
Service-Oriented Device Communications
using the Devices Profile for Web Services

François Jammes, Antoine Mensch, Harm Smit
Schneider Electric, Odonata, Schneider Electric

francois.jammes@ieee.org, antoine.mensch@odonata.fr, harm.smit@ieee.org

Abstract

This paper outlines the benefits of adopting service-
oriented architectures at the level of communications
between resource-constrained embedded devices, in
particular for industrial device networks. It focuses on
the usage of the Devices Profile for Web Services as
the underpinning of such "smart device" architectures
and discusses an early implementation thereof. It
further illustrates how "dumb" or "legacy" devices can
be integrated using a gatewaying approach.

1. Overview
Ch. 2 outlines the challenges faced by the

manufacturing community and the opportunities
resulting from increasing miniaturization and usage of
standard communication protocols. Ch. 3 describes the
rationale for the adoption of a service-oriented
architecture (SOA) and the benefits of extending this
paradigm to the realm of communications between
"smart" devices of all kinds. Ch. 4 presents the major
characteristics of the Devices Profile for Web Services
(DPWS), a Web Services based device communication
framework. Ch. 5 describes an experimental DPWS
implementation together with some performance
aspects and future extensions. Ch. 6 illustrates how the
reach of this approach can be extended to encompass
"dumb" or "legacy" devices.

2. Introduction
Shortcomings of current approaches to automation

For the sake of their competitiveness in today's
global economy, manufacturing companies urgently
need production systems that can provide both the
flexibility to support product variety dynamically and
the reconfigurability to be adapted economically to
manufacture new generations of a given product.

Currently, about one third of the total cost of a
manufacturing plant over its lifetime is spent on
installation and set-up. Maintenance downtime
accounts for another substantial portion of the
operating costs. If a plant has to be adapted to new

products by changing its process flow and introducing
new equipment or replacing obsolete or non-
competitive equipment provided by different makers,
the downtime and installation costs rise considerably
since reuse and reconfigurability are poorly supported.
Today, virtually every new piece of automation has its
own unique control system. As a result, it is estimated
that 80% of the engineering effort is devoted to re-
implementing the control and related electrical systems
each time a new machine is implemented on a new
project. This effort could be significantly reduced, and
reconfigurability and reuse improved, if a component-
based approach were adopted, i.e., if proven pre-
assembled mechatronic components were used as the
common building blocks to compose manufacturing
automation systems.

In the automotive industry, it was determined that
an engine assembly machine is composed of a
relatively small number of common control elements.
Thus, 80% of the controls and equipment for power-
train assembly are standard, and tremendous effort
could be saved if control functionality could be better
encapsulated at device level [1]. As in other
manufacturing sectors, the automotive industry now
has to develop, deploy and support automated systems
on a global basis in ever shorter timeframes.
Furthermore, the lifecycle engineering of such
production machines requires complex and timely
interaction between geographically distributed
members of project engineering teams comprising
automation suppliers, control system suppliers,
machine tool builders and end-user product, process
and control engineers.

Readily configurable information exchange is
required, not only between geographically dispersed
business partners, but also with the embedded devices
– in particular, to enable rapid reconfiguration and
reuse of the system components to account for the
introduction of new product models, as well as the
ability to dynamically provide new value-added
services and efficient diagnosis and maintenance.

Furthermore, current industrial information and
control systems are often fragmented, hard to manage,

difficult to change or extend and isolated from higher
level business systems. Customers want to be able to
connect all their sub-systems and equipment into the
same, easily configurable, information system – hence
the need for standard protocols and real-time
information flow at the lowest system levels, i.e.,
embedded device. A distributed system is needed
capable of integrating a variety of heterogeneous
devices into an interoperable network of resources.
Reliability and security are also key requirements.

SOA for collaborative automation
Attempts to address the need for more configurable

production systems better able to meet the
requirements of agile manufacturing have led to a
growing interest in automation paradigms that model
and implement production systems as sets of
production units/agents/actors collaborating in a
complex manner in order to achieve a common goal
[2]. This approach is characterized by the adoption of
decentralized distributed automation systems, with
manufacturing resources composed of intelligent
modules that can be easily reconfigured to suit
evolving application needs. This collective
functionality distributed across many mechatronic
devices and machine controls replaces the
programming of manufacturing sequences and
supervisory functions in traditional production
systems.

In the manufacturing community, multi-agent and
holonic systems, also sometimes referred to as
collaborative automation systems, have been the
subject of great attention. Pilot applications of
collaborative automation have indicated that the
approach has the potential to reduce significantly the
total amount of time for production system engineering
[3]. However despite their promise, such systems have
not as yet made significant inroads in manufacturing
plants. In addition to the lack of widely accepted
standards, one of the reasons for this situation seems to
be that their implementations only cover part of the
manufacturing landscape, whilst other areas remain
subjected to the reign of proprietary standards,
methods and mechanisms, resulting in a rigid
patchwork of technology islands with poor scalability.

The principal inhibitors to the more widespread
realization of collaborative automation systems are the
inflexible communication infrastructure among current
manufacturing process components, and the difficulty
of porting existing application software to new
configurations. An open, flexible and agile
environment with plug-and-play connectivity is
therefore desperately needed. Despite several proposals
put forward by a variety of consortia and standards
bodies to adopt open solutions for manufacturing

plants, proprietary communication and control
standards still severely impede the progress towards
flexibility and agility.

SOA offers the potential to provide the necessary
system-wide visibility and device interoperability in
complex collaborative automation systems subject to
frequent changes. In just a few years, the concept of
SOA has gained substantial traction in business system
environments, but SOA also holds the promise of
meeting the technical and business level requirements
for future automation systems.

In a nutshell, SOA is an architectural paradigm for
building systems from autonomous yet interoperable
components. A service only exposes its interface
("contract"), which fully encapsulates the complexity
of its implementation. Services can be published and
discovered dynamically. SOA is characterized by
coarse-grained service interfaces, loose coupling
between service providers and service consumers, and
message-based, asynchronous communication. The use
of open standards, in particular those of the Web
Services family, allows for implementing SOA in a
technology-neutral fashion. These features make SOA
particularly applicable for a global multi-vendor
environment where interoperability is essential.

As outlined in [4], the approach of expanding the
use of SOA to low-level real-time embedded devices
paves the way for fulfilling the reconfigurability and
flexibility requirements of collaborative automation,
thus allowing to reshape the automation landscape.

3. Service-oriented device networking
Opportunities and challenges

Internet technology is on its way to underpin a
pervasively networked world interconnecting billions
of people and trillions of devices – used in industrial
automation, automotive electronics, telemetry,
telecommunications equipment, building controls,
home automation, medical instrumentation, etc. –
much in the same way as the Internet came to the
desktop before and is coming today to all sorts of
personal information appliances. This tendency is the
result of several converging evolutions:
• The availability of low-cost, high-performance,

low-power electronic components allows
embedding unprecedented horsepower into very
tiny parts. Leveraging this technology to build
advanced functionality into embedded devices,
enables new distributed application paradigms
based on interconnected "smart devices" with a high
level of autonomy.

• Owing to their low cost, both wireline and wireless
networks of the Ethernet type are becoming widely
accepted as the medium of choice for device

networking. On top of these networks, Internet
protocols of the TCP/IP family are becoming the
standard vehicle for communication between
networked devices.

• The universal acceptance of information
interchange based on Extensible Markup Language
(XML) paves the way for developing high-level
communication standards for devices.

• The advent of the Web Services paradigm for
interconnecting heterogeneous applications through
a lightweight communications infrastructure enables
universal, platform-neutral connectivity.

• The ubiquitous presence of Internet technology
increasingly allows "invisible" embedded devices
and user-facing devices as well as higher-level
information systems to coexist on the same network
and, hence, to communicate.
As a consequence, the device networking market

and technology are expected to substantially evolve in
the forthcoming years. Market research from Forrester
Research expects the market for network-connected
devices to expand to 14 billion units by 2010.

Since the real-time embedded computing world is
characterized by a high degree of diversity in device
functionality, form factor, network protocols,
input/output features… as well as the presence of many
hardware and software platforms, the adoption of a
uniform communication paradigm will greatly
facilitate the elimination of the existing technology
islands.

Service-oriented interaction patterns for devices
Devices are categorized as either controlling

devices or controlled devices, but a given device may
play both roles, thus enabling peer-to-peer interactions.
The interaction patterns of a device-level SOA can be
categorized according to five levels of functionality:

Addressing. This is the foundation for device
networking. In the case of IP-based networking, the
addressing capacity is provided by the IP protocol,
either IPv4 or IPv6.

Discovery. Once addressing is established, devices
need to discover each other. When a controlled device
is added to the network, a discovery protocol enables it
to advertise its services on the network. Similarly,
when a controlling device enters the network it sends
out a search request and then the devices that match the
request send a corresponding reply.

Description. Once a controlling device has
discovered a controlled device, to learn more about the
latter and its capabilities, the controlling device must
retrieve the controlled device's description
("metadata"), including information like manufacturer
name, version, serial number, etc. For each service
exposed by a device, the device description defines the

command messages, or actions, that the service
responds to, as well as the associated message formats.

Control. Once it knows a controlled device, a
controlling device can exert control over it. To invoke
an action on a device's service, a controlling device
sends a control message to the network endpoint for
that service. Resultantly, the service may or may not
return a response message providing any command-
specific information.

Eventing. In addition, devices may communicate
through asynchronous eventing, usually implemented
by a "publish-subscribe" mechanism, through which a
service exposes events corresponding to internal state
changes, to which controlling devices can subscribe in
order to receive event notifications whenever the
corresponding internal state change occurs.

Device level service-oriented protocols
Several device-level SOA technologies have been

proposed, most notably UPnP (Universal Plug and
Play) [5] and Jini [6].

Jini is strongly rooted in Java and therefore lacks
platform-neutrality and is ill-adapted to usage in
resource-restricted devices.

The UPnP architecture leverages Internet and Web
technologies including IP, TCP, UDP, HTTP, SOAP
and XML; hence it is truly platform-agnostic.
However, it uses specific protocols for device
discovery and eventing and a specific XML-based
language for device and service description.

A very promising approach is that proposed by the
Devices Profile for Web Services (DPWS) [7],
described below. It has the same advantages as UPnP,
but additionally it is fully aligned with Web Services
technology. It is worth noting that Microsoft's
Longhorn/Vista platform natively integrates DPWS.

4. Using DPWS for high-level device
communications

The DPWS specification defines an architecture in
which devices run two types of services: hosting
services and hosted services. Hosting services are
directly associated to a device, and play an important
part in the device discovery process. Hosted services
are mostly functional and depend on their hosting
device for discovery. In addition to these hosted
services, DPWS specifies a set of built-in services:
• Discovery services: used by a device to advertise

itself and/or to discover other devices.
• Metadata exchange services: provide dynamic

access to the metadata of a device’s hosted services.
• Eventing services: allowing other devices to

subscribe to asynchronous event messages produced
by a given service.

The core Web Services standards are documented in
[8]. The DPWS protocol stack, depicted in Fig 1,
integrates all these core standards, to which it adds
Web Services protocols for discovery and eventing.

Application-specific protocols

WS-Discovery WS-Eventing

WS-Security
WS-Policy

WS-MetadataExchange
WS-Transfer

WS-Addressing

SOAP 1.2
WSDL 1.1, XML Schema

HTTP 1.1
UDP

TCP

IPv4/IPv6

Fig. 1 – DPWS protocol stack

DPWS Messaging
A key aspect of the DPWS protocol stack is that all

messaging is based on the use of SOAP and WS-
Addressing. Indeed, owing to the extensibility features
built into SOAP, the Web Services architecture is
highly composable, as the use of SOAP headers allows
the various Web Service protocols to be integrated
individually and incrementally, without disturbing the
rest of the protocol stack, as well as to be improved
and versioned in isolation, without affecting the entire
stack. Another advantage of using SOAP across the
board is that common functionality can be factored
among the various higher-level protocols. Thus, the
same security mechanisms can be used both for
control, discovery and eventing.

The purpose of WS-Addressing is to move all
message addressing information into the SOAP header,
thereby decoupling the message content from the
transport and enabling more complex message
exchange patterns than HTTP's request-response
model. WS-Addressing provides a well-defined way to
do asynchronous one-way messaging, with the ability
to correlate messages. Every networked resource is
identified by an End-Point Reference (EPR), composed
of an Address and Reference Parameters. The Address
is a logical address (a URI) that resolves to a physical
address through an appropriate binding. The Reference
Parameters are pieces of state that the service may use
to disambiguate subordinate resources, and are opaque
to the message sender. With DPWS, the Address part
of any EPR is constrained to be a URI of the UUID
type, which uniquely identifies a device.

WS-Addressing defines a set of standard SOAP
message addressing properties: 'To', 'Action',
'ReplyTo', 'FaultTo', 'MessageId', 'From' and
'RelatesTo'. The 'To' URI specifies the message
destination, while the 'Action' URI corresponds to a
WSDL port type and identifies the message semantics.
A 'ReplyTo' endpoint must be specified only when a
response is expected, but it can be used to route that
response to any valid endpoint. In that case, a
'MessageId' must also be specified, which the
destination endpoint will return in the 'RelatesTo'
header of the response. Optionally, 'From' can be used
to identify the message originator. The optional
'FaultTo' header allows SOAP fault messages to be
routed to the specified EPR. Together, these addressing
constructs allow for completely asynchronous message
exchanges.

Finally, SOAP messages may carry attachments
following the SOAP Message Transmission
Optimization Mechanism (MTOM).

DPWS Description & Discovery
Like any Web Service, DPWS-based services are

described using XML Schema, WSDL and WS-Policy.
DPWS uses the WS-Discovery protocol for plug-

and-play device discovery. WS-Discovery defines a
multicast discovery protocol to search for and locate
network-connected resources. The primary mode of
discovery is a client searching for one or more so-
called "target services". In the context of DPWS, a
target service is a device. Hosted services do not
participate in the discovery process, but can be
individually addressed (through their respective EPRs)
once the hosting device has been discovered. The
search can either specify the type of the device or a
scope in which the device resides or both; it
materializes as a Probe message sent to a multicast
group; devices that match the probe send a ProbeMatch
response directly to the client (in unicast mode).
Similarly, to locate a device by name, a client sends a
Resolve message to the same multicast group and the
device that matches sends a ResolveMatch response
directly to the client.

WS-Discovery leverages the SOAP-UDP binding in
order to minimize network traffic overhead. When a
device joins the network, it announces itself by sending
a multicast Hello message. Thus, clients can detect
newly available devices without repeated probing.
When leaving the network in an orderly manner, a
device announces this through a Bye message.

Multicast-based discovery is limited to local
subnets. In order for discovery to be scalable to
enterprise-wide scenarios, WS-Discovery introduces
the notion of Discovery Proxy (DP). A DP has two
functions: multicast suppression (to reduce network

traffic) and extending the discovery protocol's reach
beyond the local subnet. When a DP detects a multicast
Probe or Resolve request, it sends a Hello for itself. By
listening for these announcements, clients detect DPs
and switch to use a DP-specific protocol. However,
when a DP is unresponsive, clients revert to use the
ordinary discovery protocol.

During the discovery process, a device exposes the
following metadata:
• its EPR, which allows to determine the device's

physical network address;
• 'Types': a set of messages the device can send

and/or receive; these can be either functional WSDL
port-types (e.g. 'turn on', 'turn off') or abstract types
grouping several port types and/or hosted services
(e.g. 'gripper', 'lighting', 'residential gateway');

• 'Scopes': a set of attributes that may be used to
organize devices into logical or hierarchical groups,
e.g. according to their location or access rights.
Subsequently, further metadata on a device and/or

on its hosted services can be obtained using WS-
Transfer Get messages with different "dialects":
• 'ThisModel' metadata provides device type

information like manufacturer name, model name,
model number, etc.;

• 'ThisDevice' metadata provides information on the
device itself such as serial number, firmware
version and friendly name;

• 'Relationship' metadata is the list of services hosted
by the device, which comprises the EPR and types
of each of the hosted services;

• 'WSDL' pertains to the location where to find the
definition of the port-types (operations and message
structures) implemented by the endpoint addressed;
this might be exploited by generic clients that
dynamically interpret the WSDL definitions.

DPWS Control & Event Notification
Control and event notification messages are simply

SOAP and WS-Addressing based messages, formatted
according to the WSDL definitions they relate to.

DPWS leverages WS-Eventing, which defines a
publish-subscribe event handling protocol allowing
one Web Service ("event sink") to register interest
("subscription") with another Web Service ("event
source") in receiving messages about events
("notifications"). A subscription is leased by an event
source to an event sink and expires over time; hence, it
must be regularly renewed. WS-Eventing therefore
provides three built-in operations: Subscribe, Renew
and Unsubscribe. Event notifications themselves are
one-way messages (or solicit-response interactions),
the content of which may include any data of any type.
They are transported in the same way as any other
SOAP message. An event source may further support

filtering; if it does and a subscribe request contains a
filter expression, the event source sends only
notifications that match the requested filter. While WS-
Eventing allows for filtering based on XPath
predicates, DPWS limits the filtering capability to the
matching of a list of URIs.

DPWS Security
Depending on the openness of the application

context, device communications may be more or less
subject to a variety of security attacks and may
therefore require that communication be secured using
WS-Security mechanisms. WS-Security is used here as
a collective name for an extensive set of Web Service
specifications related to various aspects of security.

DPWS specifies the protocols and message formats
related to:
• authentication of devices,
• integrity of message exchanges between devices,
• confidentiality of message exchanges between

devices.
This specification is a minimal set of recommended

default mechanisms for interoperable security between
devices. It may be enhanced in the future as device
processing capabilities evolve. Furthermore, devices
are free to support other security mechanisms,
specified through policies. These optional security
mechanisms are factored in through SOAP.

The default DPWS model for security setup
encompasses a mutual authentication phase, as a result
of which a secure transport channel is established, over
which subsequent communication takes place, using a
session key for message encryption.

A client's security requirements, if any, are
advertised during the device discovery process; they
may include authentication and secured discovery.
With secured discovery, the integrity of all multicast
and unicast discovery messages is protected using
message-level signatures. Discovery messages are not
encrypted. According to the security requirements
conveyed, the communicating entities negotiate the
authentication and key establishment protocols to be
used.

The basis for device authentication is a device-level
certificate. In simple deployments, a device may have a
self-signed certificate. In managed deployments, a
device may have a certificate with a root that is trusted
by the client. The authentication handshake process
encompasses the verification of the credentials of both
communicating entities, as well as the establishment of
a session key for protecting later message exchanges.
The default mechanism recommended by DPWS for
device authentication is to set up a TLS session. This
channel-based security approach is sufficient as long as
devices communicate without intermediaries. The

prescribed device certificate format uses the X.509v3
standard. Once the authentication phase is completed, a
secure channel is established between the
communicating entities, over which the HTTPS
protocol is used for exchanging encrypted description,
control or eventing messages.

5. Experimental DPWS toolkit for
embedded devices

In the context of the ITEA/SIRENA project [10],
Schneider Electric realized a proof-of-concept DPWS
implementation destined to be integrated into
embedded devices for a variety of applications in the
industrial automation, home, automotive and
telecommunications sectors. It implements all the
DPWS protocols except WS-Security.

Applications created using this DPWS Toolkit are
directly interoperable with the DPWS implementation
included in the Microsoft Vista platform.

The DPWS Toolkit has been ported to many target
software platforms (various flavors of Linux,
Microsoft's Windows and Windows CE, Sun's Solaris,
WindRiver's VxWorks, ExpressLogic's ThreadX and
Quadros Systems' Quadros). At present, it runs on
various hardware platforms (foreshadowing single-chip
implementations), including the following:
• Type A: a processor board comprising a 44-MHz

ARM7 TDMI and associated memory (but no cache
memory), running ThreadX.

• Type B: a processor board housing a 400-MHz Intel
PXA255 (XScale) with on-chip cache and
associated memory, running Windows CE.

Principles of operation
Fig. 2 outlines the general architecture of a device

built using the DPWS Toolkit. In this figure:
• "App services" and "Events" are user-defined

services and events, provided as user-written code
and generated code in the DPWS Toolkit.

• "Execution Services", "Eventing Services" and
"Discovery Services" are predefined services,
including the embedded SOAP 1.2 engine, provided
as run-time libraries in the DPWS Toolkit.

• Two network interfaces are shown: the primary
interface uses the standard SOAP 1.2 over HTTP
binding, while the discovery interface uses SOAP
over UDP and a multicast address to broadcast and
listen to the discovery messages. These interfaces
rely on a commercially available IP stack.
The DPWS Toolkit is written in C and is derived

from the gSOAP open-source software package, which
has been modified to accommodate asynchronous
control flows based on WS-Addressing. It is fed by a
WSDL file, from which it generates C structures

representing the message contents, together with
marshalling/demarshalling code for transforming
between C structures and SOAP/XML messages, as
well as proxy (client-side) and skeleton (server-side)
code (including network interactions and message
dispatch mechanisms).

 Device

• Device address (logical)
• Policies

Hosted service
•Device address
•ServiceID

Hosted service
• Device address
• ServiceID
• Policies

App services

Events

App services

Events

Discovery Services
• Local metadata publishing
• Remote metadata cache
• Address map

Eventing Services
• Subscription

management

Execution Services
• SOAP 1.2 engine
• Addressing API

Primary interface
• Physical address

Discovery interface

WS-Eventing
WS-Security

WS-Discovery
WS-Policy
WS-Security

Notification
Invocation

Subscription

SOAP 1.2 over UDP
WS-AddressingSOAP 1.2

WS-Addressing

Fig. 2 – DPWS-based device architecture

Performance aspects
Based on the above-mentioned Type A and Type B

boards and on the DPWS software component, several
experimental devices have been built, connected
through 100 Mbps Ethernet networks. This network
transfer rate is so high that transmission delays are
almost negligible compared to CPU processing times.

Measurements on a Type A platform show the
following results:
• The static memory footprint of the device software

including the OS, the TCP/IP protocol stack and the
DPWS software is less than 500 KB, while the
dynamic memory requirements are below 100 KB.

• The total time required for preparing and sending a
request message to a device and for receiving and
handling its response message is about 39 ms.
On a Type B platform, the aggregate request and

response handling time measured is about 10 ms.
There is ample room for improving the performance

characteristics of this early DPWS implementation.
Directions being explored include:
• software optimizations (better memory

management, faster string manipulation),
• using SOAP directly on top of TCP/IP,
• binary instead of textual encoding of SOAP

messages, in particular, using the Efficient XML
solution retained by W3C [9].
Overall, it is estimated that an improvement of

between one and two orders of magnitude over the
currently observed processing speed is achievable.
Thus, while sub-millisecond message processing times

can easily be obtained on PC-class devices today, this
remains a challenge on embedded devices but is
considered to be attainable.

Future extensions
Besides the performance improvements mentioned

above, the DPWS toolkit is being consolidated and
extended in various directions, such as:
• Implementation of a Java version of the toolkit; this

version has been released by mid-2006.
• Support of the optional WS-Security mechanisms.
• Inclusion of the Discovery Proxy functionality and

extension of the description and discovery
mechanisms allowing for integration of semantic
service aspects.

• Addition of an Event Broker, allowing to improve
the scalability of the eventing mechanisms.

• Support of the WS-ReliableMessaging protocol for
guaranteed message delivery.

• Implementation of a generic component model in
support of dynamic deployment.

• Support of the IPv6 protocol family.

6. Integration of "dumb" or "legacy"
devices

If implementing "smart devices" at the lowest level
of the device hierarchy is the ultimate perspective of
the device-level SOA approach, this is not yet feasible
today for all types of devices in a cost-effective
manner. Furthermore, there is a strong requirement to
be able to integrate existing devices on a "wrap-and-
reuse" rather than a "rip-and-replace" basis.

In such cases, a gateway approach can be used to
DPWS-enable devices that do not natively implement
DPWS. This approach may be illustrated through an
example, in which a hypothetical Fieldbus Gateway
(FGW) device manages some sort of fieldbus to which
three devices, designated as "Valve", "Heater" and
"Alarm", are connected. The FGW exposes itself as a
DPWS device to various operator-controlled devices,
such as a PC or a PDA. Its initial configuration is done
by personnel familiar with the fieldbus characteristics.
The FGW exposes all fieldbus devices as individual
devices, as if each device were a DPWS server (Fig. 3).
This approach allows for seamless future migration to
a situation where every device natively supports
DPWS.

The principle for implementing the DPWS device
embedding scheme by the FGW is as follows:
• During the fieldbus device configuration stage, a

device configuration document is built up, in which
the necessary metadata is added to the description of
each of the fieldbus-connected devices.

• During installation of the FGW, the installer
downloads this configuration document to the
FGW, and the latter builds up an internal database
representing the aggregate fieldbus device
configuration, including the appropriate metadata.

• Once its configuration is done, the FGW emulates
the DPWS discovery process for the devices it
manages, using "Hello" messages to advertise each
of the devices and supplying metadata on request.
This allows the installer to display the entire
fieldbus device configuration. Optionally, the
installer may then further want to group devices into
named groups according to various criteria, e.g.
their physical location, which facilitates issuing
commands to a whole group of devices at once.

• When the operator brings up his device, the latter
discovers the FGW as well as each of the fieldbus
devices managed by the FGW – through "Hello"
and/or "Probe" and "ProbeMatch" messages.
The operator is then capable of addressing

commands to any fieldbus device as if that device were
directly visible to his controlling device.

Fig. 3 – Device gateway with embedded virtual

devices
The sequence diagram shown in Fig. 4 illustrates

these interactions, starting from the FGW installation
phase. This figure also shows the generation of an
event notification following the detection of an
abnormal condition by the Alarm device.

A major advantage of using standard Web Services
at the device level is to also use Web Services
aggregation and orchestration technology at the device
level. In the present example scenario, equipping the
FGW with a lightweight orchestration engine would

allow to readily create and execute complex
customized scripts invoking multiple sequential and/or
concurrent device services, e.g. to close all Valve

devices, to set the Heater device in energy-saving
mode and to activate the Alarm device.

Fig. 4 – Device gatewaying sequence diagram

7. Conclusion
The convergence between computing and

networking is revolutionizing the way communications
are organized at the level of embedded devices. As the
intelligence of computing and communications can
thus be driven down to the lowest device levels,
higher-level device communication paradigms
supported by open Internet protocol standards are
emerging. Homing in on this tendency, the Devices
Profile for Web Services constitutes the most
promising avenue in this new device communication
space. It leverages the widespread adoption of service-
oriented architectures and is fully aligned with Web
Services standards, hence totally platform- and
language-neutral. This approach enables novel device

networking architectures and holds the promise of
allowing seamless integration of device-level
functionality into higher-level business processes, as
well as integration of legacy technology through
gateways. With its early implementation of this new
device networking paradigm, the ITEA/SIRENA
project [10] broke new ground for a wide range of
application domains.

8. Acknowledgement
This work was supported by the ITEA/SIRENA
project, funded in France by the Ministry of
Economics, Finance and Industry. SIRENA was
attributed the ITEA Achievement Award 2006. Its
results are used by the ITEA/SODA [11] and the
IST/SOCRADES [12] projects.

9. References
[1] R. Harrison, A. W. Colombo, A. A. West and S. M. Lee,
"Reconfigurable Modular Automation Systems for
Automotive Powertrain Manufacture", 2005 CIRP-sponsored
3rd International Conference on Reconfigurable
Manufacturing, Ann Arbor, Michigan, 10-12 May 2005.
[2] R. Harrison, A. W. Colombo, "Collaborative
Automation. From Rigid Coupling Towards Dynamic
Reconfigurable Production Systems". Proc. of the IFAC
World Control Congress 2005, Prague, Czech Republic.
[3] A. W. Colombo, R. Schoop and R. Neubert,
"Collaborative (Agent-Based) Factory Automation". In “The
Industrial Information Technology Handbook”. R. Zurawski
(Ed), chapter 109, CRC Press, 2004.
[4] F. Jammes, H. Smit, "Service-Oriented Paradigms in
Industrial Automation", IEEE Transactions on Industrial
Informatics, Vol. 1(1), pp. 62-70, February 2005.

[5] The UPnP Forum: http://www.upnp.org
[6] The Community Resource for Jini technology:
http://www.jini.org
[7] S. Chan et al: "Devices Profile for Web Services",
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.
pdf
[8] D. Box, L. F. Cabrera, C. Kurt, "An Introduction to the
Web Services Architecture and its Specifications",
http://msdn.microsoft.com/webservices/webservices/understa
nding/advancedwebservices/default.aspx?pull=/library/en-
us/dnwebsrv/html/introwsa.asp
[9] The Efficient XML Working Group:
http://www.w3c.org/XML/EXI
[10] The SIRENA project: http://www.sirena-itea.org
[11] The SODA project: http://www.soda-itea.org
[12] The SOCRADES project: http://www.socrades.eu

