middleware, and integration brokers, SOA,
event-driven computing, and adapters, and explains how
they operate as part of an emerging distributed com-
puting technology named the Enterprise Service Bus
(ESB). Moreover, this paper develops and explores an
extension to conventional SOAs, entitled the eXtended
SOA (xSOA). xSOA is an attempt to streamline, group
together, and logically structure the functional require-
ments of complex applications that make use of the
service-oriented computing paradigm. xSOA serves as
the reference for reviewing available technologies, and
assessing open research issues.

2 Service roles in SOA

The SOAs and Web services solutions support two key
roles: a service requestor (client) and service provider,
which communicate via service requests. A role thus
reflects a type of a participant in an SOA ([18,55]).

Service requests are messages formatted according to
the Simple Object Access Protocol (SOAP) [16]. SOAP
entails a light-weighted protocol allowing RPC-like calls
over the Internet using a variety of transport protocols
including HTTP, HTTP/S and SMTP. In principle, SOAP
messages may be conveyed using any protocol as long
as a binding is defined. The SOAP request is received
by a run-time service (a SOAP “listener”) that accepts
the SOAP message, extracts the XML message body,
transforms the XML message into a native protocol,
and delegates the request to the actual business process
within an enterprise.

Requested operations of Web services are implemen-
ted using one or more Web service components [103].
Web service components may be hosted within a Web
services container [36], serving as an interface between
business services and low-level, infrastructure services.
In particular, Web service containers are similar to J2EE
containers [2] providing facilities such as location,
routing, service invocation, and management. In par-
ticular, a service container is the physical manifestation
of the abstract service endpoint, and provides the imple-
mentation of the service interface. In addition, service
containers provide facilities for lifecycle management
such as start up, shutdown, and resource cleanup. A ser-
vice container can host multiple services, even if they are
not part of the same distributed process. Thread pooling
allows multiple instances of a service to be attached to
multiple listeners within a single container [27]. Finally,
the response that the provider sends back to the client
takes again the form of a SOAP envelope carrying an
XML message.

SOAP is by nature a platform-neutral and vendor-
neutral standard. These characteristics allow for a loosely
coupled relationship between requester and provider,
which is especially important over the Internet where
two parties may reside in different organizations or
enterprises. However, SOA does not require the usage
of SOAP. Prior to SOAP, for example, some companies
used IBM’s WebSphere MQ to exchange XML docu-
ments between them [99]. While this type of infrastruc-
ture clearly does not support Web services because they
communicate using SOAP, they are another example
of service invocation in an SOA. Currently WebSphere
MQ is, of course, equipped with direct support for SOAP.

While SOA services are visible to the service client,
their underlying Web components are transparent. The
service consumer does not have to be concerned with the
implementation of the service, as long as it supports the
required functionality, while offering the desired qual-
ity of service. For the service provider, the design of
components, their service exposure and management
reflect key architecture and design decisions that enable



392 M. P. Papazoglou, W.-J. van den Heuvel

Service
requester

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Provider RequesterProvider Requester
Service

requester
Service

requester

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Provider RequesterProvider Requester

Aggregator

Fig. 1 The role of service aggregator

services in SOA. The provider view offers a perspec-
tive on how to design the realization of the component
that offers the services; its architectural decisions and
designs.

The process of a service requester having to directly
interact with a service provider exposes service request-
ers to the potential complexity of discovering, exploring,
negotiating, and reserving services between different
service providers. An alternative approach is for an
organization to provide this combined functionality
directly to the service requester. This service role com-
bines the role of service requester and provider, and
is labeled as a service aggregator [73]. The service
aggregator thus performs a dual role. First, it acts as
an application service provider as it offers a complete
“service” solution by creating composite, higher-level
services, which it provides to the service client. Ser-
vice aggregators can accomplish this composition using
specialized composition languages like BPEL [4] and
BPML [5]. Second, it acts as a service requester as it
may need to request and reserve services from other
service providers. This process is shown in Fig. 1.

While service aggregation may offer direct benefits
to the requester, it is a form of service brokering that
offers a convenience function—all the required services
are grouped “under one roof”. However, an impor-
tant question that needs to be addressed is how does
a service requester determine which one out of a num-
ber of potential application service providers, should be
selected for their service offerings? The service
requester could retain the right to select an application
service provider based on those that can be discovered
from a registry service, such as the UDDI [94]. SOA
technologies, such as UDDI, and security and privacy
standards such as SAML [39] and WS-Trust [3], intro-
duce another role which addresses these issues, called a
service broker [31].

Service brokers are trusted parties that force service
providers to adhere to information practices that comply

Service
Provider

Service
Provider

Service
Client

Service
Client

Service
Broker

Service
Broker

Service
Provider
Service

Provider
Service
Client

Service
Client

Service
Broker
Service
Broker

Fig. 2 Service brokering

with privacy laws and regulations, or in the absence of
such laws, industry best practices. In this way, broker-
sanctioned service providers are guaranteed to offer ser-
vices that are in compliance with local regulations and
create a more trusted relationship with customers and
partners. A service broker maintains an index of avail-
able service providers. The service broker is able to “add
value” to its registry of application service providers by
providing additional information about their services.
This may include differences about the reliability, trust-
worthiness, the quality of the service, service level agree-
ments, and possible compensation routes to name a few.

Figure 2 shows an SOA where a service broker serves
as an intermediary that is interposed between service
requesters and service providers. Figure 2 falls under
this category with the service registry (UDDI operator)
being a specialized instance of a service broker. Under
this configuration, the UDDI registry serves as a bro-
ker where the service providers publish the definitions
of the services they offer using WSDL and where the
service requestors find information about the services
available.

3 Enterprise service bus

Essentially, Web services denote an important technol-
ogy for implementing SOAs; however, other more
conventional programing languages or middleware plat-
forms may be adopted as well [91]. In particular, all tech-
nologies that directly implement service interfaces with
WSDL, and communicate with XML messages, can be
involved in SOA. As indicated earlier, other technolo-
gies such as, for instance, established middleware tech-
nologies like J2EE, CORBA, and IBM’s WebSphere
MQ, can now also participate in an SOA, using new
features that work with WSDL.



Service oriented architectures 393

Fig. 3 Enterprise service bus
connecting diverse
applications and technologies

Service 
orchestration

Custom 
applications

Distributed 
query engine

Adapters Web 
Services

MQ 
gateway

JMS/
J2EE

Portals

Reliable Asynchronous Secure Messaging

service interfaceservice interface

Service 
orchestration

Custom 
applications

Distributed 
query engine

Adapters Web 
Services

MQ 
gateway

JMS/
J2EE

Portals

Reliable Asynchronous Secure Messaging

Service 
orchestration

Service 
orchestration

Custom 
applications

Custom 
applications

Distributed 
query engine
Distributed 

query engine
Adapters

WebSphere
, .NET
apps

Java apps

Web 
Services

MQ 
gateway

Mainframe 
& legacy

apps

JMS/
J2EE

Data sources Enterprise
applications

Multi-platform
support

Portals

Reliable Asynchronous Secure Messaging

service interfaceservice interface

Fundamentally, there are only two options for solving
technology and information model mismatches:

1. Build the client module to conform exactly to the
characteristics of every server module that it will
invoke.

2. Insert a layer of communication and integration
logic between the client and server modules.

The first approach requires to “develop an interface”
for each connection, resulting in a point-to-point topol-
ogy. This topology has long been known to be hard to
manage and maintain as it introduces a tighter form
of coupling to harmonize transport protocols, document
formats, interaction styles, etc. [61]. This makes it harder
to change either of the two systems involved in an inter-
change without impacting other systems. In addition,
point-to-point integration is not scalable and very com-
plex as the number of integration points increases as the
number of systems increases and can quickly become
unmanageable. Hence, the broad use of Enterprise
Application Integration middleware supporting a vari-
ety of hub-and-spoke integration patterns [74]. This
leaves the second approach as the most viable alter-
native.

The second approach introduces an integration layer
that must support interoperability among, and coex-
ist with deployed infrastructure and applications. The
requirements to provide an appropriately capable and
manageable integration infrastructure for Web services
and SOA are coalescing into the concept of the ESB
([27,82]). The ESB exhibits two prominent features [52].
Firstly, it promotes loose coupling of the systems tak-
ing part in an integration. Secondly, the ESB can break
up the integration logic into distinct easily manageable
pieces.

The ESB is an open, standards-based message bus
designed to enable the implementation, deployment,

and management of SOA-based solutions with a focus
on assembling, deploying, and managing distributed
SOA. The ESB provides the distributed processing, stan-
dards-based integration, and enterprise-class backbone
required by the extended enterprise [52]. The ESB is
designed to provide interoperability between large-
grained applications and other components via stan-
dards-based adapters and interfaces. The bus functions
as both transport and transformation facilitator to allow
distribution of these services over disparate systems and
computing environments.

Conceptually, the ESB has evolved from the store-
and-forward mechanism found in middleware products,
e.g., Message Oriented Middleware, and combines con-
ventional EAI technologies with Web services, XSLT
[98], orchestration, and choreography technologies, e.g.,
BPEL, WS-CDL, and ebXML BPSS. Physically, an ESB
provides an implementation backbone for an SOA. It
establishes proper control of messaging as well as applies
the needs of security, policy, reliability, and accounting,
in an SOA architecture. The ESB, is responsible for the
proper control, flow, and translations of all messages
between services, using any number of possible messag-
ing protocols. An ESB pulls together applications and
discrete integration components to create assemblies of
services to form composite business processes, which in
turn automate business functions in an enterprise.

Figure 3 depicts a simplified architecture of an ESB
that integrates a J2EE application using JMS, a .NET
application using a C# client, an MQ application that
interfaces with legacy applications, as well as external
applications and data sources using Web services. An
ESB, as portrayed in Fig. 3, enables the more efficient
value-added integration of a number of different
application components, by positioning them behind a
service-oriented facade and by applying Web services
technology. In this figure, a distributed query engine,
which is normally based on XQuery [14] or SQL, enables
the creation of data services to abstract the complexity



394 M. P. Papazoglou, W.-J. van den Heuvel

of underlying data sources. A portal in Fig. 3 is a user-
facing aggregation point of a variety resources repre-
sented as services, e.g., retail, divisional, corporate
employee, and business partner portals.

Endpoints in the ESB, depicted in Fig. 3, provide
abstraction of physical destination and connection infor-
mation (like TCP/IP hostname and port number) tran-
scending plumbing level integration capabilities of
traditional, tightly coupled, distributed software compo-
nents. Endpoints allow services to communicate using
logical connection names, which an ESB will map to
actual physical network destinations at runtime. This
destination independence offers the services that are
connected to the ESB, the ability to be upgraded, moved,
or replaced without having to modify code and disrupt
existing ESB applications. For instance, an existing ESB
invoicing service could be easily upgraded by a new ser-
vice, without disrupting the execution of other applica-
tions. Additionally, duplicate processes can be set up to
handle fail-over if a service is not available. Endpoints
also provide the asynchronous and highly reliable com-
munication between service containers. The endpoints
can be configured to use several levels of quality of ser-
vice, which guarantee communication despite network
failures and outages [27].

To successfully build and deploy a distributed SOA,
there are four primary aspects that need to be addressed:

1. Service enablement Each discrete application needs
to be exposed as a service.

2. Service orchestration Distributed services need to
be configured and orchestrated in a unified and
clearly defined distributed process.

3. Deployment Emphasis should be shifted from test
to the production environment, addressing security,
reliability, and scalability concerns.

4. Management Services must be audited, maintained
and reconfigured. The latter requirements requires
that corresponding changes in processes must be
made without rewriting the services or underlying
application.

Services can be programed using application devel-
opment tools (like Microsoft .NET, Borland JBuilder, or
BEA WebLogic Workshop), which allow new or existing
distributed applications to be exposed as Web services.
Technologies like J2EE Connector Architecture (JCA)
may also be used to create services by integrating pack-
aged applications (like ERP systems), which would then
be exposed as services.

To achieve its operational objectives, the ESB draws
from traditional EAI broker functionality in that it

provides integration services such as connectivity and
routing of messages based on business rules, data trans-
formation, and adapters to applications [28]. These capa-
bilities are themselves SOA-based in that they are spread
out across the bus in a highly distributed fashion and
hosted in separately deployable service containers. This
is crucial difference from traditional integration brokers,
which are usually highly centralized and monolithic in
nature [74]. The SOA approach allows for the selective
deployment of integration broker functionality exactly
where it is needed with no additional over-bloating. The
distributed nature of the ESB container model allows
individual event-driven services to plugged into the ESB
backbone on an as needed basis, be highly decentralized
and work together in a highly distributed fashion, while
they are scaled independently from one another. This
is illustrated in Fig. 3 where applications running on
different platforms are abstractly decoupled from each
other, and can be connected together through the bus
as logical endpoints that are exposed as event-driven
services.

3.1 Event-driven SOA

In the enterprise context, business events, e.g., a cus-
tomer order, the arrival of a shipment at a loading dock,
or the payment of a bill, may affect the normal course
of a business process at any point in time [64]. This
implies that business processes cannot be designed a pri-
ori assuming that events are predetermined following a
particular flow, but must be defined dynamically, driven
by incoming, parallel and a synchronous event flows.
Supporting enterprise applications then must commu-
nicate using an event-driven SOA ([27,89]). An event-
driven SOA thus denotes an architectural approach on
how enterprises could implement an SOA, respecting
the highly volatile nature of business events. An ESB
requires that applications and event-driven services are
tied together in the context of an SOA in a loosely cou-
pled fashion. This allows them to operate independently
from each other while still providing value to a broader
business function [28].

In an ESB-enabled event-driven SOA, applications
and services are treated as abstract service endpoints,
which can readily respond to asynchronous events [28].
The event-driven SOA provides a means of abstracting
away from the details of underlying service connectivity
and protocols.

Services in this SOA variant are not required to under-
stand protocol implementations or have any knowledge
on routing of messages to other services. An event source
typically sends messages through some middleware
integration mechanism like an ESB, and then the



Service oriented architectures 395

Fig. 4 Simplified distributed
procurement process

ReplenishmentReplenishment
serviceservice

Sourcing Sourcing 
serviceservice

Purchase orderPurchase order
serviceservice

Invoicing Invoicing 
serviceservice

Supplier orderSupplier order
serviceservice

Sending 
application

Receiving 
application

ReplenishmentReplenishment
serviceservice

Sourcing Sourcing 
serviceservice

Purchase orderPurchase order
serviceservice

Invoicing Invoicing 
serviceservice

Supplier orderSupplier order
serviceservice

Sending 
application

Receiving 
application

middleware publishes the messages to the services that
have subscribed to the events. The event itself encap-
sulates an activity, constituting a complete description
of a specific action. To achieve its functionality, the ESB
supports both the established Web services technologies,
including, SOAP, WSDL, and BPEL, as well as emerg-
ing standards such as WS-ReliableMessaging [49] and
WS-Notification [44].

As we already explained earlier in the previous sec-
tion, in a brokered SOA (see Fig. 2) the only depen-
dency between the provider and client of a service is
the service contract (described in WSDL), which the
third-party service registry advertises. The dependency
between the service provider and the service client is a
run-time dependency, not a compile-time dependency.
The client obtains and uses all the information it needs
about the service at run-time. The service interfaces are
discovered dynamically, and messages are constructed
dynamically. The service consumer does not know the
format of the request message or response message or
the location of the service until it needs a particular
service.

Service contracts and other associated meta-data,
including meta-data about policies and agreements [33],
lay the groundwork for enterprise SOAs that involve
many clients operating with a complex, heterogeneous
application infrastructure. However, many of today’s
SOA implementations are not that elaborate. In many
cases, when small or medium enterprises implement
SOA, neither service interfaces in WSDL nor UDDI
look-ups tend to be available. This is often either due to
the fact that the SOA in place provides for limited func-
tionality or because sufficient security arrangements are
not yet in place. In these cases, an event-driven SOA pro-
vides a more lightweight, straightforward set of technol-
ogies to build and maintain the service abstraction for
client applications [13].

To achieve a more lightweight arrangement an event-
driven SOA requires that two participants in an event

(server and client) be fully decoupled [13], not just
loosely coupled. With fully decoupled exchanges the
two participants in an event need not have any knowl-
edge about each other, before engaging in some busi-
ness transaction. In this case, there is no need for a
service (WSDL) contract that explicates the behavior of
a server to the client. The only relationship is indirect,
through the ESB, to which clients and servers are sub-
scribed as subscribers and publishers of events. Despite
the notion of decoupling in event-driven SOA, recip-
ients of events require meta-data about those events.
The publishers of the events often organize them on the
basis of some (topical) taxonomy, which is a form of
meta-data. Alternatively, meta-data is available about
the event, including its size, format, etc. In contrast to
service interfaces, however, meta-data that is associated
with events is generated on an ad hoc basis, instead of
being static and predefined. In particular, ad hoc meta-
data describe published events that consumers can sub-
scribe to, the interfaces that service clients and providers
exhibit as well as the messages they exchange, and even
the agreed format and context of those meta-data, with-
out falling into the formal service contracts themselves.

To effectively orchestrate the behavior of services in
a distributed process, the ESB infrastructure includes a
distributed processing framework and XML-based ser-
vices. To exemplify these features, a simplified distrib-
uted procurement business process as shown in Fig. 4,
will be configured and deployed using an ESB. The fig-
ure shows that when an automated inventory system
triggers a replenishment signal, an automated procure-
ment process flow is triggered and a series of logical
steps need to be performed. First the sourcing service
queries the enterprise’s supplier reference database to
determine the list of possible suppliers, who could be pri-
oritized on the basis of existing contracts and supplier
metrics. A supplier is then chosen based on some crite-
rion and the purchase order is automatically generated
in an ERP purchasing module and is sent the vendor of



396 M. P. Papazoglou, W.-J. van den Heuvel

Fig. 5 Enterprise service bus
connecting remote services

Enterprise Service Bus

ReplenishmentReplenishment
serviceservice

OrderOrder
applicationapplication

rPurchase OrderPurchase Order
serviceservice

ERPERP

Supplier orderSupplier order
serviceservice

J2EEJ2EE
applicationapplication

SOAP/
HTTP

XML/
JMS

SOAP/
JMS

Legacy ccLegacy cc
applicationapplication

InvoiceInvoice
applicationapplication

XML/
JMS

ProcurementProcurement

SupplierSupplier
FinanceFinance

InventoryInventory

JCAJCA
connectorconnector

InvoicingInvoicing
serviceservice

Credit check Credit check 
serviceservice

Enterprise Service Bus

ReplenishmentReplenishment
serviceservice

OrderOrder
applicationapplication

rPurchase OrderPurchase Order
serviceservice

ERPERP

Supplier orderSupplier order
serviceservice

J2EEJ2EE
applicationapplication

Supplier orderSupplier order
serviceservice

J2EEJ2EE
applicationapplication

Supplier orderSupplier order
serviceservice

J2EEJ2EE
applicationapplication

SOAP/
HTTP

XML/
JMS

SOAP/
JMS

Legacy ccLegacy cc
applicationapplication

InvoiceInvoice
applicationapplication

XML/
JMS

ProcurementProcurement

SupplierSupplier
FinanceFinance

InventoryInventory

JCAJCA
connectorconnector

InvoicingInvoicing
serviceservice

Credit check Credit check 
serviceservice

choice. Finally, this vendor uses an invoicing service to
bill the customer.

The ESB distributed processing infrastructure is
aware of applications and services and uses content-
based routing facilities to make informed decisions
about how to communicate with them. The services that
are part of the distributed procurement business process
depicted in Fig. 4 can be seen in use in Fig. 5. For this
example, the inventory is assumed to be out of stock, and
the replenishment message is routed to a supplier order
service. Although this figure shows only a single supplier
order service as part of the inventory, in reality a pleth-
ora of supplier services may exist. The supplier order
service, which executes a remote Web service at a cho-
sen supplier to fulfil the order, generates its output in an
XML message format that is not understood by the pur-
chase order service. To avoid heterogeneity problems,
the message from the supplier order service leverages
the ESB’s transformation service to convert the XML
into a format that is acceptable by the purchase order
service. Fig. 5 also shows that JCA is used within the
ESB to allow legacy applications, such as credit check
service, to be placed onto the ESB through JCA resource
adapters.

Once services that are part of the distributed pro-
curement business process depicted in Fig. 4 have been
chained together, it is essential to provide a way to man-
age and reconfigure them to react to changes in busi-
ness processes. Ideally, this could be achieved through
a sophisticated graphical business process management
tool that can be used to configure, deploy, and manage

services and endpoints. This allows the free movement
and reconfiguration of services without requiring re-
writing or modifying the services themselves.

3.2 Key capabilities

In order to implement an SOA, both applications and
infrastructure must support SOA principles (see Sect. 1).
Enabling an application for SOA involves the creation
of service interfaces to existing or new functions, either
directly or through the use of adaptors. Enabling the
infrastructure, at the most basic level, involves provision
of the capabilities to route and deliver service requests
to the correct service provider. However, it is also vital
that the infrastructure supports safe substitution of one
service implementation by another, without any effect to
the clients of that service. This requires not only that the
service interfaces be specified according to SOA princi-
ples, but also that the infrastructure allows client code
to invoke services irrespectively of the service location
and the communication protocol involved. Such service
routing and substitution are among the many capabil-
ities of the ESB. Additional capabilities can be found
in the following list that describes detailed functional
requirements for an ESB.

We consider the following ESB capabilities list to be
necessary to support the functions of a useful and mean-
ingful ESB. Some of the ESB functional requirements
described in the list below have also been discussed by
other authors such as ([23,27,47,79]).



Service oriented architectures 397

− Leveraging existing assets Legacy applications are
technically obsolete mission critical elements of an
organization’s infrastructure—as they form the core
of larger enterprise’s business processes—but are
too frail to modify and too important to discard and
thus must be reused. Strategically, the objective is
to build a new architecture that will yield all the
value hoped for, but tactically, legacy assets must be
leveraged and integrated with modern technologies
and applications.

− Service communication capabilities A critical ability
of the ESB is to route service interactions through a
variety of protocols, and to transform from one pro-
tocol to another where necessary. Another impor-
tant aspect of an ESB implementation is the capacity
to support service messaging models consistent with
the SOA interfaces, as well as the ability of transmit-
ting the required interaction context, such as secu-
rity, transaction, or message correlation information.

− Dynamic connectivity capabilities Dynamic connec-
tivity pertains to the ability to connect to Web ser-
vices dynamically without using a separate static
API or proxy for each service. Most enterprise appli-
cations today operate on a static connectivity mode,
requiring some static piece of code for each service.
Dynamic service connectivity is the key capability
for a successful ESB implementation. The dynamic
connectivity API is the same regardless of the ser-
vice implementation protocol (Web services, JMS,
EJB/RMI, etc.).

− Topic/content-based routing capabilities The ESB
should be equipped with routing mechanisms to
facilitate not only topic-based routing but also, more
sophisticated, content-based routing. Topic-based
routing assumes that messages can be grouped into
fixed, topical classes, so that subscribers can expli-
cate interest in a topic and as a consequence receive
messages associated with that topic [71]. Content-
based routing on the other hand allows subscrip-
tions on constraints of actual properties (attributes)
of business events. The content of the message thus
determines their routing to different endpoints in
the ESB infrastructure. For example, if a manu-
facturer provides a wide variety of products to its
customers, only some of which are made in-house,
depending on the product ordered it might be nec-
essary to direct the message to an external supplier,
or route it to be processed by an internal warehouse
fulfilment service. In a typical application, a message
is routed by opening it up and applying a set of rules
to its content to determine the parties interested in
its content. Content-based routing is often depen-
dant on the message constructed in XML, and will

usually be built on top of Message Oriented Mid-
dleware, or JMS based messaging. Such ESB capa-
bilities could be based on emerging standard efforts
such as WS-Notification.
WS-Notification defines a general, topic-based Web
service system for publish and subscribe interac-
tions, which relies on the WS-Resource framework
[43]. WS-Notification [44] is a family of related spec-
ifications that define a standard Web services
approach to notification using a topic-based pub-
lish/subscribe pattern. The WS-Notification speci-
fication defines standard message exchanges to be
implemented by service providers that wish to par-
ticipate in notifications and standard message
exchanges—allowing publication of messages from
entities that are not themselves service providers.
It also allows expressing operational requirements
expected of service providers and requesters that
participate in notifications. WS-Notification allows
notification messages to be attached to WSDL Port-
Types. The current WS-Notification specification
provides support for both brokered as well as peer-
to-peer publish/subscribe.

− Endpoint discovery with multiple quality of service
capabilities The ESB should support the fundamen-
tal SOA need to discover, locate, and bind to ser-
vices. Increasingly these capabilities will be based
around Web services standards such as WSDL,
SOAP, UDDI, and WS-PolicyFramework. As many
network endpoints can implement the same service
contract, the ESB should support service interac-
tions with different values to the business. Several
scenarios make it desirable for the client to select
the best endpoint at run-time, rather than hard-
coding endpoints at build time. The ESB should
therefore be capable of supporting various quali-
ties of service. Clients can query a Web service, such
as an organizational UDDI service, to discover the
best instance with which to interact based on QoS
properties. Ideally, these capabilities should be con-
trolled by declarative policies associated with the
services involved using a policy standard such as the
WS-PolicyFramework [9].

− Integration capabilities To support SOA in a heter-
ogeneous environment, the ESB needs to integrate
with a variety of systems that do not directly support
service-style interactions. These may include legacy
systems, packaged applications, COTS components,
etc. When assessing the integration requirements for
ESB, several types or “styles” of integration must
be considered. Due their importance ESB integra-
tion styles are discussed in some detail later in this
article.



398 M. P. Papazoglou, W.-J. van den Heuvel

− Transformation capabilities The various compo-
nents hooked into the ESB have their own expec-
tations of messaging models and data formats, and
these might differ from other components. A major
source of value in an ESB is that it shields any indi-
vidual component from any knowledge of the imple-
mentation details of any other component. The ESB
transformation services make it possible to ensure
that messages and data received by any component
is in the format it expects, thereby removing the
burden to make changes. The ESB plays a major
role in transformations between different, heterog-
enous data and messaging models, whether between
legacy data formats (e.g., a COBOL/VSAM applica-
tion, running on an OS/390 host) and XML, between
basic XML formats, and Web services messages, or
between different XML formats (e.g., transforming
an industry standard XML message to a proprietary
or custom XML format).

− Reliable messaging capabilities Reliable messag-
ing refers to the ability to queue service request
messages and ensure guaranteed delivery of these
messages to the destination. It also includes the
ability to respond, if necessary, back to the requestor
with response messages. Reliable messaging sup-
ports asynchronous store-and-forward delivery as
well as guaranteed delivery capabilities. Primarily
used for handling events, this capability is crucial
for responding to clients in an asynchronous man-
ner, and for a successful ESB implementation.

− Security capabilities Generically handling and
enforcing security is a key success factor for ESB
implementations. The ESB needs to both provide
a security model to service consumers and inte-
grate with the (potentially varied) security models
of service providers. Both point-to-point (e.g., SSL
encryption) and end-to-end security capabilities will
be required. These end-to-end security capabilities
include federated authentication, which intercepts
service requests and adds the appropriate username
and credentials; validation of each service request
and authorization to make sure that the sender has
the appropriate privilege to access the service; and,
lastly, encryption/decryption of XML content at the
element level for both message requests and res-
ponses. To address these intricate security require-
ments trust models, WS-Security [8] and other
security related standards have been developed.

− Long running process and transaction capabilities
Service-orientation, as opposed to distributed object
architectures such as .NET or J2EE, make it possi-
ble to more closely reflect real-world processes and
relationships. It is believed that SOA represents a

much more natural way to model and build software
that solves real-world business processing needs [7].
Accordingly, the ESB should provide the ability to
support business processes and long running ser-
vices—services that tend to run for long duration,
exchanging message (conversation) as they progress.
Typical examples are an online reservation system,
which interacts with the user as well as various
service providers (airline ticketing, car reservation,
hotel reservation, etc.).
In addition, it is of vital importance that the ESB
provides certain transactional guarantees. More spe-
cifically, the ESB needs to be able to provide a means
for various applications to interact and message with
each other and to recover should some form of tech-
nical or process failure occur. The challenge at hand
is to ensure that complex transactions are handled in
a highly reliable manner and if failure should occur,
transactions should be capable of rolling back pro-
cessing to the original, pre-request state.

− Management and monitoring capabilities In an SOA
environment, applications cross system (and even
organizational) boundaries, they overlap, and they
can change over time. Managing these applications
is a serious challenge [6]. Examples include dynamic
load balancing, fail-over when primary systems go
down, and achieving topological or geographic affin-
ity between the client and the service instance, and
so on. Effective systems and application manage-
ment in an ESB require a management framework
that is consistent across an increasingly heteroge-
neous set of participating component systems, while
supporting complex aggregate (cross-component)
management use cases, like dynamic resource pro-
visioning and demand-based routing, service-level
agreement enforcement in conjunction with policy-
based behavior. The latter implies the ability to
select service providers dynamically based on the
quality of service they offer compared to the busi-
ness value of individual transactions.
An additional requirement for a successful ESB
implementation is the ability to monitor the health,
capacity, and performance of services. Monitoring is
the ability to track service activities that take place
via the bus and accommodate visibility into various
metrics and statistics. Of particular significance is
the ability to be able to spot problems and excep-
tions in the business processes and move toward
resolving them as soon as they occur. Process moni-
toring capabilities are currently provided by toolsets
in platforms for developing, deploying and manag-
ing service applications, such as, for instance, Web-
Logic Workshop.



Service oriented architectures 399

− Scalability capabilities With a widely distributed
SOA, there will be the need to scale some of the ser-
vices or the entire infrastructure to meet integration
demands. For example, transformation services are
typically very resource intensive and may require
multiple instances across two or more computing
nodes. At the same time, it is necessary to create
an infrastructure that can support the large nodes
present in a global service network. The loose cou-
pled nature of an SOA requires that the ESB uses a
decentralized model to provide a cost effective solu-
tion that promotes flexibility in scaling any aspect of
the integration network. A decentralized architec-
ture enables independent scalability of individual
services as well as the communications infrastruc-
ture itself.

As ESB integration capabilities in the above list are
central in understanding the material that follows and
a key element of the ESB when performing service-
oriented integration, we shall consider them in some
detail in the remainder of this section.

3.3 Integration solutions

ESBs employ a service-oriented integration solution
that leverages among other issues open standards, loose
coupling, and the dynamic description and discovery
capabilities of Web services to reduce the complexity,
cost, and risk of integration. Other salient characteris-
tics of the ESB architectural integration style are that
it is technology agnostic and can reuse functionality in
existing applications to support new application devel-
opment. There is a series of important technical require-
ments that need to be addressed by a service-oriented
integration solution ([47,52]). These include:

Integration at the presentation-tier Integration at the
presentation-tier is concerned with how the complete
set of applications and services a given user accesses
are fabricating a highly distributed yet unified portal
framework that provides a usable, efficient, uniform,
and consistent presentation-tier. In this way, the ESB
can provide one face to the users resulting in consis-
tent user experience, with unified information delivery
while allowing underlying applications remain distrib-
uted. Two complementary industry standards that are
emerging in the portal space can assist with these efforts
[57]:

1. JSR 168 This is an industry standard that defines a
standard way to develop portlets. It allows portlets
to be interoperable across portal vendors. For exam-

ple, portlets developed for BEA WebLogic Portal
can be interoperable with IBM Portal. This allows
organizations to have a lower dependency on the
portal product vendor.

2. WSRP (Web Service for Remote Portals) This is
an industry standard that allows remote portlets to
be developed and consumed in a standard manner
and facilitates federated portals. WSRP combines
the power of Web services and portal technologies
and is fast becoming the major enabling technology
for distributed portals in an enterprise.

JSR 168 complements WSRP by dealing with local
rather than distributed portlets. A portal page may have
certain local portlets which are JSR 168 compliant and
some remote, distributed portlets that are executed in
a remote container. With JSR 168 and WSRP matur-
ing, the possibility of a true ESB federated portal can
become a reality.

Application connectivity Application connectivity is
an integration style concerned with all types of con-
nectivity that the ESB integration layer must support.
At the infrastructure level, this means concerns such as
synchronous and asynchronous communications, rout-
ing, transformation, high speed distribution of data, and
gateways and protocol converters. On the processing
level, application connectivity also relates to the visual-
ization of input and output, or sources and sinks.

Visualization signifies the fact that input is received
and passed to applications in the ESB in a source-
neutral way. Special purpose front-end device and
protocol handlers should make that possible. For con-
nectivity, an ESB can utilize J2EE components such as
the Java Message Service for MOM connectivity, and
J2EE Connector Architecture for connecting to appli-
cation adapters. An ESB can also integrate easily with
applications built with .NET, COM, C#, C++ and C. In
addition, an ESB can integrate easily with any applica-
tion that supports SOAP and Web services.

Application integration Application integration is
concerned with building and evolving an integration
backbone capability that enables fast assembly and dis-
assembly of business software components. Application
integration is an integral part of the assembly process
that facilitates strategies which combine legacy appli-
cations, acquired packages, external application sub-
scriptions and newly built components. The ESB should
focus on a service-based application integration style
that enables better-structured integration solutions that
deliver:

− Applications comprised interchangeable parts that
are designed to be adaptable to business and tech-
nology change.



400 M. P. Papazoglou, W.-J. van den Heuvel

− Evolutionary application portfolios that protect
investment and can respond rapidly to new require-
ments and business processes

− Integration of various platform and component
technologies.

Process integration Process integration is concerned
with the development of automated processes that map
to and provide solutions for business processes, inte-
gration of existing applications into business processes,
and integrating processes with other processes. Process-
level integration at the level of ESB generally includes
the integration of business processes and applications
within the enterprise (viz. EAI solutions). It may also
involve the integration of whole processes, not simply
individual services, from external sources, such as supply
chain management or financial services that span multi-
ple institutions (viz. e-Business integration solutions).

Data integration Information integration [76] is the
process of providing a consistent access to all the data in
the enterprise, by all the applications that require it, in
whatever form they need it, without being restricted by
the format, source, or location of the data. This require-
ment, when implemented, might involve adapters and
transformation facilities, aggregation services to merge
and reconcile disparate data, e.g., merging two customer
profiles, and validation to ensure data consistency, e.g.,
minimum income should be equal to or exceed a certain
threshold. Data should be transformed irrespectively of
the formats under which they exist, the operating system
that manages the data, and the location where the data
are stored.

Integration design and development methodology
One of the requirements for the application develop-
ment environment must be that it takes into account
all the styles and levels of integration that could be
implemented within the enterprise, and provide for their
development and deployment. To be truly robust, the
development environment must rely on a methodology
that clearly prescribes how services and components are
designed and built in order to facilitate reuse, eliminate
redundancy, and simplify integration, testing, deploy-
ment, and maintenance.

All of the styles of integration listed above will have
some form of incarnation within any enterprise, even
though in some cases they might be simplified or not
clearly defined. It is important to note that all integra-
tion styles must be considered when embarking on an
ESB implementation.

3.4 Enabling technologies

In this section, we will review the technological under-
pinnings of ESBs in some more detail. Fundamentally,

ESBs fuse the following four types of technologies: inte-
gration brokers, application servers, business process
management, and adapters.

3.4.1 Integration brokers

A prominent technology to interconnect disparate busi-
ness applications, many of which are home-grown, ERP
systems or legacy systems, constitutes integration bro-
kers. Integration brokers come in many manifestations,
ranging from early application-to-application brokers to
more sophisticated broker topologies managing transac-
tions, security, (resource) adapters and application pro-
tocols [22]. Some examples of commercially available
integration brokers include IBM’s WebSphere Integra-
tion Broker, PeopleSoft’s AppConnect, and Sun ONE
Integration Server.

Figure 6 presents a high-level view of the typical archi-
tecture for implementing integration broker. In particu-
lar, this figure illustrates the use of an integration broker
to integrate functions and information from a variety of
back-end EIS. To effectively illustrate the workings of
the integration broker, we use the simplified distributed
procurement process shown in Fig. 4. Figure 6 exempli-
fies that when an automated inventory system triggers
a replenishment signal, an automated procurement pro-
cess flow is triggered and first the enterprise’s supplier
reference database is queried to determine the list of
possible suppliers, who could be prioritized on the basis
of existing contracts and supplier metrics. A supplier is
then chosen based and the purchase order is automat-
ically generated in the ERP purchasing module and is
sent to the vendor of choice.

The figure illustrates that the integration-broker is the
system centrepiece. The integration-broker facilitates
information movement between two or more resources
(source and target applications, indicated by solid lines)
in Fig. 6, and accounts for differences in application
semantics and heterogeneous platforms. The various
existing (or component) EIS, such as customer relation-
ship management, ERP systems, transaction processing
monitors, legacy systems, and so on, in this configura-
tion are connected to the integration broker by means
of resource adapters. This is indicated by the presence of
dotted lines in Fig. 6. A resource adapter is used to pro-
vide access to a specific EIS. The purpose of the adapters
is to provide a reliable insulation layer between appli-
cation APIs and the messaging infrastructure. These
adapters enable non-invasive application integration in
a loosely coupled configuration.

Integration brokers are able to share information
with a multitude of systems by using an asynchronous,
event-driven mechanism thus they constitute an ideal



Service oriented architectures 401

Fig. 6 Integration broker integrating disparate back-end systems

support framework for asynchronous business processes.
Integration brokers, as realized in enterprise applica-
tion integration suites, have historically been used for
the integration of packaged applications via specific and
often heavily customized adapters. Nowadays, this type
of middleware is responsible for brokering messages
exchanged between multiple applications, providing the
ability to transform, store, and route messages, also the
ability to apply business rules and respond to events.

The integration broker architecture presents several
advantages as it tries to reduce the application integra-
tion effort by providing pre-built functionality common
to many integration scenarios. The value proposition
rests on reuse (in terms of middleware infrastructure
and the application integration logic) across multiple
applications and initiatives. Modern integration brokers
incorporate integration functionality such as transfor-
mation facilities, process integration, business process
management and trading partner management function-
ality, packaged adapters, and user-driven applications
through front-end capabilities such as Java Server Pages
(JSP).

3.4.2 Application servers

Application servers are widely used to develop and
deploy back-end server logic. Application servers enable
the separation of application (or business) logic and
interface processing and also coordinate many resource

connections. The most prominent features of application
servers include secure transactional execution environ-
ment, load balancing, application-level clustering across
multiple servers, failover management should one of
these servers break down [61]. In addition, application
servers provide application connectivity and thus access
to data and functions associated with EIS applications,
such as ERP, CRM, and legacy applications. While appli-
cation servers are focused on supporting new application
development, they do not natively support integration.

Application servers, such as SUN’s J2EE [85], IBM’s
WebSphere [40], and Microsoft’s .NET [62], typically
provide Web connectivity for extending existing solu-
tions and bring transaction processing mechanisms to
the Web. In essence, an application server is simply a
collection of services that support the development, run-
time execution, and management of business logic for
Web-enabled applications. The application server mid-
dleware enables the functions of handling transactions
and extending back-end business data and applications
to the Web. Application servers retrieve information
from many existing enterprise systems and expose them
through a single interface, typically a Web browser. This
makes application servers ideal for portal-based EAI
development. Unlike integration brokers, they do not
integrate back-end systems directly.

Because application servers were created for
Web-based transactions and application development
and because of their ability to provide component-
based integration to back-end applications, they are



402 M. P. Papazoglou, W.-J. van den Heuvel

Fig. 7 Application server
providing access to back-end
systems

particularly useful as support framework for integrat-
ing business processes.

Figure 7 illustrates the use of an application server for
a wholesale application that brings together ERP capa-
bilities with sophisticated customer interfaces to open
up new models of sales and distribution. The compo-
nent wrappers in this figure facilitate point-integration
of component systems, e.g., ERP, CRM, and distributor
databases, as they introduce each of them to the appli-
cation server. A component wrapper may be defined
as a software layer that encapsulates legacy data and
logic and defines its services in the wrapper API. The
wrapper API mediates between calls from client appli-
cation components to the underlying legacy code and
data, by transforming incoming requests into a message
format that is understandable to the internal code and
data [83,97].

The terms “adapter” and “wrapper” are often used
interchangeably, as we will also do throughout this arti-
cle. Another term that is often adopted in the same
context of that of wrappers, is the term “connector”. A
connector refers to the encapsulation of a communica-
tion mechanism. This term originates from architectural
description languages (ADLs), while the design pattern
which is concerned with the encapsulation of the com-
munication between components is called “Mediator”
[20]. The prime distinction between a connector and
an adapter is that an adapter bridges an interoperability

problem, i.e., without the adapter the components would
not be able to work together, while a connector enables
the communication between two interoperable compo-
nents [95].

Simply speaking, a component wrapper contains a
software layer that encapsulates legacy data and logic
and defines its services in the wrapper API. The wrap-
per API mediates between calls from client application
components to the underlying legacy code and data, by
transforming incoming requests into a message format
that is understandable to the internal code and data.

Execution in this type of architecture occurs among
component wrappers within the application server.
These component wrappers wrap back-end resources
such as databases, ERP, transaction mainframe systems
and legacy systems so that they can express data and
messages in the standard internal format expected by
the application server. The application server is oblivi-
ous to the fact that these components are only the exter-
nal facade of existing EIS that do the real processing
activities [63].

The adapter/component wrapper pairs in the archi-
tecture illustrated in Fig. 7 are responsible for providing
a layer of abstraction between the application server and
the component EIS. This layer allows for EIS compo-
nent communications, as if the component EIS were exe-
cuted within the application server environment itself.
Traditional application servers constitute an ideal



Service oriented architectures 403

support framework for synchronous business processes.
However, newer generation application servers offer
also asynchronous communication.

Web application servers already provide database
connectivity, transaction management, EAI-style con-
nectors, message queuing, and are gradually evolving
into business process execution engines. They also facil-
itate reliability, scalability, and availability, while at the
same time automating application development tasks.

In concluding, a few words about application server
implementation. Application servers are principally
J2EE-based and include support for JMS [45], the Java
2 Connector Architecture (J2CA) [50], and even Web
services.

JMS is a transport-level API that enterprises can com-
bine with Web service solutions for messaging, data per-
sistence, and access to Java-based applications. JMS is a
vendor agnostic API for enterprise messaging that can
be used with many different MOM vendors. JMS frame-
works function in asynchronous mode but also offer the
capability of simulating a synchronous request/response
mode [70]. For application server implementations, JMS
provides access to business logic distributed among het-
erogeneous systems. Having a message-based interface
enables point to point and publish/subscribe mecha-
nisms, guaranteed information delivery, and interoper-
ability between heterogeneous platforms.

J2EE Connector Architecture is an emerging tech-
nology that has been specifically designed to address
the hardships of integrating applications. J2CA provides
a standardized method for integrating disparate appli-
cations in J2EE application architectures. It provides
support for resource adaptation, which maps the J2EE
security, transaction, and communication pooling to the
corresponding EIS technology. J2CA defines a set of
functionality that application server vendors can use to
connect to back-end EIS, such as ERP, CRM, and legacy
systems and applications. Using J2CA to access EIS is
akin to using JDBC (Java Database Connectivity) [101]
to access a database. When J2CA is used in an ESB
implementation, the ESB could provide a J2CA con-
tainer that allows packaged or legacy applications to be
plugged into the ESB through J2CA resource adapters.
For instance, a process order service uses JCA to talk
to a J2EE application that internally fulfils incoming
orders. The latest versions of many application serv-
ers, including BEA WebLogic and IBM WebSphere,
support J2CA adapters for enterprise connectivity. In
addition, major packaged application vendors have also
announced plans to support JCA in future product offer-
ings. The ESB uses J2CA to facilitate application inte-
gration between existing applications and services.

3.4.3 Business process management

Today enterprises are striving to become electronically
connected to their customers, suppliers, and partners.
To achieve this, they are integrating a wide range of
discrete business processes across application bound-
aries of all kinds. Application boundaries may range
from simple enquiries about a customer’s order involv-
ing two applications, to complex, long-lived transac-
tions for processing an insurance claim involving many
applications and human interactions, to parallel business
events for advanced planning, production and shipping
of goods along the supply chain involving many applica-
tions, human interactions and business to business inter-
actions. When integrating on such a scale, enterprises
need a greater latitude of functionality to overcome mul-
tiple challenges arising from the existence of proprietary
interfaces, diverse standards, and approaches targeting
the technical, data, automated business process, process
analysis, and visualization levels. Such challenges are
addressed by the business process management (BPM)
technology [96]. BPM is the term used to describe the
new generation of technology that provides end-to-end
visibility and control over all parts of a long-lived, multi-
step information request or transaction/process that
spans multiple applications and human actors in one
or more enterprises [60].

Specialized capabilities of BPM software solutions in
an ESB setting include workflow-related business pro-
cesses, process analysis, and visualization techniques. In
particular, BPM allows the separation of business pro-
cesses from the underlying integration code. Before we
explain further characteristics and typical elements of
BPM, it is useful to distinguish between the concepts of
process automation, workflow, and business processes
management.

All enterprises have business processes that require
process automation. Any process automation tool
should be able to easily control and coordinate activity
and provide an easy method to define the business pro-
cess and the underlying flows of information between
applications. Process automation is distinct from tra-
ditional document workflow as it involves integration
between computer-based systems and manual steps and
tasks. It is implemented for automating the flow of infor-
mation between applications to fulfil business processes.
Traditional workflow tools focus instead on handling
the movement of documents between people who are
required to perform tasks on these documents [59]. This
may or may not be directly associated with managing
a business process. For example, an order may gener-
ate a shipping notice. The shipping notice may in turn



404 M. P. Papazoglou, W.-J. van den Heuvel

generate a monthly invoice that encompasses many
orders for the same customer. This is an example of
a workflow that changes focus several times. It is not
tracking the order to completion, but rather, it tracks
only the information generated.

A business process includes both automated and man-
ual processes. Business process automation combines
process automation together with task-based workflow
into a managed, end-to-end process [59].

Business Process Management codifies value-driven
processes and institutionalizes their execution within the
enterprise [80]. This implies that BPM tools, such as
Chordiant,1 Pega 2 and Fuego,3 can help analyze, define,
and enforce process standardization. BPM provides a
modeling tool to visually construct, analyze, and execute
cross-functional business processes. Design and mod-
eling of business processes is accomplished by means
of sophisticated graphical tools. In the previous exam-
ple, BPM would enable the modeling of the broader
order management process encompassing order receipt,
perhaps credit approval, shipping and invoicing. Com-
bining BPM with real-time analysis allows business man-
agers to not only track where orders are in this process,
but also to understand the company’s exposure with
regard to orders in total at any given point in time.

Business Process Management is a commitment to
expressing, understanding, representing and managing a
business (or the portion of business to which it is applied)
in terms of a collection of business processes that are
responsive to a business environment of internal or
external events [67]. The term management of business
processes includes process analysis, process definition
and redefinition, resource allocation, scheduling, mea-
surement of process quality and efficiency, and process
optimization. Process optimization includes collection
and analysis of both real-time measures (monitoring)
and strategic measures (performance management), and
their correlation as the basis for process improvement
and innovation.

Business Process Management is driven primarily by
the common desire to integrate supply chains, as well as
internal enterprise functions, without the need for even
more custom software development. This means that
the tools must be suitable for business analysts, requir-
ing less (or no) software development. They must reduce
maintenance requirements because internally and exter-
nally integrated environments routinely require addi-
tions and changes to business processes. BPM promises
the ability to monitor both the state of any single

1 www.chordiant.com.
2 www.pega.com.
3 www.fuego.com.

process instance and all instances in the aggregate, using
present real-time metrics that translate actual process
activity into key performance indicators.

When sophisticated process definitions are called for
in an ESB, a process orchestration engine—that sup-
ports BPEL [6] or some other process definition lan-
guage such as ebXML Business Process Specification
Schema (BPSS) [21]—may be layered onto the ESB. The
process orchestration may support long-running, state-
ful processes, just like BPEL. In addition, it may support
parallel execution paths, with branching, and merging
of message flow execution paths based on join condi-
tions or transition conditions being met. Sophisticated
process orchestration can be combined with stateless,
itinerary-based routing to create an SOA that solves
complex integration problems. An ESB uses the con-
cept of itinerary-based routing to provide a message
with a list of routing instructions. In an ESB, routing
instructions, which represent a business process defini-
tion, are carried with the message as it travels through
the bus across service invocations. The remote ESB ser-
vice containers determine where to send the message
next, making this type of routing a special category of
content-based routing.

The ESB can also benefit from products developed
by BPM vendors such as IBM’s WebSphere, HP’s HP
Process Manager, BEA’s WebLogic, and Vitria’s Busi-
nessWare. Microsoft BizTalk is another good example
of a BPM integration product, but its use is limited
to Microsoft Windows and .NET servers. Commercial
BPM solutions such as, for instance, Vitria’s Business-
Ware-4 provide organizations with a number of mecha-
nisms for simplifying the deployment and management
of an integration solution. They consist of range of tools
and technologies that allow the organization to model,
test, deploy, and refine such a process-driven integration
solution.

3.5 Adapters

For the most part, business applications in an enterprise
are not designed to communicate with other applica-
tions. There is often an interoperability mismatch
between the technologies used within internal systems
and with external trading partner systems. In order to
seamlessly integrate these disparate applications, there
must be a way in which a request for information in one
format can easily be transformed into a format expected
by the called service. For instance, in Fig. 3 the func-
tionality of a J2EE application needs to be exposed to
non-J2EE clients such as .NET applications and other
clients. In doing so, a Web service may have to inte-
grate with other instances of EIS in an organization,



Service oriented architectures 405

Fig. 8 Combining Web
services with resource
adapters

or the J2EE application itself may have to integrate
with other EISs. In such scenarios, how the application
exchanges information to the ESB depends on the appli-
cation accessibility options. There are three alternative
ways an application can exchange information with the
ESB include [52]:

1. Application-provided Web service interface Some
applications and legacy application servers have
adopted the open standards philosophy and have
included a Web services interface. The WSDL
defines the interface to communicate directly with
the application business logic. Where possible, tak-
ing a direct approach is always preferred.

2. Non-Web service interface The application does not
expose business logic via Web services. An appli-
cation-specific adapter can be supplied to provide
a basic intermediary between the application API
and the ESB.

3. Service wrapper as interface to adapter In some
cases the adapter may not supply the correct pro-
tocol (JMS, for example) that the ESB expects. In
this case, the adapter would be Web service enabled.

Adapters provide connectivity, semantic disambigu-
ation and translation services between applications and
collaborations [84]. An adapter provides services
between the integration broker and the application-
specific component, such as an ERP or CRM application.
Resource adaptors translate the applications’ messages

to and from a common set of standards—standard data
formats and standard communication protocols. When
an application sends a message to another application,
its adapter first translates the message into a standard-
ized form. When the message is received by the target
application, another adapter translates the standardized
message into the target application’s native format and
protocol.

An adapter can expose either a synchronous and
asynchronous mode of communication between the cli-
ent application and the EIS. The adapter provides a
variety of transformation services including support for
complex data structures from one data source to another,
for example, between COBOL copybooks and XML,
complex XML-to-XML vocabularies, IDL, ODL, leg-
acy, database systems, and so on. Messages are first trans-
formed into an intermediate state (IDL, XML, or Java
Interfaces) before being formatted. An adapter typi-
cally provides support for a range of date/time conver-
sion functions, EBCDIC/ASCI, binary and character
conversion functions, EDI (via EDI module), and a
number of functions for splitting/combining data fields.
Furthermore, it can incorporate a native XML parser
and provides support for popular e-Commerce trading
protocols such as RosettaNet [104], ebXML [38],
cXML,4 and xCBL.5

4 http://www.cxml.org.
5 http://eco.commerce.net.



406 M. P. Papazoglou, W.-J. van den Heuvel

Fig. 9 Extended SOA

Composition
Composition

Description & Basic Operations

Description & Basic Operations

Mana-gementgement

•Capability
•Interface
•Behavior
•QoS

•Coordination•Conformance•Monitoring
•Semantics

•Publication•Discovery
•Selection
•Binding

Service provider

Service client

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

Service aggregator

Composition
Composition

Description & Basic Operations

Description & Basic Operations

Mana-gementgement

•Capability
•Interface
•Behavior
•QoS

•Coordination•Conformance•Monitoring
•Semantics

•Publication•Discovery
•Selection
•Binding

Service provider

Service client

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

Service aggregator

As complementary technologies in an ESB imple-
mentation, (resource) adapters and Web services can
work together to implement complex integration sce-
narios involving federated ESBs spanning multiple orga-
nizations, see Fig. 8. Data synchronization (in addition
to translation services) is one of the primary objectives
of resource adapters. Adapters can thus take on the
role of data synchronization and translation services,
whereas Web services will enable application functions
to interact with each other. Web services are an ideal
mechanism for implementing a universally accessible
application function (service) that may need to integrate
with other applications to fulfil its service contract. The
drivers of data synchronization and Web services are
also different. Web services will generally be initiated
by a user request/event, whereas data synchronization
is generally initiated by state changes in data objects (for
example, customer, item, order, and so on).

An event to which a Web service reacts could be a user
initiated request such as a purchase order or an online
bill payment, for example. User events can naturally be
generated by applications such as an order management
application requiring a customer status check from an
accounting system. On the other hand, a state change in
a data object can be an activity like the addition of a new
customer record in the customer service application or
an update to the customer’s billing address. These state
changes trigger an adapter to add the new customer
record or update the customer record in all other appli-
cations that keep their own copies of customer data.

Routing of events from service requester to service
providers may basically occur in two ways, using content-

based or topic (subject)-based routing (see Sect. 3.4.1).
Both routing mechanisms run on top of elementary
Internet-technologies for routing, e.g., DNS routing.
Currently, routing of events is standardized in WS-Noti-
fication.

Reverting to the J2EE to .NET application connec-
tivity scenario, a connectivity service in the form of a
resource adapter is required. In this implementation
strategy, Web services can become the interface between
the company and its customers, partners, and suppli-
ers; whereas the resource adapters become integration
components tying up different EISs inside the company.
This is just one potential implementation pattern in
which Web services and resource adapters can coexist.
Another potential integration pattern in which Web ser-
vices and resource adapters are required to collaborate
is in business process integration. Applications that are
part of a specific business process will have to expose
the required processes (functions), and Web services
are ideal for that purpose. When the applications need
to integrate with other EISs to fulfil their part in the
business process, they will use resource adapters.

4 Extending the SOA

A basic SOA, i.e., the architecture depicted in Fig. 2,
implements concepts such as service registration, dis-
covery, load balancing of service requests. The essential
ESB requirements, however, suggest that this approach
be extended to support capabilities such as service



Service oriented architectures 407

orchestration, “intelligent” routing, provisioning, and
service management. It should also guarantee the integ-
rity of data and security of messages. Such overarching
concerns are addressed by the extended SOA (xSOA)
[73,75]. The xSOA is an attempt to streamline, group
together and logically structure the functional require-
ments of complex applications that make use of the
service-oriented computing paradigm. The xSOA is a
stratified service-based architecture. The architectural
layers in the xSOA, which are depicted in Fig. 9, embrace
a multi-dimensional, separation of concerns [72] in such
a way that each layer defines a set of constructs, roles,
and responsibilities and leans on constructs of its prede-
cessor layer to accomplish its mission. The logical sepa-
ration of functionality is based on the need to separate
basic service capabilities provided by the conventional
SOA (for example, building simple applications) from
more advanced service functionality needed for com-
posing services and the need to distinguish between
the functionality for composing services from that of
the management of services. As shown in Fig. 9, the
xSOA utilizes the basic SOA constructs as its founda-
tional layer and layers service composition and man-
agement on top of it. The ESB middleware capabilities
such as communication, routing, translation, discovery,
and so on, fall squarely within the xSOA foundation
layer. ESB capabilities that deal with service composi-
tion and management can be found in the composition
and management layers of the xSOA. However, these
layers include more advanced functionality than that
found in ESB settings.

The bottom layer in the xSOA is identical to the basic
SOA (see Fig. 2) in that it defines an interaction between
software agents as an exchange of messages between
service requesters (clients) and service providers. These
interactions involve the publishing, finding and binding
of operations.

In a typical service-based scenario employing the
basic services layer in the xSOA, a service provider hosts
a network accessible software module. The service pro-
vider defines a service description, and publishes it to
a client (or service discovery agency) through which a
service description is advertised and made discoverable.
The service client (requestor) discovers a service (end-
point) and retrieves the service description directly from
the service (Metadata Exchange) or from a registry or
repository like UDDI; it uses the service description to
bind with the service provider and invoke the service or
interact with the service implementation. Service pro-
vider and service client roles are logical constructs and a
service may exhibit characteristics of both. For reasons
of conceptual simplicity in Fig. 9, we assume that service
clients, providers and aggregators could act as service

brokers or service discovery agencies and publish the
services they deploy. The role actions in this figure also
indicate that a service aggregator entails a special type
of provider.

The service composition layer in the xSOA encom-
passes necessary roles and functionality for the aggrega-
tion of multiple services into a single composite service.
Resulting composite services may be used by service
aggregators as basic services in further service compo-
sitions or may be utilized as applications/solutions by
service clients. Service aggregators thus become service
providers by publishing the service descriptions of the
composite service they create. As already explained in
Sect. 2, a service aggregator is a service provider that
groups services that are provided by other service pro-
viders into a distinct value added service. Service aggre-
gators develop specifications and/or code that permit the
composite service to perform functions that are based
on the following facilities (in addition to Web services
interoperation support provided by WSI profiles for ser-
vice descriptions [10] and security [11]):

− Meta-data, standard terminology and reference
models Web services need to use meta-data to
describe what other endpoints need to know to
interact with them. Metadata describing a service
typically contain descriptions of the interfaces of
a service—the kinds of data entities expected and
the names of the operations supported—such items
as vendor identifier, narrative description of the
service, Internet address for messages, format of
request and response messages, and may also contain
choreographic descriptions of the order of inter-
actions. Such descriptions may range from simple
identifiers implying a mutually understood proto-
col to a complete description of the vocabularies,
expected behaviors, and so on. Such meta-data give
high-level semantic details regarding the structure
and contents of the messages received and sent by
Web services, message operations, concrete network
protocols, and endpoint addresses used by Web ser-
vices; it also describes abstractly the capabilities,
requirements, and general characteristics of Web
services and how they can interoperate with other
services. Web service meta-data need to be accom-
panied with standard terminology to address busi-
ness terminology fluctuations and reference models
such as, for instance, RosettaNet PIPS [104], to allow
applications to define data and processes that are
meaningful not only to their own businesses but also
to their business partners while also maintaining
interoperability (at the semantic level) with other



408 M. P. Papazoglou, W.-J. van den Heuvel

business applications. The purpose of combining
meta-data, standard terminology and reference
models is to enable business processes to capture
and convey their intended meaning and exchange
requirements, identifying among other things the
meaning, timing, sequence and purpose of each busi-
ness collaboration and associated information
exchange.

− Conformance Service conformance ensures the
integrity of a composite service by matching its oper-
ations and parameter types with those of its con-
stituent component services, imposes constraints on
the component services (e.g., to ensure enforcement
of business rules), and performs data fusion activ-
ities. Service conformance comprises three parts:
typing, behavioral, and semantic conformance. Typ-
ing (syntactic) conformance is performed at the data
typing level by using principles such as type-safe-
ness, co-variance and contra-variance for signature
matching [95]. Behavioral conformance ensures the
correctness of logical relationships between com-
ponent operations that need to be blended together
into higher-level operations. Behavioral confor-
mance guarantees that composite operations do not
lead to spurious results and that the overall pro-
cess behaves in a correct and unambiguous manner.
Finally, semantic conformance ensures that services
and operations are annotated with domain-specific
semantic properties (descriptions) so that they pre-
serve their meaning when they are composed and
can be formally validated. Service conformance is a
topic still under research scrutiny ([95]). Concrete
solutions exist only for typing conformance [24,68]
as they are based on conformance techniques for
programing languages such as Eiffel or Java.

− Coordination Controls the execution of the com-
ponent services (processes), Web services transac-
tions, and manages dataflow as well as control flow
among them and to the output of the component
service (e.g., by specifying workflow processes and
using a workflow engine for run-time control of ser-
vice execution).

− Monitoring Allows monitoring events or informa-
tion produced by the component services, monitor-
ing instances of business processes, viewing process
instance statistics, including the number of instances
in each state (running, suspended, aborted, or com-
pleted), viewing the status, or summary for selected
process instances, suspend, and resume or termi-
nate selected process instances. Of particular sig-
nificance is the ability to be able to spot problems
and exceptions in the business processes and move
toward resolving them as soon as they occur. Process

monitoring capabilities are currently provided by
toolsets in platforms for developing, deploying, and
managing service applications, such as, for instance,
BEA’s WebLogic and Vitria’s BusinessWare.

− Policy enforcement Web service capabilities and
requirements can be expressed in terms of policies.
In particular, policies [88] may be applied to man-
age a system or organize the interaction between
Web-services [1]. For example, knowing that a ser-
vice supports a Web services security standard such
as WS-Security is not enough information to enable
successful composition. The client needs to know
if the service actually requires WS-Security, what
kind of security tokens it is capable of processing,
and which one it prefers. The client must also deter-
mine if the service requires signed messages. And
if so, it must determine what token type must be
used for the digital signatures. And finally, the cli-
ent must determine when to encrypt the messages,
which algorithm to use, and how to exchange a
shared key with the service. Trying to orchestrate
with a service without understanding these details
may lead to erroneous results.

Standards such BPEL and WS-Choreography [19]
that operate at the service composition layer in xSOA
enable the creation of large service collaborations that
go far beyond allowing two companies to conduct busi-
ness in an automated fashion. We also expect to see
much larger service collaborations spanning entire
industry groups and other complex business relation-
ships. These developments necessitate the use of tools
and utilities that provide them insights into the health of
systems that implement Web services and into the status
and behavior patterns of loosely coupled applications.
A consistent management methodology is essential for
leveraging a management framework for a production-
quality, service-based infrastructure, and applications.
The rationale is very similar to the situation in tradi-
tional distributed computing environments, where sys-
tems administrators rely on programs/tools/utilities to
make certain that a distributed computing environment
operates reliably and efficiently.

Managing loosely coupled applications in an SOA
inherently entails even more challenging requirements.
Failure or change of a single application component can
bring down numerous interdependent enterprise appli-
cations. The addition of new applications or components
can overload existing components, causing unexpected
degradation or failure of seemingly unrelated systems.
Application performance depends on the combined per-
formance of cooperating components and their



Service oriented architectures 409

interactions. To counter such situations, enterprises need
to constantly monitor the health of their applications.
The performance should be in tune, at all times and
under all load conditions.

Managing critical Web service based applications
requires in-depth administration and management
capabilities that are consistent across an increasingly
heterogeneous set of participating distributed compo-
nent systems, while supporting complex aggregate
(cross-component) management use cases, like service-
level agreement enforcement and dynamic resource pro-
visioning. Such capabilities are provided by the topmost
layer in the xSOA.

We could define Web services management as the
functionality required for discovering the existence,
availability, performance, health, patterns of usage,
extensibility, as well as the control and configuration,
life-cycle support and maintenance of a Web service or
business process within the context of SOAs. Service
management encompasses the control and monitoring
of SOA-based applications throughout their life cycle
[58]. It spans a range of activities from installation and
configuration to collecting metrics and tuning to ensure
responsive service execution. The management layer in
xSOA requires that a critical characteristic be realized:
that services be managed. In fact, the very same well-
defined structures and standards that form the basis for
Web services also provide opportunities for use in man-
aging and monitoring communications between services,
and their underlying resources, across numerous ven-
dors, platforms, technologies, and topologies.

Service management includes many interrelated func-
tions [26]. The most prominent functions of service man-
agement are summarized in the following:

1. Service-level agreement (SLA) management. This
may include QoS (e.g., sustainable network band-
width with priority messaging service) [46]; service
reporting (e.g., acceptable system response time);
and service metering.

2. Auditing, monitoring, and troubleshooting. This
may include providing service performance and uti-
lization statistics, measurement of transaction
arrival rates and response times, measurement of
transaction loads (number of bytes per incoming
and outgoing transaction), load balancing across
servers, measuring the health of services and trou-
bleshooting.

3. Dynamic services (or resources) provisioning. This
may include provisioning services and resources to
authorized personnel, dynamic allocation/dealloca-
tion of hardware, installation/deinstallation of soft-
ware “on demand” based changing workloads,

ensuring SLAs, management policies for messaging
routing and security, and reliable SOAP messaging
delivery.

4. Service lifecycle/state management. This may
include exposing the current state of a service and
permit lifecycle management including the ability to
start and stop a service, the ability to make specific
configuration changes to a deployed Web service,
support the description of versions of Web services
and notification of a change or impending change to
the service interface or implementation.

5. Scalability/extensibility. The Web services support
environment should be extensible and must permit
discovery of supported management functionality
in a given instantiation.

To manage critical applications/solutions and collab-
orations spanning entire industry groups and other com-
plex business relationships, e.g., specific service markets,
the xSOA management services are divided in two com-
plementary categories ([73,75]):

1. Service operations management that can be used to
manage the service platform, the deployment of ser-
vices and the applications and, in particular, monitor
the correctness and overall functionality of aggre-
gated/orchestrated services.

2. Service market management that supports typical
integrated supply chain functions and provides a
comprehensive range of services supporting indus-
try-trade, including services that provide business
transaction negotiation and facilitation, financial
settlement, service certification and quality assur-
ance, rating services, service metrics, and so on.

The xSOA’s service operations management func-
tionality is aimed at supporting critical applications that
require enterprises to manage the service platform, the
deployment of services and the applications. xSOA’s ser-
vice operations management typically gathers informa-
tion about the managed service platform, Web services
and business processes and managed resource status
and performance, and supporting specific management
tasks (e.g., root cause failure analysis, SLA monitor-
ing and reporting, service deployment, and life cycle
management and capacity planning). Operations man-
agement functionality may provide detailed application
performance statistics that support assessment of the
application effectiveness, permit complete visibility into
individual business processes and transactions, guaran-
tee consistency of service compositions, and deliver
application status notifications when a particular activity
is completed or when a decision condition is reached. We



410 M. P. Papazoglou, W.-J. van den Heuvel

refer to the role responsible for performing such oper-
ation management functions as the service operator.
Depending on the application requirements a service
operator could be a service client or service aggregator.

Service operations management is a critical function
that can be used to monitor the correctness and overall
functionality of aggregated/orchestrated services thus
avoiding a severe risk of service errors. Considerations
need also be made for modeling the context in which a
given service is being leveraged individual, composite,
part of a long-running business process, and so on. In
order to successfully compose Web services processes,
one must fully understand the service’s WSDL con-
tract along with any additional requirements, capabil-
ities, and policies (preferences). In this way one can
avoid typical errors that may occur when individual ser-
vice-level agreements (SLAs) are not properly matched.
Proper management and monitoring provide a strong
mitigation of this type of risk, since the operations man-
agement level allows business managers to check the
correctness, consistency, and adequacy of the mappings
between the input and output service operations and
aggregate services in a service composition.

It is increasingly important for service operators to
define and support active capabilities versus traditional
passive capabilities [42]. For example, rather than merely
raising an alert when a given Web service is unable to
meet the performance requirements of a given service-
level agreement, the management framework should be
able to take corrective action. This action could take the
form of rerouting requests to a backup service that is less
heavily loaded, or provisioning a new application server
with an instance of the software providing the service if
no backup is currently running and available.

Finally, service operations management should also
provide global visibility of running processes, compara-
ble to that provided by BPM tools. Management visibil-
ity is expressed in the form of real-time and historical
reports, and in triggered actions. For example, deviations
from key performance indicator target values, such as
the percent of requests fulfilled within the limits speci-
fied by a service level agreement, might trigger an alert
and an escalation procedure.

Another aim of xSOA’s service management layer
is to provide support for service markets (aka of open
service marketplaces). Currently, there exist several ver-
tical industry marketplaces, such as those for the semi-
conductor, automotive, travel, and financial services
industries. Service cooperatives operate much in the
same way like vertical marketplaces, however, they are
open. Their purpose is to create opportunities for
buyers and sellers to meet and conduct business elec-
tronically, or aggregate service supply/demand by offer-

ing added value services and grouping buying power
(just like a co-operative). The scope of such a service
market would be limited only by the ability of enter-
prises to make their offerings visible to other enterprises
and establish industry specific protocols by which to con-
duct business. Service markets typically support supply
chain management by providing to their members a uni-
fied view of products and services, standard business ter-
minology, and detailed business process descriptions. In
addition, service markets must offer a comprehensive
range of services supporting industry-trade, including
services that provide business transaction negotiation
and facilitation [17], financial settlement, service certi-
fication and quality assurance, rating services, service
metrics such as number of current service requesters,
average turn around time, and manage the negotiation
and enforcement of SLAs. The xSOA market manage-
ment functionality as illustrated in Fig. 9 is aimed to
support these open service market functions.

Service markets introduce a new role that of a mar-
ket maker. A market maker is a third trusted party
or consortium of organizations that brings the suppli-
ers and vendors together. Essentially, a service market
maker is a special kind of service aggregator that has
added responsibilities, such as issuing certificates, main-
taining industry standard information and introducing
new standards, endorsing service providers/aggregators,
etc. The market maker assumes the responsibility of
the service market administration and performs main-
tenance tasks to ensure the administration is open and
fair for business and, in general, provides facilities for
the design and delivery of integrated service offerings
that meet specific business needs and conform to indus-
try standards.

5 Research activities and open issues

This section focuses on ongoing research activities con-
ducted on services. Also, it identifies open research
issues. We classify both the research activities and open
research issues on the basis of the functional layers of
xSOA.

5.1 xSOA basic services layers

Research activities in the basics services layer to date
target formal service description language(s) for holistic
service definitions addressing, besides functional
aspects, also behavioral as well as non-functional aspects
associated with services. They also concentrate on open,
modular, extensible framework for service discovery,
publication and notification mechanisms across distrib-



Service oriented architectures 411

uted, heterogeneous, dynamic (virtual) organizations as
well as unified discovery interfaces and query languages
for multiple pathways. In the following, we summa-
rize several research activities contribute to these and
related problems.

In addition to the application-specific functions that
services provide, services may also support (different)
sets of protocols and formats addressing extra-functional
concerns such as transaction processing and reliable
messaging.

Tai et al. [92] address the problem of transactional
coordination in service-oriented computing. The authors
of this publication argue for the use of declarative policy
assertions to advertise and match support for different
transaction styles (direct transaction processing, queued
transaction processing, and compensation-based trans-
action processing) and introduce the concept of and
system support for transaction coupling modes as the
policy-based contracts guiding transactional business
process execution.

An SOA requires that developers discover at devel-
opment time service descriptions in (UDDI) repository
systems and, by reading these descriptions they are able
to code client applications that can (at run time) bind to
and interact with services of a specific type (i.e., compli-
ant to a certain interface and protocol). Understanding
the execution semantics is a rather cumbersome task.

To address this problem Deora et al. ([34,35]) pro-
pose a quality of service management framework based
on user expectations. This framework collects expec-
tations as well as ratings from the users of a service
and then the quality of the service is calculated only at
the time a request for the service is made and only by
using the ratings that have similar expectations. Similar
research efforts are reported in [78].

The AI and semantic Web community has concen-
trated their efforts in giving richer semantic descriptions
of Web services that describe the properties and capabil-
ities of Web services in an computer-interpretable form.
For this purpose, DAML-S [93] language has been pro-
posed to facilitate the automation of Web service tasks
including better means of Web service discovery, execu-
tion, “automatic” composition, verification, and execu-
tion monitoring.

In addition, in [77], an approach is described that
builds on top of existing Web services technologies and
combines them with some concepts borrowed from the
Semantic Web to leverage Web service discovery
and composition. This approach is captured by the
METEOR-S Web Service Annotation Framework
(MWSAF). In particular, the MWSAF is designed to
semi-automatically mark up Web service descriptions
with ontologies.

In the basic SOA UDDI provides a simple brows-
ing-by-business-category mechanism for developers to
review and select published services. It is generally
believed that discovery based on keyword-search could
be improved considerably by introducing more pow-
erful matching approaches. In [95], a hybrid matching
approach is suggested, combining semantic and syntactic
comparison algorithms of WSDL documents. Compara-
ble research efforts have been reported in [37,51,100].

In order for SOA to become successful, powerful
mechanisms are needed that allow service requestors
to find service providers that are able to provide the ser-
vices they need. Typically, this service trading needs to
be executed in several stages as the offer descriptions
are not completely specified in most cases and differ-
ent parameters have to be supplemented by the service
requestor and provider alternately. Unfortunately, exist-
ing service description languages (like DAML-S) treat
service discovery as a one-shot activity rather than as
an ongoing process and accordingly do not support this
stepwise refinement.

Klein et al. [53] introduce the concept of partially
instantiated service descriptions containing different
types of variables which are instantiated successively,
thereby mirroring step-by-step progress in a trading pro-
cess. The suggested approach is grounded on service
ontologies that were developed in the DIANE project
[54].

In [81], a peer-to-peer based framework is investi-
gated that allows to advertise and find services using
keyword-based search, ontology-based search and
behavior-based search in a highly decentralized and
dynamic environment. In addition, the framework pro-
vides mechanisms so that users may express and query
the quality of services.

5.2 xSOA composition layer: research activities

Service composition is today largely a static affair. All
service interactions are anticipated in advance and there
is a perfect match between output and input signa-
tures and functionality. More ad hoc and dynamic ser-
vice compositions are required very much in the spirit
of lightweight and adaptive workflow methodologies.
These methodologies will include advanced forms of
co-ordination, less structured process models, and auto-
mated planning techniques as part of the integration/
composition process. On the transactional front,
although standards like WS-Transaction, WS-Coordina-
tion, and BTP are a step in the right direction, they fall
short of describing different types of atomicity needs
for e-business and e-government applications. These do



412 M. P. Papazoglou, W.-J. van den Heuvel

not distinguish between transaction phases and conver-
sational sequences, e.g., negotiation. Another area that
is lacking research results is advanced methodologies
in support for the service composition lifecycle. Several
research activities contribute to these and related prob-
lems.

Yang and Papazoglou [102] present an integrated
framework and prototype system that manage the entire
life-cycle of service components ranging from abstract
service component definition, scheduling, and construc-
tion to execution. Service compositions are divided in
three categories: fixed, semi-fixed, and explorative com-
positions. Fixed service compositions require that their
constituent services be synthesized in a fixed (pre-
specified) manner. Semi-fixed compositions require that
the entire service composition is specified statically but
the actual service bindings are decided at run time.
Finally, explorative compositions are generated on the
fly on the basis of a request expressed by a client (appli-
cation developer).

In [90], a framework is introduced for enriching
semantic service descriptions with two compositional
assertions: assumption and commitment that help to
reason about service composition and verification. The
framework uses the interval temporal logic (ITL) lan-
guage for representing and proving temporal properties
of systems. This framework is embedded in the Seman-
tic Web rule language [48], which combines Horn-like
rules with an OWL knowledge base.

Charfi and Mezini [29] propose to modularize Web-
service composition adopting two dimensions, one for
outlining the business process flow, using languages such
as BPEL and BPL, and a second dimension comprising
business rules, which may be attached to the business
processes and evolve independently.

There has been some work in the area of applying
AI planning techniques to automate the composition of
Web Services. In [86], the authors describe how an OWL
reasoner can be integrated with an AI planner to over-
come the problem of closed world semantics of planners
versus open world semantics of OWL.

Many of the existing approaches toward service com-
position largely neglect the context in which composi-
tion takes place. In [32], a context-aware methodology is
introduced that considers a social specification of a ser-
vice composition as the basis for process specification
and verification.

5.3 xSOA management layer

Service management constitutes the foundation of the
upper layer of the extended SOA. Traditional manage-

ment applications fail to meet enterprise requirements
in a service-centric world. Conventional systems man-
agement approaches and products view the world in a
very coarse (mostly applications oriented) manner. The
most recent wave of management product categories
does not have the business awareness that services man-
agement will require. The finer grained nature of ser-
vices (as opposed to applications) requires evaluating
processes and transactions at a more magnified rate and
in a more contextually aware manner.

One crucial aspect of management entails monitor-
ing. In [12], a dynamic monitoring approach is probed
that is capable of specifying monitoring rules governing
the control of WS-BPEL processes.

Casati et al. [25] concentrate on operations manage-
ment. The proposed business oriented management of
Web services is an attempt to assess the impact of ser-
vice execution from a business perspective and, con-
versely, to adjust and optimize service executions based
on stated business objectives. This is a crucial issue as
corporations strive to align service functionality with
business goals.

In [87] a model-driven trust negotiation framework
for Web services management is explored. The frame-
work adopts a model for trust negotiation that employs
state machines, which incorporate security policies. The
policy model underlying this framework facilitates life-
cycle management.

The ability to gauge the quality of a service is critical
if we are to achieve the service oriented computing para-
digm. Many techniques have been proposed and most of
them attempt to calculate the quality of a service by col-
lecting quality ratings from the users of the service, and
then combining them in one way or another. Collect-
ing quality ratings alone from the users is not sufficient
for deriving a reliable or accurate quality measure for a
service.

In [69], Maximilien extends the usage of the Quality
of Service concept for not only selecting Web-services
but also establishing trust between trading partners. This
paper outlines an agent-oriented approach, including an
architecture and programing model. The work is vali-
dated empirically, based on a series of simulations.

Ideally, services are collaborating in highly distrib-
uted environments, naturally cutting across various
enterprise boundaries. This environment demands that
contracts are set up, stipulating agreements between ser-
vices regarding their collaboration, both at the func-
tional and non-functional level, in a concise manner.
These contracts may serve as the basis for process mon-
itoring and adaptation.

Ludwig et al. (IBM) [65] suggest to standardize on
agreements between enterprise domains, proposing the



Service oriented architectures 413

WS-Agreement standard. Their work addresses both the
contract creation and monitoring from the perspective
of service providers and consumers. Service providers
are supported by an infrastructure offering agreement
templates, and facilities to dynamically check the state of
an agreement. Likewise, service requesters are in need
of contract templates and some monitoring capacities.
Lastly, the paper presents the creation and monitoring of
agreements (CREMONIA) architecture, implementing
WS-Agreements.

6 Summary

Modern enterprises need to align into virtual alliances,
while responding effectively and swiftly to competitive
challenges. Therefore, they are required to streamline
both internal and external business processes by inte-
grating the various packaged and home-grown appli-
cations found spread throughout an enterprise. This
requires an agile approach that allows enterprise busi-
ness services (those offered to customers and partners)
to be easily assembled from a collection of smaller, more
fundamental business services. This challenge in auto-
mated business integration has driven major advances
in technology within the integration software space. As a
result the SOA has emerged recently, essentially address-
ing the requirements of service requesters, providers and
service brokers, regarding loosely coupled, standards-
based, and protocol-independent distributed comput-
ing and offering ways to achieve the desired levels of
business integration effectively, mapping IT implemen-
tations more closely to the overall business process flow.

Combining the SOA paradigm with event-driven pro-
cessing lays the foundation for an emerging technology,
that amalgamates various conventional distributed com-
puting, middleware, BPM and EAI technologies, and
thereby offers a unified backbone on top of which enter-
prise services can be advertised, composed, planned,
executed, monitored, and decommissioned. This over-
arching implementation backbone to SOA is referred to
as the ESB.

To cater for essential ESB requirements that include
capabilities such as service orchestration, “intelligent”
routing, provisioning, integrity and security of message
as well as service management, the basic service descrip-
tion/publication/discovery functions of the conventional
SOA need to be extended into the extended SOA
(xSOA). Particularly, the xSOA incorporates a service
composition tier to offer necessary roles and function-
ality for the consolidation of multiple services into a
single composite service. In addition, xSOA provides a
separate tier for service management that can be used

to monitor the correctness and overall functionality of
aggregated/orchestrated services, supporting complex
aggregate (cross-component) management use cases,
such as service-level agreement enforcement and
dynamic resource provisioning.

This paper has surveyed approaches, technologies,
and research issues related to services architectures and
underlying technologies. Particularly, it has reviewed
several technologies, including integration brokers, busi-
ness process management, and application servers that
implement the backbone of an Enterprise Service Bus,
which is of critical importance to make the service-
oriented computing paradigm operational in a business
context.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Ser-
vices: Concepts, Architectures and Applications. Springer,
Heidelberg (2004)

2. Anagol-Subbaro A.: J2EE Web Services on BEA WebLogic.
Prentice-Hall, Upper Saddle River (2005)

3. Anderson, S., et al.: Web Services Trust language (WS-Trust).
Public draft release, Actional Corporation, BEA Systems,
Computer Associates International, International Business
Machines Corporation, Layer 7 Technologies, Microsoft Cor-
poration, Oblix Inc., OpenNetwork technologies, Ping Iden-
tity, Reacticity, RSA Security, and Verisign, February (2005)

4. Andrews, T., et al.: Business process execution language
(BPEL), version 1.1. Technical-report, BEA Systems and
International Business Machines Corporation, Microsoft
Corporation, SAP AG and Siebel Systems, May 2003

5. Arkin, A.: Business process modeling language (BPML).
Last Call Draft Report, BPMI.Org, November 2002

6. Arora, A., et al.: Web services for management (WS-
Management). Technical report, Advanced Micro Devices,
Dell, Intel, Microsoft Corporation and Sun Microsystems,
October 2004

7. Arsanjani, A.: Introduction to the special issue on developing
and integrating enterprise components and services. Com-
mun. ACM 45(10), 30–34 (2002)

8. Atkinson, B., et al.: Web Services Security (WS-Security).
Technical report, Microsoft, IBM and Verisign, April 2002

9. Bajaj, S., et al.: Web Services Policy framework (WS-Policy).
Technical report, BEA Systems Inc., International Business
Machines Corporation, Microsoft Corporation, Inc., SAP
AG, Sonic Software, and VeriSign Inc., September 2004

10. Ballinger, K., et al.: Web services-interoperability (WSI),
Basic profile version 1.1, 2004-08-24. Technical report, WSI
Organization (WS-I), 2004

11. Barbir, A., et al.: Basic security profile, version 1.0. Technical
report, Web Services-Interoperability Organization (WS-I),
2004

12. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-
BPEL processes. In: Proceedings of the Third International
Conference on Service Oriented Computing, pp. 269–282.
Springer, Amsterdam (2005)

13. Bloomberg, J.: Events vs. services. Available at: http://www.
zapthink.com, ZapThink white paper, October 2004

14. Boag, S., et al.: Xquery 1.0: An XML query language, W3C
working draft. Technical report, W3C, April 2005



414 M. P. Papazoglou, W.-J. van den Heuvel

15. Booth, D., et al.: Web Service Architecture. http://www.w3.
org/tr/ws-arch/, W3C, Working Notes, 2003/2004

16. Box, D., et al.: Simple Object Access Protocol (SOAP), Ver-
sion 1.1. W3C Note, W3C, May 2000. http://www.w3.org/TR/
SOAP/

17. Bui, T., Gachet, A.: Web services for negotiation and bargain-
ing in electronic markets: Design requirements and imple-
mentation framework. In: Proceedings of the 38th Hawaii
International Conference on System Sciences, IEEE, 2005

18. Burbeck, S.: The tao of e-business services: the evolution
of Web applications into service-oriented components with
Web services. IBM DeveloperWorks, 2000. http://www-106.
ibm.com/developerworks/Webservices/library/ws-tao/

19. Burdett, D., Kavantzas, N.: WS-Choreography Model Over-
view. W3c working draft, W3C, March 2004

20. Buschmann, F., et al.: Pattern-oriented software architecture:
a system of patterns. Wiley, New York (1996)

21. Business Process Project Team: ebXML Business Pro-
cess Specification Schema, version 1.01. OASIS, 2001.
http://www.ebxml.org/specs/ebbpss.pdf

22. Bussler, C.: B2B Integration: Concepts and Architecture.
Springer, Berlin (2003)

23. Candadai, A.: A dynamic implementation framework for
SOA-based applications. Web Logic Dev. J. WLDJ Septem-
ber/October, 6–8 (2004)

24. Cardelli, L., Wegner, P.: On understanding types, data
abstraction and polymorphism. ACM Comput. Surv. 17(4),
211–221 (1985)

25. Casati, F. et al.: Business-oriented management of Web ser-
vices. Commun. ACM 46(10), 55–60 (2003)

26. Catania, N., et al.: Web services management framework,
version 2.0. Technical report, HP, July 2003

27. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc.,
Sebastopol (2004)

28. Chappell, D.: ESB myth busters: Clarity of definition for
a growing phenomenon. Web Serv. J. February, pp. 22–26
(2005)

29. Charfi, A., Mezini, M.: Hybrid Web service composition: busi-
ness processes meet business rules. In: ICSOC ’04: Proceed-
ings of the 2nd international conference on Service oriented
computing, pp. 30–38. ACM Press, New York (2004)

30. Christensen, E., et al.: Web Services Description Lan-
guage (WSDL) 1.1. W3C Note, W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

31. Colan, M.: Service-Oriented Architecture expands the vision
of Web services, Part 2. IBM DeveloperWorks, April 2004

32. Colobo, E., Mylopoulos, J., Spoletini, P.: Modeling and Ana-
lyzing Context-Aware Composition of Services. In: Pro-
ceedings of the Third International Conference on Service
Oriented Computing, pp. 198–213. Springer, Amsterdam
(2005)

33. Dan, A. et al.: Web services on demand: WSLA-driven auto-
mated management. IBM Syst. J. 43(1), 136–158 (2004)

34. Deora, V., et al.: A quality of service management frame-
work based on user expectations. In: Proceedings of the First
International Conference on Service Oriented Computing
(ICSOC03), Springer, Heidelberg (2003)

35. Deora, V., et al.: Incorporating QoS specifications in ser-
vice discovery. In: Proceedings of WISE Workshops, Lecture
Notes of Springer Verlag, 2004

36. Dhesiaseelan, A., Ragunathan, V.: Web Services Container
Reference Architecture (WSCRA). In: Proceedings of the
International Conference on Web Services, IEEE, pp. 806–
805, 2004

37. Ding, X., et al.: Similarity search for Web services. In: Pro-
ceedings of the 30th VLDB Conference, pp. 372–383, 2004

38. ebXML Technical Architecture Project Team: ebXML Tech-
nical Architecture Specification, v1.0.4. Technical report, eb-
XML.org, February, 2001

39. Farell, S., et al.: Assertions and protocol for the OASIS secu-
rity assertion markup language (SAML), V1.1. Committee
specification, OASIS, July 2003

40. Francis, T., et al.: Professional IBM WebSphere 5.0 Applica-
tion Server. Wrox, 2002

41. Fremantle, P., Weerawarana, S., Khalaf, R.: Enterprise ser-
vices. Commun. ACM 45(10), (2002)

42. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic
computer era. IBM Syst. J. 42(11), 5–18 (2003)

43. Graham, S., et al.: Web Services Resource (WS-Resource),
version 1.2, working draft 03. Technical report, OASIS, March
2005

44. Graham, S., Niblett, P.: Web Services Base Notification,
version 1.0. Akamai Technologies, Computer Associates
International, Inc., Fujitsu Limited, Hewlett-Packard Devel-
opment Company, International Business Machines Corpo-
ration, SAP AG, Sonic Software Corporation, The University
of Chicago and Tibco Software Inc., 2004

45. Hapner, M., et al.: Java Messaging Service, version 1.1. Sun
technical report, specification, SUN Microsystems, April 2002

46. Hauck, R., Reiser, H.: Monitoring quality of service across
organizational boundaries. In: Trends in Distributed Systems:
Torwards a Universal Service Market. Proceedings of the
third International IFIP/GI Working Conference, 2000

47. Holley, K., Channabasavaiah, K., Tuggle, E.M., Jr.: Migrating
to a Service-Oriented Architecture. IBM DeveloperWorks,
December 2003

48. Horrocks, I., et al.: SWRL: A Semantic Web Rule Language
combining OWL and RULEML, W3C member submission.
W3C, 21 May 2004

49. Iwasa, K. (principal ed.) WS-Reliability, version 1.1, com-
mittee draft 1.086, 24 august 2004. http://www.oasis-open.
org/committees/wsrm/documents/specs/(tbd), OASIS, Web
Services Reliable Messaging TC, 2004

50. J2CA Group.: J2EE Connector Architecture Specification,
version 1.5. Technical report, SUN Microsystems, 2003

51. Jaeger, M.C., Tang, S.: Ranked matching for service descrip-
tions using DAML-S. In: Grundspenkis, J., Kirikova, M.,
(eds.), Proceedings of CAiSE’04 Workshops, pp. 217–228.
Riga Technical University Riga, Latvia, June 2004

52. Keen, M., et al.: Patterns: Implementing an SOA using an
Enterprise Service Bus. IBM Redbook, 22 July 2004

53. Klein, M., Konig-Ries, B., Obreiter, P.: Stepwise refinable
service descriptions: Adapting DAML-S to staged service
trading. In: Proceedings of 1st International Conference on
Service Oriented Computing, December 2003

54. Klein, M., Konig-Ries, B., Mussig, M.: What is needed for
Semantic Service Descriptions? A proposal for suitable lan-
guage constructs. Int. J. Web Grid Serv. 2, (2005)

55. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service
Oriented Architecture Best Practices. Prentice-Hall, Engle-
wood Cliffs (2005)

56. Kreger, H.: Fulfilling the Web services promise. Commun.
ACM 46(6), 29–ff (2003)

57. Kumar, S., Rana, R.: Service on demand portals: a primer on
federated portals. Web Logic Dev. J. WLDJ, September/Octo-
ber, 22–24 (2004)

58. Lazovik, A., et al.: Associating assertions with business pro-
cesses and monitoring their execution. In: Proceedings of the
Second International Conference on Service Oriented Com-
puting, 2004

59. Leymann, F., Roller, D.: Production Workflow: Concepts and
Techniques. Prentice-Hall, Englewood Cliffs (2000)



Service oriented architectures 415

60. Leymann, W.F., Roller, D., Schmidt, M.-T.: Web services
and business process management. IBM Syst. J. 41(2), 198–
211 (2002)

61. Linthicum, D.: Next Generation Application Integration:
From Simple Information to Web Services. Addison-Wesley,
Reading (2003)

62. Lowey, J.: Programming .NET Components, Reading (2003)
1st edn. O’Reilly Sebastopol (2003)

63. Lubinsky, B., Farrel, M.: enterpise architecture and J2EE.
EAI J., pp. 12–15 November (2001)

64. Luckham, D.: The Power of Events. An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, Reading, April 2002

65. Ludwig, H., Dan, A., Kearney, R.: Crona: an architecture
and library for creation and monitoring of WS-Agreements.
In: ICSOC ’04: Proceedings of the 2nd international confer-
ence on Service oriented computing, pp. 65–74. ACM Press,
New York (2004)

66. Martin, J., Arsanjani, A., Tarr, P., Hailpern, B.: Web Ser-
vices: Promises and Compromises. Queue, ACM 1(1), 48–58
(2003)

67. McGoveran, D.: An introduction to BPM and BPMS. Bus.
Integr. J., pp. 2–10 April (2004)

68. Meyer, B.: Object-oriented Software Construction, 2nd edn.
Prentice-Hall Professional Technical Reference, Englewood
Cliffs (1997)

69. Maximilien, E.M., Singh, M.P.: Toward autonomic Web ser-
vices trust and selection. In: ICSOC ’04: Proceedings of the
2nd international conference on Service oriented computing,
pp. 212–221. ACM Press, New York (2004)

70. Monson-Haefel, R., Chappell, D.: Java Message Services.
O’Reilly, 2001.

71. Mukherjee, B., et al.: An efficient multicast protocol for
content-based publish-subscribe systems. In: ICDCS ’99: Pro-
ceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems, p. 262. IEEE Computer Society,
Washington, DC (1999)

72. Ossher, H., Tarr, P.: Multi-dimensional separation of concerns
and the hyperspace approach. In: Proceedings of the Sympo-
sium on Software Architectures and Component Technology:
The State of the Art in Software Development, 2000

73. Papazoglou, M., Georgakopoulos, D.: Introduction to a
special issue on service oriented computing. Commun.
ACM, 46(10), 25–28 (2003)

74. Papazoglou, M.P., Ribbers, P.M.A.: e-Business: Organiza-
tional and Technical Foundations. Wiley, New York April
2006

75. Papazoglou, M.P.: Extending the Service Oriented Architec-
ture. Bus. Integr. J., pp. 18–21 February (2005)

76. Parent, C., Spaccapietra, S.: Issues and Approaches of Data-
base Integration. Commun. ACM 41(5), 166–178 (1998)

77. Patil, A.A., et al.: Meteor-S: web service annotation frame-
work. In: WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pp. 553–562. ACM Press,
New York (2004)

78. Ran, S.: A Model for Web Services Discovery with
QoS. SIGecom Exch. 4(1), 1–10 (2003)

79. Robinson, R.: Understand Enterprise Service Bus scenarios
and solutions in Service-Oriented Architecture. IBM Devel-
operWorks, June (2004)

80. Roch, E.: Application Integration: Business and Technology
trends. EAI J. August (2002)

81. Sahin, O.D., et al.: SPiDeR: P2P-Based Web Service Discov-
ery In: Proceedings of the Third International Conference on
Service Oriented Computing, pp. 157–170. Springer, Amster-
dam (2005)

82. Schulte, R.: Predicts 2003: Enterprise service buses emerge.
Report, Gartner, December 2002

83. Seacord, R., et al.: Legacy modernization strategies. Technical
Report CMUSEI-2001-TR-025, Carnegie Mellon University,
Pittsburgh (2001)

84. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy
Systems. Carnegie Mellon, SEI. Addison-Wesley, Reading
(2003)

85. Sing, I., et al.: Designing Web Services with the J2EE 1.4
Platform. Addison-Wesley, Reading (2004)

86. Sirin, E., Parsia, B.: Planning for Semantic Web Services. In:
Martin, D., Lara, R., Yamaguchi, T. (eds.) Proceedings of the
ISWC 2004 Workshop on Semantic Web Services: Preparing
to Meet the World of Business Applications, 2004

87. Skogsrud, H., Benatallah, B., Casati, F.: Trust-serv: model-
driven lifecycle management of trust negotiation policies for
Web services. In: WWW ’04: Proceedings of the 13th inter-
national conference on World Wide Web, pp. 53–62. ACM
Press, New York (2004)

88. Sloman, M.: Policy driven management of distributed sys-
tems. J. Netw. Syst. Manag. 2, 333–360 (1994)

89. Smith, D.: Web services enable Service Oriented and Event-
driven Architectures. Bus. Integr. J., May, 12–13 (2004)

90. Solanki, M., Cau, A., Zedan, H.: Augmenting semantic
Web service descriptions with compositional specification. In:
WWW ’04: Proceedings of the 13th international conference
on World Wide Web, pp. 544–552. ACM Press, New York
(2004)

91. Stal, M.: Web Services: Beyond Component-based Comput-
ing. Commun. ACM 45(10), 71–76 (2002)

92. Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N., Rouvellou,
I.: Transaction policies for service-oriented computing. Data
Knowl. Eng. 51(1), 59–79 (2004)

93. The DAML-S Coalition.: DAML-S: Web Service Description
for the semantic Web. In: Horrocks, I., Hendler, J.A., (eds.)
The Semantic Web - ISWC 2002, First International Semantic
Web Conference. Lecture Notes in Computer Science, 2002

94. Universal Description, Discovery, and Integration (UDDI):
Technical report, UDDI.ORG, September 2000. http://www.
uddi.org

95. van den Heuvel, W.J.: Integrating Modern Business Applica-
tions with Legacy Systems: A Software Component Perspec-
tive. MIT Press, Cambridge, February (2007)

96. van der Aalst, W.M.P.: Lectures on concurrency and petri
nets: a tutorial on models, systems and standards for workflow
management., In: Business Process Management Demysti-
fied, pp. 1–65. Springer, Berlin (2004)

97. Von Schilling, P., Lawrence, P.: Leveraging existing code with
object technology. Enterp. Syst. J. 7, 38–44 (1994)

98. W3C.: XSL Transformations (XSLT), Version 2.0. Technical
report, W3C Working Draft, April 2005

99. Wahli, U., et al.: Websphere version 5.1 application developer
Web services handbook. IBM Redbook, New York (2004)

100. Wang, Y., Stroulia, E.: Semantic structure matching for
assessing Web-service similarity. In: Proceedings of First
International Conference on Service Oriented Computing
(ICSOC03), pp. 194–207. Springer, Berlin (2003)

101. White, S., Hapner, M.: JDBC 2.1 API. Technical report, SUN,
October 1999

102. Yang, J., Papazoglou, M.P.: Service components for managing
the life-cycle of service compositions. Inf. Syst. 28(1), 97–125
(2004)

103. Yang, J.: Web Service Componentization. Commun. ACM
46(10), 35–40 (2003)

104. Yendluri, P.: RosettaNet implementation framework (RNIF),
Version 2.0, Technical report. RosettaNet, 2000


	Abstract 
	Introduction
	Service roles in SOA
	Enterprise service bus
	Event-driven SOA
	Key capabilities
	Integration solutions
	Enabling technologies
	Integration brokers
	Application servers
	Business process management
	Adapters
	Extending the SOA
	Research activities and open issues
	xSOA basic services layers
	xSOA composition layer: research activities
	xSOA management layer
	Summary

