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Abstract 

This paper outlines the benefits of adopting service-
oriented architectures at the level of communications 
between resource-constrained embedded devices, in 
particular for industrial device networks. It focuses on 
the usage of the Devices Profile for Web Services as 
the underpinning of such "smart device" architectures 
and discusses an early implementation thereof. It 
further illustrates how "dumb" or "legacy" devices can 
be integrated using a gatewaying approach. 

1. Overview 
Ch. 2 outlines the challenges faced by the 

manufacturing community and the opportunities 
resulting from increasing miniaturization and usage of 
standard communication protocols. Ch. 3 describes the 
rationale for the adoption of a service-oriented 
architecture (SOA) and the benefits of extending this 
paradigm to the realm of communications between 
"smart" devices of all kinds. Ch. 4 presents the major 
characteristics of the Devices Profile for Web Services 
(DPWS), a Web Services based device communication 
framework. Ch. 5 describes an experimental DPWS 
implementation together with some performance 
aspects and future extensions. Ch. 6 illustrates how the 
reach of this approach can be extended to encompass 
"dumb" or "legacy" devices. 

2. Introduction 
Shortcomings of current approaches to automation 

For the sake of their competitiveness in today's 
global economy, manufacturing companies urgently 
need production systems that can provide both the 
flexibility to support product variety dynamically and 
the reconfigurability to be adapted economically to 
manufacture new generations of a given product.  

Currently, about one third of the total cost of a 
manufacturing plant over its lifetime is spent on 
installation and set-up. Maintenance downtime 
accounts for another substantial portion of the 
operating costs. If a plant has to be adapted to new 

products by changing its process flow and introducing 
new equipment or replacing obsolete or non-
competitive equipment provided by different makers, 
the downtime and installation costs rise considerably 
since reuse and reconfigurability are poorly supported. 
Today, virtually every new piece of automation has its 
own unique control system. As a result, it is estimated 
that 80% of the engineering effort is devoted to re-
implementing the control and related electrical systems 
each time a new machine is implemented on a new 
project. This effort could be significantly reduced, and 
reconfigurability and reuse improved, if a component-
based approach were adopted, i.e., if proven pre-
assembled mechatronic components were used as the 
common building blocks to compose manufacturing 
automation systems. 

In the automotive industry, it was determined that 
an engine assembly machine is composed of a 
relatively small number of common control elements. 
Thus, 80% of the controls and equipment for power-
train assembly are standard, and tremendous effort 
could be saved if control functionality could be better 
encapsulated at device level [1]. As in other 
manufacturing sectors, the automotive industry now 
has to develop, deploy and support automated systems 
on a global basis in ever shorter timeframes. 
Furthermore, the lifecycle engineering of such 
production machines requires complex and timely 
interaction between geographically distributed 
members of project engineering teams comprising 
automation suppliers, control system suppliers, 
machine tool builders and end-user product, process 
and control engineers. 

Readily configurable information exchange is 
required, not only between geographically dispersed 
business partners, but also with the embedded devices 
– in particular, to enable rapid reconfiguration and 
reuse of the system components to account for the 
introduction of new product models, as well as the 
ability to dynamically provide new value-added 
services and efficient diagnosis and maintenance.  

Furthermore, current industrial information and 
control systems are often fragmented, hard to manage, 



difficult to change or extend and isolated from higher 
level business systems. Customers want to be able to 
connect all their sub-systems and equipment into the 
same, easily configurable, information system – hence 
the need for standard protocols and real-time 
information flow at the lowest system levels, i.e., 
embedded device. A distributed system is needed 
capable of integrating a variety of heterogeneous 
devices into an interoperable network of resources. 
Reliability and security are also key requirements. 

SOA for collaborative automation 
Attempts to address the need for more configurable 

production systems better able to meet the 
requirements of agile manufacturing have led to a 
growing interest in automation paradigms that model 
and implement production systems as sets of 
production units/agents/actors collaborating in a 
complex manner in order to achieve a common goal 
[2]. This approach is characterized by the adoption of 
decentralized distributed automation systems, with 
manufacturing resources composed of intelligent 
modules that can be easily reconfigured to suit 
evolving application needs. This collective 
functionality distributed across many mechatronic 
devices and machine controls replaces the 
programming of manufacturing sequences and 
supervisory functions in traditional production 
systems. 

In the manufacturing community, multi-agent and 
holonic systems, also sometimes referred to as 
collaborative automation systems, have been the 
subject of great attention. Pilot applications of 
collaborative automation have indicated that the 
approach has the potential to reduce significantly the 
total amount of time for production system engineering 
[3]. However despite their promise, such systems have 
not as yet made significant inroads in manufacturing 
plants. In addition to the lack of widely accepted 
standards, one of the reasons for this situation seems to 
be that their implementations only cover part of the 
manufacturing landscape, whilst other areas remain 
subjected to the reign of proprietary standards, 
methods and mechanisms, resulting in a rigid 
patchwork of technology islands with poor scalability. 

The principal inhibitors to the more widespread 
realization of collaborative automation systems are the 
inflexible communication infrastructure among current 
manufacturing process components, and the difficulty 
of porting existing application software to new 
configurations. An open, flexible and agile 
environment with plug-and-play connectivity is 
therefore desperately needed. Despite several proposals 
put forward by a variety of consortia and standards 
bodies to adopt open solutions for manufacturing 

plants, proprietary communication and control 
standards still severely impede the progress towards 
flexibility and agility. 

SOA offers the potential to provide the necessary 
system-wide visibility and device interoperability in 
complex collaborative automation systems subject to 
frequent changes. In just a few years, the concept of 
SOA has gained substantial traction in business system 
environments, but SOA also holds the promise of 
meeting the technical and business level requirements 
for future automation systems.  

In a nutshell, SOA is an architectural paradigm for 
building systems from autonomous yet interoperable 
components. A service only exposes its interface 
("contract"), which fully encapsulates the complexity 
of its implementation. Services can be published and 
discovered dynamically. SOA is characterized by 
coarse-grained service interfaces, loose coupling 
between service providers and service consumers, and 
message-based, asynchronous communication. The use 
of open standards, in particular those of the Web 
Services family, allows for implementing SOA in a 
technology-neutral fashion. These features make SOA 
particularly applicable for a global multi-vendor 
environment where interoperability is essential.  

As outlined in [4], the approach of expanding the 
use of SOA to low-level real-time embedded devices 
paves the way for fulfilling the reconfigurability and 
flexibility requirements of collaborative automation, 
thus allowing to reshape the automation landscape.  

3. Service-oriented device networking 
Opportunities and challenges 

Internet technology is on its way to underpin a 
pervasively networked world interconnecting billions 
of people and trillions of devices – used in industrial 
automation, automotive electronics, telemetry, 
telecommunications equipment, building controls, 
home automation, medical instrumentation, etc. – 
much in the same way as the Internet came to the 
desktop before and is coming today to all sorts of 
personal information appliances. This tendency is the 
result of several converging evolutions: 
• The availability of low-cost, high-performance, 

low-power electronic components allows 
embedding unprecedented horsepower into very 
tiny parts. Leveraging this technology to build 
advanced functionality into embedded devices, 
enables new distributed application paradigms 
based on interconnected "smart devices" with a high 
level of autonomy. 

• Owing to their low cost, both wireline and wireless 
networks of the Ethernet type are becoming widely 
accepted as the medium of choice for device 



networking. On top of these networks, Internet 
protocols of the TCP/IP family are becoming the 
standard vehicle for communication between 
networked devices.  

• The universal acceptance of information 
interchange based on Extensible Markup Language 
(XML) paves the way for developing high-level 
communication standards for devices. 

• The advent of the Web Services paradigm for 
interconnecting heterogeneous applications through 
a lightweight communications infrastructure enables 
universal, platform-neutral connectivity. 

• The ubiquitous presence of Internet technology 
increasingly allows "invisible" embedded devices 
and user-facing devices as well as higher-level 
information systems to coexist on the same network 
and, hence, to communicate.  
As a consequence, the device networking market 

and technology are expected to substantially evolve in 
the forthcoming years. Market research from Forrester 
Research expects the market for network-connected 
devices to expand to 14 billion units by 2010.  

Since the real-time embedded computing world is 
characterized by a high degree of diversity in device 
functionality, form factor, network protocols, 
input/output features… as well as the presence of many 
hardware and software platforms, the adoption of a 
uniform communication paradigm will greatly 
facilitate the elimination of the existing technology 
islands. 

Service-oriented interaction patterns for devices  
Devices are categorized as either controlling 

devices or controlled devices, but a given device may 
play both roles, thus enabling peer-to-peer interactions. 
The interaction patterns of a device-level SOA can be 
categorized according to five levels of functionality:  

Addressing. This is the foundation for device 
networking. In the case of IP-based networking, the 
addressing capacity is provided by the IP protocol, 
either IPv4 or IPv6.  

Discovery. Once addressing is established, devices 
need to discover each other. When a controlled device 
is added to the network, a discovery protocol enables it 
to advertise its services on the network. Similarly, 
when a controlling device enters the network it sends 
out a search request and then the devices that match the 
request send a corresponding reply. 

Description. Once a controlling device has 
discovered a controlled device, to learn more about the 
latter and its capabilities, the controlling device must 
retrieve the controlled device's description 
("metadata"), including information like manufacturer 
name, version, serial number, etc. For each service 
exposed by a device, the device description defines the 

command messages, or actions, that the service 
responds to, as well as the associated message formats.  

Control. Once it knows a controlled device, a 
controlling device can exert control over it. To invoke 
an action on a device's service, a controlling device 
sends a control message to the network endpoint for 
that service. Resultantly, the service may or may not 
return a response message providing any command-
specific information. 

Eventing. In addition, devices may communicate 
through asynchronous eventing, usually implemented 
by a "publish-subscribe" mechanism, through which a 
service exposes events corresponding to internal state 
changes, to which controlling devices can subscribe in 
order to receive event notifications whenever the 
corresponding internal state change occurs.  

Device level service-oriented protocols 
Several device-level SOA technologies have been 

proposed, most notably UPnP (Universal Plug and 
Play) [5] and Jini [6].  

Jini is strongly rooted in Java and therefore lacks 
platform-neutrality and is ill-adapted to usage in 
resource-restricted devices. 

The UPnP architecture leverages Internet and Web 
technologies including IP, TCP, UDP, HTTP, SOAP 
and XML; hence it is truly platform-agnostic. 
However, it uses specific protocols for device 
discovery and eventing and a specific XML-based 
language for device and service description. 

A very promising approach is that proposed by the 
Devices Profile for Web Services (DPWS) [7], 
described below. It has the same advantages as UPnP, 
but additionally it is fully aligned with Web Services 
technology. It is worth noting that Microsoft's 
Longhorn/Vista platform natively integrates DPWS. 

4. Using DPWS for high-level device 
communications 

The DPWS specification defines an architecture in 
which devices run two types of services: hosting 
services and hosted services. Hosting services are 
directly associated to a device, and play an important 
part in the device discovery process. Hosted services 
are mostly functional and depend on their hosting 
device for discovery. In addition to these hosted 
services, DPWS specifies a set of built-in services: 
• Discovery services: used by a device to advertise 

itself and/or to discover other devices. 
• Metadata exchange services: provide dynamic 

access to the metadata of a device’s hosted services. 
• Eventing services: allowing other devices to 

subscribe to asynchronous event messages produced 
by a given service. 



The core Web Services standards are documented in 
[8]. The DPWS protocol stack, depicted in Fig 1, 
integrates all these core standards, to which it adds 
Web Services protocols for discovery and eventing. 
 

Application-specific protocols 

WS-Discovery WS-Eventing 

WS-Security 
WS-Policy 

WS-MetadataExchange 
WS-Transfer 

WS-Addressing 

SOAP 1.2 
WSDL 1.1, XML Schema 

HTTP 1.1 
UDP 

TCP 

IPv4/IPv6 

Fig. 1 – DPWS protocol stack 

DPWS Messaging  
A key aspect of the DPWS protocol stack is that all 

messaging is based on the use of SOAP and WS-
Addressing. Indeed, owing to the extensibility features 
built into SOAP, the Web Services architecture is 
highly composable, as the use of SOAP headers allows 
the various Web Service protocols to be integrated 
individually and incrementally, without disturbing the 
rest of the protocol stack, as well as to be improved 
and versioned in isolation, without affecting the entire 
stack. Another advantage of using SOAP across the 
board is that common functionality can be factored 
among the various higher-level protocols. Thus, the 
same security mechanisms can be used both for 
control, discovery and eventing.  

The purpose of WS-Addressing is to move all 
message addressing information into the SOAP header, 
thereby decoupling the message content from the 
transport and enabling more complex message 
exchange patterns than HTTP's request-response 
model. WS-Addressing provides a well-defined way to 
do asynchronous one-way messaging, with the ability 
to correlate messages. Every networked resource is 
identified by an End-Point Reference (EPR), composed 
of an Address and Reference Parameters. The Address 
is a logical address (a URI) that resolves to a physical 
address through an appropriate binding. The Reference 
Parameters are pieces of state that the service may use 
to disambiguate subordinate resources, and are opaque 
to the message sender. With DPWS, the Address part 
of any EPR is constrained to be a URI of the UUID 
type, which uniquely identifies a device. 

WS-Addressing defines a set of standard SOAP 
message addressing properties: 'To', 'Action', 
'ReplyTo', 'FaultTo', 'MessageId', 'From' and 
'RelatesTo'. The 'To' URI specifies the message 
destination, while the 'Action' URI corresponds to a 
WSDL port type and identifies the message semantics. 
A 'ReplyTo' endpoint must be specified only when a 
response is expected, but it can be used to route that 
response to any valid endpoint. In that case, a 
'MessageId' must also be specified, which the 
destination endpoint will return in the 'RelatesTo' 
header of the response. Optionally, 'From' can be used 
to identify the message originator. The optional 
'FaultTo' header allows SOAP fault messages to be 
routed to the specified EPR. Together, these addressing 
constructs allow for completely asynchronous message 
exchanges. 

Finally, SOAP messages may carry attachments 
following the SOAP Message Transmission 
Optimization Mechanism (MTOM). 

DPWS Description & Discovery 
Like any Web Service, DPWS-based services are 

described using XML Schema, WSDL and WS-Policy. 
DPWS uses the WS-Discovery protocol for plug-

and-play device discovery. WS-Discovery defines a 
multicast discovery protocol to search for and locate 
network-connected resources. The primary mode of 
discovery is a client searching for one or more so-
called "target services". In the context of DPWS, a 
target service is a device. Hosted services do not 
participate in the discovery process, but can be 
individually addressed (through their respective EPRs) 
once the hosting device has been discovered. The 
search can either specify the type of the device or a 
scope in which the device resides or both; it 
materializes as a Probe message sent to a multicast 
group; devices that match the probe send a ProbeMatch 
response directly to the client (in unicast mode). 
Similarly, to locate a device by name, a client sends a 
Resolve message to the same multicast group and the 
device that matches sends a ResolveMatch response 
directly to the client.  

WS-Discovery leverages the SOAP-UDP binding in 
order to minimize network traffic overhead. When a 
device joins the network, it announces itself by sending 
a multicast Hello message. Thus, clients can detect 
newly available devices without repeated probing. 
When leaving the network in an orderly manner, a 
device announces this through a Bye message. 

Multicast-based discovery is limited to local 
subnets. In order for discovery to be scalable to 
enterprise-wide scenarios, WS-Discovery introduces 
the notion of Discovery Proxy (DP). A DP has two 
functions: multicast suppression (to reduce network 



traffic) and extending the discovery protocol's reach 
beyond the local subnet. When a DP detects a multicast 
Probe or Resolve request, it sends a Hello for itself. By 
listening for these announcements, clients detect DPs 
and switch to use a DP-specific protocol. However, 
when a DP is unresponsive, clients revert to use the 
ordinary discovery protocol.  

During the discovery process, a device exposes the 
following metadata: 
• its EPR, which allows to determine the device's 

physical network address; 
• 'Types': a set of messages the device can send 

and/or receive; these can be either functional WSDL 
port-types (e.g. 'turn on', 'turn off') or abstract types 
grouping several port types and/or hosted services 
(e.g. 'gripper', 'lighting', 'residential gateway'); 

• 'Scopes': a set of attributes that may be used to 
organize devices into logical or hierarchical groups, 
e.g. according to their location or access rights. 
Subsequently, further metadata on a device and/or 

on its hosted services can be obtained using WS-
Transfer Get messages with different "dialects": 
• 'ThisModel' metadata provides device type 

information like manufacturer name, model name, 
model number, etc.; 

• 'ThisDevice' metadata provides information on the 
device itself such as serial number, firmware 
version and friendly name; 

• 'Relationship' metadata is the list of services hosted 
by the device, which comprises the EPR and types 
of each of the hosted services; 

• 'WSDL' pertains to the location where to find the 
definition of the port-types (operations and message 
structures) implemented by the endpoint addressed; 
this might be exploited by generic clients that 
dynamically interpret the WSDL definitions. 

DPWS Control & Event Notification 
Control and event notification messages are simply 

SOAP and WS-Addressing based messages, formatted 
according to the WSDL definitions they relate to. 

DPWS leverages WS-Eventing, which defines a 
publish-subscribe event handling protocol allowing 
one Web Service ("event sink") to register interest 
("subscription") with another Web Service ("event 
source") in receiving messages about events 
("notifications"). A subscription is leased by an event 
source to an event sink and expires over time; hence, it 
must be regularly renewed. WS-Eventing therefore 
provides three built-in operations: Subscribe, Renew 
and Unsubscribe. Event notifications themselves are 
one-way messages (or solicit-response interactions), 
the content of which may include any data of any type. 
They are transported in the same way as any other 
SOAP message. An event source may further support 

filtering; if it does and a subscribe request contains a 
filter expression, the event source sends only 
notifications that match the requested filter. While WS-
Eventing allows for filtering based on XPath 
predicates, DPWS limits the filtering capability to the 
matching of a list of URIs. 

DPWS Security 
Depending on the openness of the application 

context, device communications may be more or less 
subject to a variety of security attacks and may 
therefore require that communication be secured using 
WS-Security mechanisms. WS-Security is used here as 
a collective name for an extensive set of Web Service 
specifications related to various aspects of security.  

DPWS specifies the protocols and message formats 
related to: 
• authentication of devices, 
• integrity of message exchanges between devices, 
• confidentiality of message exchanges between 

devices. 
This specification is a minimal set of recommended 

default mechanisms for interoperable security between 
devices. It may be enhanced in the future as device 
processing capabilities evolve. Furthermore, devices 
are free to support other security mechanisms, 
specified through policies. These optional security 
mechanisms are factored in through SOAP. 

The default DPWS model for security setup 
encompasses a mutual authentication phase, as a result 
of which a secure transport channel is established, over 
which subsequent communication takes place, using a 
session key for message encryption.  

A client's security requirements, if any, are 
advertised during the device discovery process; they 
may include authentication and secured discovery. 
With secured discovery, the integrity of all multicast 
and unicast discovery messages is protected using 
message-level signatures. Discovery messages are not 
encrypted. According to the security requirements 
conveyed, the communicating entities negotiate the 
authentication and key establishment protocols to be 
used. 

The basis for device authentication is a device-level 
certificate. In simple deployments, a device may have a 
self-signed certificate. In managed deployments, a 
device may have a certificate with a root that is trusted 
by the client. The authentication handshake process 
encompasses the verification of the credentials of both 
communicating entities, as well as the establishment of 
a session key for protecting later message exchanges. 
The default mechanism recommended by DPWS for 
device authentication is to set up a TLS session. This 
channel-based security approach is sufficient as long as 
devices communicate without intermediaries. The 



prescribed device certificate format uses the X.509v3 
standard. Once the authentication phase is completed, a 
secure channel is established between the 
communicating entities, over which the HTTPS 
protocol is used for exchanging encrypted description, 
control or eventing messages.  

5. Experimental DPWS toolkit for 
embedded devices 

In the context of the ITEA/SIRENA project [10], 
Schneider Electric realized a proof-of-concept DPWS 
implementation destined to be integrated into 
embedded devices for a variety of applications in the 
industrial automation, home, automotive and 
telecommunications sectors. It implements all the 
DPWS protocols except WS-Security.  

Applications created using this DPWS Toolkit are 
directly interoperable with the DPWS implementation 
included in the Microsoft Vista platform.  

The DPWS Toolkit has been ported to many target 
software platforms (various flavors of Linux, 
Microsoft's Windows and Windows CE, Sun's Solaris, 
WindRiver's VxWorks, ExpressLogic's ThreadX and 
Quadros Systems' Quadros). At present, it runs on 
various hardware platforms (foreshadowing single-chip 
implementations), including the following: 
• Type A: a processor board comprising a 44-MHz 

ARM7 TDMI and associated memory (but no cache 
memory), running ThreadX.  

• Type B: a processor board housing a 400-MHz Intel 
PXA255 (XScale) with on-chip cache and 
associated memory, running Windows CE. 

Principles of operation 
Fig. 2 outlines the general architecture of a device 

built using the DPWS Toolkit. In this figure: 
• "App services" and "Events" are user-defined 

services and events, provided as user-written code 
and generated code in the DPWS Toolkit. 

• "Execution Services", "Eventing Services" and 
"Discovery Services" are predefined services, 
including the embedded SOAP 1.2 engine, provided 
as run-time libraries in the DPWS Toolkit. 

• Two network interfaces are shown: the primary 
interface uses the standard SOAP 1.2 over HTTP 
binding, while the discovery interface uses SOAP 
over UDP and a multicast address to broadcast and 
listen to the discovery messages. These interfaces 
rely on a commercially available IP stack. 
The DPWS Toolkit is written in C and is derived 

from the gSOAP open-source software package, which 
has been modified to accommodate asynchronous 
control flows based on WS-Addressing. It is fed by a 
WSDL file, from which it generates C structures 

representing the message contents, together with 
marshalling/demarshalling code for transforming 
between C structures and SOAP/XML messages, as 
well as proxy (client-side) and skeleton (server-side) 
code (including network interactions and message 
dispatch mechanisms). 
 
 Device 

• Device address (logical) 
• Policies 

Hosted service 
•Device address  
•ServiceID 

Hosted service 
• Device address  
• ServiceID 
• Policies 

App services

Events
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• Address map 

Eventing Services 
• Subscription 
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Execution Services
• SOAP 1.2 engine 
• Addressing API 

Primary interface
• Physical address

Discovery interface

WS-Eventing
WS-Security

WS-Discovery
WS-Policy 
WS-Security 

Notification
Invocation

Subscription

SOAP 1.2 over UDP
WS-AddressingSOAP 1.2

WS-Addressing

Fig. 2 – DPWS-based device architecture 

Performance aspects 
Based on the above-mentioned Type A and Type B 

boards and on the DPWS software component, several 
experimental devices have been built, connected 
through 100 Mbps Ethernet networks. This network 
transfer rate is so high that transmission delays are 
almost negligible compared to CPU processing times. 

Measurements on a Type A platform show the 
following results: 
• The static memory footprint of the device software 

including the OS, the TCP/IP protocol stack and the 
DPWS software is less than 500 KB, while the 
dynamic memory requirements are below 100 KB. 

• The total time required for preparing and sending a 
request message to a device and for receiving and 
handling its response message is about 39 ms.  
On a Type B platform, the aggregate request and 

response handling time measured is about 10 ms. 
There is ample room for improving the performance 

characteristics of this early DPWS implementation. 
Directions being explored include: 
• software optimizations (better memory 

management, faster string manipulation), 
• using SOAP directly on top of TCP/IP, 
• binary instead of textual encoding of SOAP 

messages, in particular, using the Efficient XML 
solution retained by W3C [9]. 
Overall, it is estimated that an improvement of 

between one and two orders of magnitude over the 
currently observed processing speed is achievable. 
Thus, while sub-millisecond message processing times 



can easily be obtained on PC-class devices today, this 
remains a challenge on embedded devices but is 
considered to be attainable. 

Future extensions 
Besides the performance improvements mentioned 

above, the DPWS toolkit is being consolidated and 
extended in various directions, such as: 
• Implementation of a Java version of the toolkit; this 

version has been released by mid-2006. 
• Support of the optional WS-Security mechanisms. 
• Inclusion of the Discovery Proxy functionality and 

extension of the description and discovery 
mechanisms allowing for integration of semantic 
service aspects. 

• Addition of an Event Broker, allowing to improve 
the scalability of the eventing mechanisms. 

• Support of the WS-ReliableMessaging protocol for 
guaranteed message delivery. 

• Implementation of a generic component model in 
support of dynamic deployment. 

• Support of the IPv6 protocol family. 

6. Integration of "dumb" or "legacy" 
devices 

If implementing "smart devices" at the lowest level 
of the device hierarchy is the ultimate perspective of 
the device-level SOA approach, this is not yet feasible 
today for all types of devices in a cost-effective 
manner. Furthermore, there is a strong requirement to 
be able to integrate existing devices on a "wrap-and-
reuse" rather than a "rip-and-replace" basis. 

In such cases, a gateway approach can be used to 
DPWS-enable devices that do not natively implement 
DPWS. This approach may be illustrated through an 
example, in which a hypothetical Fieldbus Gateway 
(FGW) device manages some sort of fieldbus to which 
three devices, designated as "Valve", "Heater" and 
"Alarm", are connected. The FGW exposes itself as a 
DPWS device to various operator-controlled devices, 
such as a PC or a PDA. Its initial configuration is done 
by personnel familiar with the fieldbus characteristics. 
The FGW exposes all fieldbus devices as individual 
devices, as if each device were a DPWS server (Fig. 3). 
This approach allows for seamless future migration to 
a situation where every device natively supports 
DPWS. 

The principle for implementing the DPWS device 
embedding scheme by the FGW is as follows: 
• During the fieldbus device configuration stage, a 

device configuration document is built up, in which 
the necessary metadata is added to the description of 
each of the fieldbus-connected devices. 

• During installation of the FGW, the installer 
downloads this configuration document to the 
FGW, and the latter builds up an internal database 
representing the aggregate fieldbus device 
configuration, including the appropriate metadata. 

• Once its configuration is done, the FGW emulates 
the DPWS discovery process for the devices it 
manages, using "Hello" messages to advertise each 
of the devices and supplying metadata on request. 
This allows the installer to display the entire 
fieldbus device configuration. Optionally, the 
installer may then further want to group devices into 
named groups according to various criteria, e.g. 
their physical location, which facilitates issuing 
commands to a whole group of devices at once.  

• When the operator brings up his device, the latter 
discovers the FGW as well as each of the fieldbus 
devices managed by the FGW – through "Hello" 
and/or "Probe" and "ProbeMatch" messages.  
The operator is then capable of addressing 

commands to any fieldbus device as if that device were 
directly visible to his controlling device. 

 

 
Fig. 3 – Device gateway with embedded virtual 

devices 
The sequence diagram shown in Fig. 4 illustrates 

these interactions, starting from the FGW installation 
phase. This figure also shows the generation of an 
event notification following the detection of an 
abnormal condition by the Alarm device. 

A major advantage of using standard Web Services 
at the device level is to also use Web Services 
aggregation and orchestration technology at the device 
level. In the present example scenario, equipping the 
FGW with a lightweight orchestration engine would 



allow to readily create and execute complex 
customized scripts invoking multiple sequential and/or 
concurrent device services, e.g. to close all Valve 

devices, to set the Heater device in energy-saving 
mode and to activate the Alarm device. 

 

  
Fig. 4 – Device gatewaying sequence diagram 

 
 

7. Conclusion 
The convergence between computing and 

networking is revolutionizing the way communications 
are organized at the level of embedded devices. As the 
intelligence of computing and communications can 
thus be driven down to the lowest device levels, 
higher-level device communication paradigms 
supported by open Internet protocol standards are 
emerging. Homing in on this tendency, the Devices 
Profile for Web Services constitutes the most 
promising avenue in this new device communication 
space. It leverages the widespread adoption of service-
oriented architectures and is fully aligned with Web 
Services standards, hence totally platform- and 
language-neutral. This approach enables novel device 

networking architectures and holds the promise of 
allowing seamless integration of device-level 
functionality into higher-level business processes, as 
well as integration of legacy technology through 
gateways. With its early implementation of this new 
device networking paradigm, the ITEA/SIRENA 
project [10] broke new ground for a wide range of 
application domains. 

8. Acknowledgement 
This work was supported by the ITEA/SIRENA 
project, funded in France by the Ministry of 
Economics, Finance and Industry. SIRENA was 
attributed the ITEA Achievement Award 2006. Its 
results are used by the ITEA/SODA [11] and the 
IST/SOCRADES [12] projects. 



9. References 
[1] R. Harrison, A. W. Colombo, A. A. West and S. M. Lee, 
"Reconfigurable Modular Automation Systems for 
Automotive Powertrain Manufacture", 2005 CIRP-sponsored 
3rd International Conference on Reconfigurable 
Manufacturing, Ann Arbor, Michigan, 10-12 May 2005. 
[2] R. Harrison, A. W. Colombo, "Collaborative 
Automation. From Rigid Coupling Towards Dynamic 
Reconfigurable Production Systems". Proc. of the IFAC 
World Control Congress 2005, Prague, Czech Republic. 
[3] A. W. Colombo, R. Schoop and R. Neubert, 
"Collaborative (Agent-Based) Factory Automation". In “The 
Industrial Information Technology Handbook”. R. Zurawski 
(Ed), chapter 109, CRC Press, 2004. 
[4] F. Jammes, H. Smit, "Service-Oriented Paradigms in 
Industrial Automation", IEEE Transactions on Industrial 
Informatics, Vol. 1(1), pp. 62-70, February 2005. 

[5] The UPnP Forum: http://www.upnp.org 
[6] The Community Resource for Jini technology:  
http://www.jini.org 
[7] S. Chan et al: "Devices Profile for Web Services", 
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.
pdf 
[8] D. Box, L. F. Cabrera, C. Kurt, "An Introduction to the 
Web Services Architecture and its Specifications", 
http://msdn.microsoft.com/webservices/webservices/understa
nding/advancedwebservices/default.aspx?pull=/library/en-
us/dnwebsrv/html/introwsa.asp 
[9] The Efficient XML Working Group:   
http://www.w3c.org/XML/EXI 
[10] The SIRENA project: http://www.sirena-itea.org 
[11] The SODA project: http://www.soda-itea.org 
[12] The SOCRADES project: http://www.socrades.eu 
 

 


