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Abstract The Web services platform architecture consists of different layers for

exchanging messages. There may be faults happening at each layer during the

message exchange. First, the paper presents current standards employed in the

different layers and shows their interrelation. Thereby, the focus is on the fault

handling strategies. Second, current service middleware is reviewed whether and

how it follows the fault handling strategies.

1 Introduction

The service-oriented architecture (SOA) is an architectural style for building (enterprise)

applications whose building blocks are services. One incarnation of the technology stack

required to build SOA applications are Web services [1]. Web services are defined by

a modular and composeable stack of standards ranging from low-level communication

protocols, over standardized formats for description of services and the messages ex-

changed during a Web service interaction to high-level standards for defining potentially

complex composite applications built from Web services. An important aspect of said

enterprise applications is robustness, i. e. applications must be able to cope with faults

occurring during run-time.

Although the issue of building robust applications has been addressed in numerous

publications (see Sect. 2 for an overview), these typically focus on one specific aspect of

fault handling. None of the work has regarded the different layers of the Web service

stack altogether. To understand the cause of a fault in the application, it is necessary to

understand how the lower levels work and when and how a fault in the lower levels is

propagated to the upper levels. Thus, this paper aims at providing an overview of fault

handling across all layers of the Web service stack used by an application with special

focus on the interplay of the different functions involved in the fault handling process.

To achieve this goal, the contribution of this paper is two-fold: First, we provide

an overview of the functionality required to build a service-oriented application and

how it maps to different layers in the application’s architecture. With this description,

we then identify the different fault types that may occur during run-time of such an

application and classify them according to the layer they occur on. As part of this

description, we discuss different approaches to reacting to a fault both on the level of the

employed middleware (i. e. the Web service run-time implementation or the workflow

management system) and on the level of the composite application’s logic. Second, we

provide an overview of how fault handling has been implemented in one open-source

technology stack comprising the BPEL [2] orchestration engine Apache ODE, the Web



service runtime Apache Axis 2 and the WS-Reliable Messaging implementation Apache

Sandesha 2 and investigate how their implementation relates to identifies fault types.

The structure of the paper is as follows: First, we present an overview of existing

work on fault handling in Web service-based applications Sect. 2. An identification

and classification of different fault types according to the Web service platform layer

they occur on is provided in Sect. 3. The properties of each fault class are discussed

in detail on a conceptual level, relating them to existing Web service specifications

where appropriate. During this discussion, special focus is placed on pointing out inter-

dependencies among faults on different layers. Section 4 complements the conceptual

fault classification presented in Sect. 3 by providing an analysis of the fault handling

behavior of a workflow management system and corresponding Web service runtime

implementation across all layers of the Web service technology stack. Finally, Sect. 5

concludes and provides and outlook on future work.

2 Related Work

Current work on investigating the parts of or the entire Web services platform architecture

such as [1, 3, 4] regards the layers in isolation and does not provide an overview on the

interplay between these layers.

The Web Service Business Process Execution Language (BPEL [2]) is the de-facto

orchestration language for services. It provides concepts for fault and compensation

handling. The specification does not state how faults from lower levels of the stack are

propagated into the process.

There are several approaches enhancing BPEL engines by adding capabilities of the

fault handling. For instance, Jijia et al. [5] present an extension to the invocation handler

of the BPEL engine. It can be configured what action is taken in case a Web service

fails. Current actions are retry, substitute, ignore and terminate. The authors rely on the

infrastructure to propagate network faults to the extension. Modafferi et al. [6] propose

enhancements to the architecture of BPEL engines with a similar functionality. Guidi et

al. [7] regard synchronous invoke activities: they propose to wait for the reply message

regardless of faults in parallel branches in the process before executing the termination

handler. Ardissono et al. [8] shows how hypothesis about the cause of a fault can be

constructed and how this information can be used in business processes. Friedrich at

al. [9] follow a similar approach based on the WS-DIAMOND infrastructure [10]. A

summary of all related work in the context of fault handling in the case of Web services

is also presented in [9]. All these approaches do not regard the different layers of the

WS stack, whereas our work focuses on the interplay between these layers.

The work by Russell et al. [11] presents workflow exception patterns. These patterns

investigate the expressiveness of the workflow language and does not deal with the

interplay between the workflow layer and the layers below.

To verify the conformance of a BPEL process, the process is represented as a formal

system and then verified for properties given by a specification. Current formalizations of

BPEL do not take the Web services stack into account [12]. State of the art formalizations

such as the Petri net formalization [13] assume asynchronous communication, but do

not regard faults in the layers below the interface layer. Lohmann [12] considers lost



messages and buffer overflows, but disregards the interplay of the layers in the Web

service stack.

A classification of faults with respect to workflows is given in [14,15]. Here, workflow

engine failures, activity failures (expected exceptions), communication failures and

unexpected exceptions are distinguished. Workflow engine failures denote failures of

the workflow engine itself. Activity failures are also called expected exceptions. They

denote that an activity did not complete successfully and hence a special handling is

needed. Communication failures are failures in the communication with the activity

implementation. This is the focus of this paper. Unexpected exceptions are exceptions

on the process definition level, where the structure of the modeled process cannot handle

a special case. Mourao et al. [16] show how unexpected exceptions can be supported by

special workflows involving humans.

A general taxonomy in the context of dependability is given by Avižienis et al. [17].

Faults in system components cause error states in the system, which manifest in failures.

To be in line with the Web service specifications, we use the word “fault” whenever the

specification also uses it, even if the word “failure” is more appropriate.

Looker et al. [18] analyze dependability of Web services by injecting faults in

messages. They differentiate in physical faults, software faults, resource-management

faults, communication faults and life-cycle faults. Gorbenko et al. [19] distinguish

between errors in the “Network and service platform”, in the “Web service software”

and in the “Client software”. Both works, however, do not consider all layers of the Web

service stack as we do.

3 Fault Classification

The Web service platform architecture [1] categorizes the required middleware functions

for facilitating interactions among the services of an SOA-based application in several

layers. These layers are depicted Fig. 1 along with the Web service standards that specify

the layer’s functionality.

The component layer (Sect. 3.5) addresses the realization of an application’s business

logic which invokes the business functions the application is composed of, technologi-

cally rendered as Web services. One possible incarnation of a technology that is widely

used for service orchestration in an SOA environment is the Web Service Business

Process Execution Language (BPEL [2]), which hence is the focus of the discussion in

the remainder of this paper. Composite applications often require nontrivial quality of

service from the orchestrated services; typical examples of such nonfunctional compo-

nent or service characteristics is reliability of interactions, transactional behavior of a set

of services or security-related aspects, such as ensuring message integrity or message

confidentiality. These functions are provided by the quality of service (Sect. 3.4) layer.

Apart from nonfunctional properties, a (Web service) component is characterized by a

description (Sect. 3.5) of its functional interface in form of a WSDL document [20], spec-

ifying the business functions supported by the service along with the message types they

consume and produce. Concrete ordering of consumed and sent messages may be defined

using BPEL. Requesting applications interact with service components by exchanging

messages. Messages have a well-defined format that follows the SOAP specification;
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Figure 1. Layers in the Web Service Platform Architecture, adapted from [1]

multiple messages may be interrelated to form potentially complex message exchange

patterns using the mechanisms provided by WS-Addressing [21] on the messaging layer

(Sect. 3.3) such as means for identification of communicating entities and messages as

well as message correlation. SOAP messages can be transmitted between components

using different network transport protocols, depending on the requester’s requirements,

these are reflected by the transport layer (Sect. 3.2). The functions provided by the

communication layer (Sect. 3.1) focus on the transmission of “raw data” among commu-

nication partners, potentially crossing the boundaries of one physical machine. Typically

this functionality is provided by network transport protocols such as the Transmission

Control Procotol (TCP) or the User Datagram Protocol (UDP), with themselves rely

on lower level protocols such as the Internet Protocol (IP) for data transmission. In

case the partners participating in the interaction reside on the same physical machine,

machine-local data transmission mechanisms, such as shared memory, can be used on

the communication layer (e. g. invoking a Web service implemented as an Enterprise

Java Bean on the same machine). As Web services are defined as software systems that

interact “over a network” [22] we focus on networked interactions in the remainder of

this paper

In the subsequent sections we discuss the fault handling behavior employed on each

of the aforementioned layers in detail by describing a message flow between a service

requester and service provider along with the faults that can occur on each layer and their

respective fault handling strategies. For the following discussion we chose one concrete

technology for the implementation of each layer: The application on the component

layer is implemented using BPEL. Messages are exchanged reliably using WS-Reliable

Messaging [23], encoded using SOAP and transported using HTTP over TCP/IP. Variants

of these setting are briefly discussed in the respective sections. Figure 2 illustrates this

setting. Each arc in the figure identifies a certain step in the overall message flow. During

execution of the depicted interaction, messages are passed between the components
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Figure 2. Message Passing Through the Layers

implementing the individual layers of the application; message flow is thereby restricted

to adjacent layers. In case a fault occurs it can be (i) either handled within the layer it

occurred on or (ii) it can be propagated to a higher layer, which can then again decide

to either handle the fault or propagate it to the next higher level. As the functionality

provided by the description layer is not invoked during runtime of the depicted message

exchange but during application build-time, this layer has been omitted from Fig. 2.

Note that faults occurring in the runtime environment, such as a component running

out of memory during execution, errors due to bad memory and hard disk or system

crashes are out of scope and hence not explicitly addressed in the discussion in the re-

mainder of this paper. The same holds for faults resulting from erroneous implementation,

i. e. implementations not conforming to their specification. Note that an implementation

error may manifest in a fault in an arbitrary layer. Hence, such faults are out of scope of

this paper and we focus on the specified behavior.

In the following sections we classify the faults according to the layers in the Web

service stack. The individual layers are explained bottom-up from the communication

layer to the component layer along with their respective fault types.

3.1 Communication Layer Faults

Generally, we subsume all protocols and mechanisms of the OSI Layered Network

Model [24] below layer 7, i. e. the OSI application layer, as providing a platform for

communicating data among the participants of an interaction and hence refer to them

collectively as the communication layer of an SOA-based application.

The faults that may occur on this layer (triggered by a message flowing along arc

D in Fig. 2) on the side of the sending application include connectivity faults where a

sender cannot establish a connection with a receiver (arc E) or data integrity faults where

the data exchanged between them is corrupted (arc E or arc M).

Examples for connectivity faults in applications are (i) problems in name resolution,

i. e. a host name cannot be resolved to an IP address through DNS [25], (ii) problems



during message routing from sender to receiver, i. e. host or network unreachable or (iii)

unavailability of a network endpoint, i. e. connection refused, due to the service provider

not being ready to process incoming data. An example for a data integrity fault is loss of

packets exchanged as part of an interaction.

Connectivity faults are typically not handled directly on the communication layer

(e. g. by retrying a failed connection attempt at a later point in time) but are instead

propagated up in the layered application architecture on the side of the sending appli-

cation (arc N). If it is desired that these faults should be handled before reaching the

requesting application’s component layer, fault handling must be carried out on the

quality of service layer as described in Sect. 3.4.

As data integrity faults may occur quite frequently—especially when using unreliable

transports—some communication layer protocols, such as TCP, employ corresponding

fault handling mechanisms directly on the communication layer, such as a retransmit of

lost packets.

3.2 Transport Layer Faults

When a message is passed from the messaging layer down to the transport layer (arc C

in Fig. 2) as part of the execution of the Web service runtime’s binding implementation,

the sending application encodes the message to be sent in a representation that can be

conveyed using the chosen transport mechanism. In terms of the OSI layered model, this

transport mechanism resides on layer seven, i. e. the application layer. Once the message

has been encoded, the sending application uses the communication primitives provided

by the chosen transport protocol to transmit the message to the receiving application—

i. e. the component to be invoked—and potentially consumes response messages that

may be sent by the service.

Each network transport protocol used on the transport layer may employ its own

mechanisms for identifying and creating transport layer faults. In case of the Hypertext

Transfer Protocol (HTTP) [26], transport layer faults are identified by an HTTP error

code (e. g. “403 Forbidden” in case a requester is not allowed to access a certain resource

exposed using HTTP). Note that—in contrast to communication layer faults—these faults

do not occur on the side of the sending application, but at the receiving application and

are then propagated back to the sender along the arcs L, M and N in Fig. 2. This is even

the case for client-side error codes (4xx) indicating that the client made a wrong request

(from the view of the server). Note that the communication along these arcs is a normal

communication taking place in the established http connection. For the communication

layer, the HTTP error is not an error. Communication layer faults propagated to the

transport layer and transport layer faults are propagated to the next higher level (arc O in

Fig. 2), i. e. the messaging layer.

3.3 Messaging Layer Faults

The messaging layer comprises the functionality of encoding messages coming through

the quality of service layer from an application (along arc B in Fig. 2), processing the

message according to the SOAP processing model [27], adding addressing information

about the message’s destination in form of corresponding WS-Addressing headers [21]



and passing it on to the transport layer through the Web service runtime’s binding

implementation (arc C).

According to the SOAP specification, the following messaging layer fault types

are distinguished: (i) a VersionMismatch fault identifies a fault due to an incompatible

message format version; (ii) a MustUnderstand fault is generated when a receiver cannot

process a mandatory SOAP header block; (iii) a DataEncodingUnknown is generated

when a SOAP message uses an encoding that is not supported by a receiving SOAP node;

(iv) a generic Sender fault represents invalid or missing message content as generated by

the sending application and (v) a Receiver fault represents a fault that occurred due to

(potentially transient) problems on the side of the receiving applications. In case of the

latter fault type, resending the same SOAP envelope at a later point in time may result in

successful server-side message processing. Similar to transport layer faults, these faults

occur on the side of the receiving application and are propagated to the sender along the

arcs K, L, M, N, O and P.

The mapping between messaging layer SOAP faults and transport layer fault status

codes is defined as part of the specification of a Web service binding. In case of the

SOAP/HTTP binding [28] all SOAP faults except Sender faults map to HTTP status

code 500, which indicates a server-side processing error [26]. Sender faults map to a

HTTP status code 400, which indicates a client-side error resulting in an invalid request

message.

The SOAP processing model includes the definition of a routing concept from an

initial sender over intermediary nodes to an ultimate receiver. This concept is one possible

implementation of the enterprise integration patterns by Hohpe and Wolf [29]. Concrete

examples are services for message encryption and message logging [30]. Messages

may also be transmitted over different transports before reaching the ultimate receiver.

For instance, SOAP/JMS may be used from the initial sender to the encryption service,

the encryption service sends the encrypted message using SOAP/JMS to a messaging

gateway. Finally, the messaging gateway uses SOAP/HTTP as the ultimate receiver only

supports the SOAP/HTTP binding. As a consequence, a fault raised by an intermediary

or the ultimate receiver may not just be propagated to the proceeding node which

established a connection using a specific transport, but has to be routed to the initial

sender. For that purpose, the WS-Addressing headers ReplyTo and FaultTo are defined.

ReplyTo defines the endpoint reference, where the reply message should be directed.

FaultTo is used to specify a different SOAP node to direct the fault to. In other words,

the latter header is especially useful in multi-hop interactions, where a SOAP message

is routed through several intermediaries, when only the original sender of the message

should be notified about processing errors on any of the SOAP processing nodes along

the message path.

Faults that may occur during message creation and processing on the side of the

sending application are not rendered as SOAP faults but instead propagated to the

component layer using the error handling mechanisms of the Web service runtime’s

implementation, e. g. Java exceptions when the runtime is implemented in the Java

programming language. Note that this is not required by the SOAP specification, but

typically implemented.



3.4 Quality of Service Layer Faults

The quality of service layer adds nonfunctional capabilities to Web services. These

include support for transactions, security and reliable transfer of messages. Trans-

actions are implemented using the WS-Coordination framework, which in turn of-

fers WS-AtomicTransactions (WS-AT) for interoperable two-phase commits and WS-

BusinessActivity (WS-BA) for long-running compensation-based transactions [31].

WS-Security ensures message integrity and confidentiality [32]. In this paper, we focus

on WS-ReliableMessaging (WS-RM) which enables reliable end-to-end messaging. That

means even if SOAP intermediaries with different transports inbetween are used (see

Sect. 3.3 for an example), the communication from the initial sender to the ultimate

receiver is reliable. In case no component of the quality of service layer is used, messages

from the component are directly passed to the messaging layer and messages from the

messaging layer are directly passed to the component.

By using WS-RM, faults propagated from the messaging layer (arc P) are handled

by the WS-RM component. WS-RM offers the configuration options AtLeastOnce,

AtMostOnce, ExcactlyOnce and InOrder. WS-RM places messages in sequences. Each

message takes a running number enabling in order delivery. Ranges of received messages

are acknowledged by the receiver, which enables at least once and exactly once delivery.

At most once delivery does not require acknowledgments as no delivery conforms to at

most once. WS-RM defines faults which are propagated to the component layer. These

faults indicate faults at the WS-RM processing itself, such as notifying that an endpoint

is not WS-RM aware, an invalid acknowledgment is received or that the maximum value

for numbering messages has been reached. They may be generated by the sending and the

receiving quality of service layer. A sequence takes an expiry time. In case a sequence is

not completed until the expiry, the sequence is terminated and a SequenceTerminated

fault is raised through arc Q. The receiver may either discard the entire sequence, discard

all messages following the first gap or discard nothing. A permanent fault at the client

side (e. g. “403 Forbidden”) is also propagated as SequenceTerminated fault to the sender

application. A WS-RM implementation is not required to wait until the expiry is met

and may propagate this fault earlier.

3.5 Component Layer Faults

Faults that may occur on the component layer, i. e. the layer on which an application’s

business logic resides, differ substantially from the fault types of the lower layers

described so far.

As the latter are—under the given assumption of absence of erroneous implemen-

tations presented in Sect. 3—often transient errors that may be handled by retrying a

message exchange after its failure, component layer faults are typically permanent in

nature and an indication of an error in the application logic of a component that has

technically been invoked successfully (by transmitting a request message along the arcs

A to I and propagating the application fault by sending a new message). Component layer

faults can be made more tangible by classifying them into two groups: faults reflected in

the component’s interface description or in the component’s implementation.



Component Interface Description: WSDL Component interface faults refer to faults

which are specified as part of the functional component contract, i. e. the component’s

WSDL description (Fig. 1). These faults reflect an error situation in the application

logic of a component and are hence—in contrast to the layers below the component

layer—expected during application design time.

An example for a component interface fault is a calculator component, whose divide

method signature defines a separate fault in addition to a request and a result message for

notifying a requester when e. g. a division by zero or a range overflow occurs. Using this

method, the requesting application gets notified about the component layer fault “out

of band” of the regular response and can hence clearly identify the error situation and

handle it accordingly.

In WSDL, component layer faults are specified through the fault-element of a

WSDL-operation in WSDL 1.1 [20] or an interface in WSDL 2.0 [33] and typed

using WSDL 2.0’s typing mechanism. Whether a fault can be specified as part of the

interface description of a component’s operation is dependent on its operation type

in WSDL 1.1 or its message exchange pattern in WSDL 2.0, respectively. In case

an operation follows a one-way/in-only message exchange pattern, no faults may be

propagated back to the sending application due to the “fire and forget” nature of the

interaction. In the WSDL 2.0 specification this is referred to as no faults propagation rule.

If this behavior is undesired, other message exchange patterns (e. g. request-response/in-

out) should be chosen for the respective operation. In addition to these patterns, where a

component is required to send a response even in case no fault occurs, WSDL 2.0 defines

the robust-in-only message exchange pattern in which a fault may be propagated to the

requesting application. The WSDL specification, however, lacks a clear description how

requesting applications are supposed to handle these optional faults on a technical level,

e. g. how long to wait for a fault for a particular component invocation until it is assumed

that the invocation was successful. Thus, this pattern is underspecified [34].

Component Implementation: BPEL A component interface fault is created during

the execution of the implementation of a component’s application logic. As not all faults

that may occur during execution of a component should become visible outside the

component itself, component implementation faults can be—similar to the other fault

types—be either handled or propagated. Propagation of component layer faults typically

result in involving a human in the fault handling process.

For component layer-internal fault handling, BPEL defines the concept of fault

handlers which can be attached to either scope or invoke activities in which process

modelers may specify application logic to be executed when a fault occurs. A fault can

be created either explicitly as part of the process model through the throw activity, or

can be raised implicitly during execution of e. g. an invoke interaction which results in

a fault declared as part of a component’s interface (cf. Sect. 3.5).

Although the BPEL specification defines how to react to interface layer faults, no

explicit provisions are made how to treat faults that occur on layers below the component

layer during the process of sending an invocation request to a component (i. e. when

executing arcs A to E). Hence, implementations differ in their behavior with regard to

handling such faults. A common way to treat transient transport layer faults, which is e. g.



used in Apache ODE1, is distinguishing business faults and technical failures. Whereas

business faults are propagated into the process for “regular” fault handling through the

processes fault handlers, failures result in suspending process instance execution and

notification of an administrator who—after resolving the problem—may resume process

instance execution. Another approach to handling lower layer faults is to propagate such

faults to the process in form of custom typed BPEL faults which may then be handled us-

ing BPEL’s fault handling mechanisms. The approach is applied in ActiveBPEL2. Apache

ODE may be configured to this behavior by using the faultOnFailure attribute.

4 Implemented Fault Propagation
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This section presents a concrete way to imple-

ment the presented exception handling strate-

gies. We use Apache ODE 1.3.8, Apache San-

desha23 and Apache Axis2 1.3.14 to illustrate

the implementation concepts. These imple-

mentations are put to relation to the layers

of the Web service stack (Fig. 1) in Fig. 4: Be-

ing a BPEL engine, Apache ODE implements

a component. Apache ODE calls Axis which

implements the messaging and the transport

layer. Sandesha is a plugin for Axis implement-

ing WS-RM, which we focus on. Axis uses

HTTP components to implement the transport

layer which in turn uses java.io from the

Java runtime as implementation for the runtime layer.

4.1 Apache ODE

Apache ODE (ODE for short) is a BPEL engine developed by the Apache Software

foundation. After a process is instantiated, a BpelRuntimeContext is available. In

case of an invoke activity, its invoke method is called to invoke a service. This call

reaches the SoapExternalService class. Depending on the type of the invoke, a

OutOnlyAxisOperationClient or an OutInAxisOperationClient (cf. Sect. 4.2)

is created. In the case of a one-way invoke, an exception raised by the OutOnlyAxis-

OperationClient is logged without propagating into the process. In case of a two-way

invoke, an exception raised by the OutInAxisOperationClient the exception is put as

failure in a PartnerRoleMessageExchange object odeMex. If a SOAP fault is received

as reply, this fault is put as fault in odeMex. Otherwise, the reply message is put there.

An exception on the handling of the reply message is rendered as fault. Received faults

1 http://ode.apache.org
2 http://www.activebpel.org
3 http://ws.apache.org/sandesha/sandesha2/
4 http://ws.apache.org/axis2

http://ode.apache.org
http://www.activebpel.org
http://ws.apache.org/sandesha/sandesha2/
http://ws.apache.org/axis2
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and locally generated faults and failures are propagated to the parent activity by calling

the completed or failure method. The ACTIVITYGUARD class implements the failure

method. Here, the faultOnFailure property is checked and the failure either converted

to a fault or an administrator involved. Faults are propagated up the activity hierarchy

(using the completed method) until a scope is reached. Here, a failure is converted to a

fault and the completed method is called. Subsequently, the usual BPEL fault handling

runs as described in the BPEL specification [2,35,36]. In short, all activities in the scope

the activity belongs to are terminated and a fault handler of the scope is called. Here,

completed activities of the scope may be compensated by calling compensation activities.

A fault may be re-thrown to the parent scope, where the same handling starts.

4.2 Apache Axis2

Apache Axis 2 (Axis for short) is a Web service runtime that supports different Web

service specifications and transport protocols. In Fig. 4, a high-level overview of Axis’

architecture5 is depicted.

Axis supports two different service invocation styles: client may (i) either use

build-time tools to generate a client-side proxy object based on the service’s WSDL

description which wraps the interaction with the service provider or (ii) use Axis’

ServiceClient API to dynamically construct the service invocation request at run-

time. For this purpose, the API exposes several methods for SOAP message generation

(e. g. addHeader, setTargetEPR) and sending (e. g. fireAndForget, sendReceive,

sendReceiveNonBlocking, sendRobust). These methods can be used to implement

different message exchange patterns such as in-only in case of fireAndForget or syn-

chronous or asynchronous in-out in case of sendReceive and sendReceiveNon-

Blocking, respectively.

The following description of the internal actions carried out by the Axis runtime dur-

ing execution of a Web service interaction assumes that a client uses the ServiceClient

API directly. As generated proxy objects rely on the ServiceClient API internally as

well, there is no difference in fault handling behavior on the layers below the compo-

nent layer when using either service invocation style. The invocation styles, however,

differ with regard to their component layer fault handling behavior. Whereas the proxy

5 Adapted from http://ws.apache.org/axis2/1_4_1/userguide.html

http://ws.apache.org/axis2/1_4_1/userguide.html


objects generated during build-time render interface faults as typed faults in the client’s

programming language (e. g. an exception in Java), the ServiceClient API propagates

them to the component layer in form of a generic AxisFault.

Once a client application has called an operation of the ServiceClient object, a

OperationClient object is created that corresponds to the message exchange pattern

implemented by the invoked ServiceClient method. In case the fireAndForget

method of the ServiceClient is invoked, which implements an in-only WSDL mes-

sage exchange pattern, a OutOnlyAxisOperationClient object is created, which

furthermore contains the client-defined SOAP envelope and determines the transport

protocol to be used to invoke the service based on the client-defined service endpoint

address in form of a TransportOutDescriptionObject.

After creation of the request message, it is passed into the AxisEngine in form of a

MessageContext object. The engine subsequently passes the message context object to

several configurable handler objects (cf. Fig. 4) which may perform additional processing

steps before the message is passed to the implementation of the TransportSender

interface corresponding to the transport protocol that should be used for the respective

interaction. The TransportSender implementation for using a HTTP transport is the

CommonsHTTPTransportSender. Additional processing steps include WS-Security

and WS-RM steps. In the case of WS-RM, the SandeshaOutHandler is used. Here,

the WS-RM data are created or fetched from an internal storage (e. g. sequence number)

and added to the message6. The message is put to a SenderBeanManager, where

messages to send are persistently stored to have them available for a retransmit. The

transport sender serializes the message payload in the MessageContext and sends it

to the receiver using the CommonsHTTPClient sendViaPost method. The message

transmission is carried out using the Apache HttpComponents Client7.

Any exceptions occurring during message creation and processing within Axis

(including the WS-RM phase) at the side of the message sender as described before

result in the creation of an AxisFault which is propagated back to the calling client

application. The reason of the fault (e. g. a MailformedURLException in case of an

invalid URL in the defined endpoint address or an IOException in case of an unavailable

receiver) is embedded in the generated AxisFault which allows clients to individually

handle different fault types.

On the server-side Axis implementation, the request is received either through the

AxisServlet or a stand-alone HTTPTransportReceiver. The SOAP request message

is extracted from the incoming HTTP request and stored into a MessageContext object

which is then passed through the handlers of the server-side Axis runtime (see Fig. 4)

to the service’s application logic. Any fault occurring on the way up to the component

layer is rendered as a SOAP fault with its fault code chosen according to the description

in Sect. 3.3. The WS-RM part checks if the message is a WS-RM message or if there

are WS-RM headers present and executes the respective logic. For instance, in the

case of the SequenceAcknowledgement header, acknowledged message numbers are

compared with the numbers of the sent messages. In case a message is acknowledged,

6 Details on the internal processing by Sandesha2 is provided by http://ws.apache.org/

sandesha/sandesha2/architectureGuide.html
7 http://hc.apache.org/

http://ws.apache.org/sandesha/sandesha2/architectureGuide.html
http://ws.apache.org/sandesha/sandesha2/architectureGuide.html
http://hc.apache.org/


it is removed from the SenderBeanManager. The unacknowledged messages are sent

using the SandeshaThread, which in turn periodically queries the sender bean manager.

After message transmission, the client-side transport sender interprets the status of

the message submission based on the received HTTP status code (cf. mapping between

SOAP faults and HTTP status codes in Sect. 3.2). In case the receiving side signals an

HTTP code of 2xx, the message transmission is considered successful and the payload of

the response message (which e. g. in case of an in-out message exchange pattern contains

the result of the service invocation) is extracted and stored into a MessageContext

object. In case an HTTP status code of 4xx (client error) or 5xx (server error) is received,

the response message is checked for the presence of a SOAP fault which is extracted

and stored into a MessageContext object similar to the response case.

Whether the response or fault is propagated back to the calling application through

Axis’ handlers is dependent on the concrete message exchange pattern of the executed op-

eration. If the call is an in-only operation, the response and error messages are discarded

and not processed further by Axis. If the call on the other hand is a in-out operation (re-

alized by an OutInAxisOperationClient), either the created message context object

is passed back to the sending client application through Axis’ handlers or an exception

corresponding to the occurred fault is thrown and propagated back, either directly in

case of a blocking invocation of sendReceive or by invoking a client-provided callback

in case of sendReceiveNonBlocking. Processing the response status codes even in

case of a fireAndForget invocation allows for developing implementations of the

TransportSender interface, which are independent of any concrete message exchange

patterns.

Alternative binding implementations, such as the MailTransport, which are real-

ized as further implementations of the TransportSender interface, generally follow

the same approach to identifying, wrapping and propagating faults back to the calling

client application.

5 Conclusions and Future Work

This paper provided an overview on the fault handling on all layers in the Web service

stack. Special emphasis was put on the analysis of the interplay between the different

layers. We showed that current related work in the field does not holistically regard the

communication between different services. This paper helps to foster the awareness of

the different layers of the Web service stack and enables a more detailed analysis of

impacts of new solutions to the Web service stack.

Not all specifications cover fault handling completely. The fault-handling-mechanisms

defined e. g. as part of the BPEL specification alone are not sufficient to enable a robust

behavior of a business process in all cases: BPEL engine implementations differ e. g.

in the way how they handle a fault occurring on the communication layer. Vendors

include custom extensions; e. g. ODE suspends a process and allows an administrator to

decide how to handle the situation. Thus, guidelines are needed to enable developing

applications which are reaching a consistent state even in the case of a failure during the

execution.



Currently, faults are handled by a component in each layer. In our future work, we

plan to use BPEL to coordinate fault handling in the quality of service layer and below

by extending the work presented in [30].

In this work, we discussed the implementations of Apache ODE and Apache Axis

only. Future work has to investigate the behavior of other WS runtimes such as the

Active BPEL engine and Apache CXF.

Current formalizations of BPEL and other process calculi currently do not capture

the behavior of the Web service stack. Thus, our future work is to use our findings to

include the behavior of the middleware in verification of processes.
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