
Service-Oriented Migration and Reuse Technique (SMART)

Grace Lewis, Edwin Morris, Dennis Smith
Software Engineering Institute, Pittsburgh, PA, USA

{glewis, ejm, dbs}@sei.cmu.edu
Liam O’Brien1

Lero – The Irish Software Engineering Research Centre
liam.obrien@ul.ie

1. Liam O’Brien was affiliated with the Software Engineering Institute at the time this work was performed.

ABSTRACT

This report describes the Service-Oriented
Migration and Reuse Technique (SMART).
SMART is a technique that helps organizations
analyze legacy systems to determine whether
their functionality, or subsets of it, can be
reasonably exposed as services in a Service-
Oriented Architecture (SOA), and thus to achieve
greater interoperability. Converting legacy
components to services allows systems to remain
largely unchanged while exposing functionality
to a large number of clients through well-defined
service interfaces. A number of organizations
are adopting this approach by defining SOAs
that include a set of infrastructure common
services on which organizations can build
additional domain services or applications.
SMART considers the specific interactions that
will be required by the target SOA and any
changes that must be made to the legacy
components. An early version of SMART was
applied with good success to assist a DoD
organization in evaluating the potential for
converting components of an existing system into
services that would run in a new and tightly
constrained SOA environment.

1. Introduction

Many organizations have been attempting to
renew their legacy systems and achieve greater
interoperability by exposing all or parts of it as
services. A service is a coarse-grained,
discoverable, and self-contained software entity
that interacts with applications and other
services through a loosely coupled, often
asynchronous, message-based communication
model [3]. A collection of services with well-
defined interfaces and shared communications
model is called a service-oriented architecture
(SOA). A system or application is designed
and implemented as a set of interactions among
these services.

The characteristics of SOAs (e.g., loose
coupling, published interfaces, and standard

communication model) offer the promise of
enabling existing legacy systems to expose
their functionality, presumably without making
significant changes to the legacy systems.
Migration to an SOA can represent a complex
engineering task, particularly when the services
are expected to execute within a tightly
constrained environment.

SOA migration tasks can be considered from a
number of perspectives including that of the
end client or user of the services, the SOA
architect, or the service provider.

This paper focuses on the service provider.
While the paper focuses on the role of the
service provider, it takes into account the
needs of the ultimate user in making decisions
about the relevance of migrating legacy assets
to services. Section 2 discusses overall issues
in the creation of services from legacy
components. Section 3 outlines the SMART
process for evaluating legacy components for
their potential to become services in an SOA.
Section 4 briefly discusses the pilot application
of this process on an actual project. Section 5
provides conclusions and discusses next steps.

2. Creation of Services From Legacy
Components

Enabling a legacy system to interact within a
service-oriented architecture, such as a Web
services architecture, is sometimes relatively
straightforward—this is a primary attraction to
the approach for many businesses. Web service
interfaces are set up to receive SOAP
messages, parse their content, invoke legacy
code directly or through a custom component
that invokes the legacy code, and optionally
wrap the results as a SOAP message to be
returned to the sender. Many modern
development environments provide tools to
help in this process, and commercial
organizations are rapidly employing these
environments to expose their business
processes to the world.

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

However, characteristics of legacy systems,
such as age, language, and architecture, as well
as of the target SOA can complicate the task.
This is particularly the case when migrating to
highly demanding and proprietary SOAs. Such
migrations will likely rely less on semi-
automated migration, and more on careful
analysis of the feasibility and magnitude of the
effort involved. This analysis should consider:

1. Requirements from potential service users.
It is important to know what applications
would use the services and how they would
be used. For example, what is the
information expected to be exchanged? In
what format?

2. Technical characteristics of the target
environment. There are many technical
underpinnings that need to be understood,
especially in proprietary environments, such
as bindings, messaging technologies,
communication protocols, service
description languages, and service
discovery mechanisms.

3. The architecture of the legacy system. It is
critical to identify architectural elements
that could be problematic in the target
environment or that could increase the
difficulty of the effort, such as
dependencies on commercial products or
specific operating systems, or poor
separation of concerns.

4. The effort involved in writing the service
interface. Even if it is expected that the
legacy system will remain intact, there
needs to be code that receives the request,
translates it into calls to the legacy systems,
and produces a response.

5. The effort involved in the translation of data
types. Service interfaces usually prescribe a
set of data types that can be transmitted in
messages. For newer legacy systems and
basic data types this can be a small effort,
especially if messages are XML documents.
But, in the case of complex data types such
as audio, video, and graphics, or in legacy
programming languages that do not provide
capabilities for building XML documents,
this effort can be non-trivial.

6. The effort required to describe the services.
In an SOA, services advertise their
capabilities for other systems to use, and
systems find the services they need by using
the discovery mechanism prescribed by the
target environment. The more detailed and
precise the description of the service, the

greater the chances it will be discovered and
used appropriately. In critical situations,
the description may have to include
information about qualities of service, such
as performance, reliability, and security; or
service level agreements (SLAs).

7. The effort involved in writing service
initialization code and operational
procedures. Code that is deployed as
services will need to initialize itself,
announce its availability, and be ready to
take requests. This will require the
establishment of operational procedures for
the deployment of services.

8. Estimates of cost, difficulty, and risk. The
information gathered in the previous points
should provide for more realistic estimates.

3. The Service-Oriented Migration and Reuse
Technique (SMART)

The Service-Oriented Migration and Reuse
Technique (SMART) was developed to assist
organizations in analyzing legacy capabilities for
use as services in an SOA. SMART was derived
from the Options Analysis for Reengineering
(OAR) method developed at the SEI that has
been successfully used to support analysis of
reuse potential for legacy components [1].

SMART gathers a wide range of information
about legacy components, the target SOA, and
potential services to produce a service migration
strategy as its primary product. However,
SMART also produces other outputs that are
useful to an organization whether or not it
decides on migration.

SMART input (from documentation and
interviews) and output are depicted in Figure 1.

Figure 1: SMART Input and Output

SMART consists of five major activities, each

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

divided into several tasks. The activities and
generalized process and information flows of
SMART are depicted in Figure 2.

Establish
Stakeholder

Context

Describe
Existing

Capability

Describe the
Target SOA

State

Analyze the
Gap

Develop
Migration
Stategy

Figure 2: SMART Activities

However, the number of artifacts considered, the
time required, and the specific activities of a
given application of SMART depend on previous
activities and expectations of the requesting
organization. For example, if the requesting
organization has specific legacy components in
mind for migration, SMART activities will be
focused on those components.

The resources and effort required for a SMART
analysis will vary. SMART is most effective if a
preliminary screening of assets has been made to
focus on those of the highest potential value. For
the pilot application described in Section 4, the
organization had selected seven candidate
services to analyze that included 29 classes and
about 24,000 lines of code from a total
application of about 800,000 lines of code. The
SMART team included 3 analysts who
understood the method. The team spent 6 days at
the client organization interviewing stakeholders
and maintenance programmers, and 4 days of
additional analysis off-site. From the client
organization, this application required 1 day of
effort from each of 3 knowledgeable
management level stakeholders, 3 days of effort
from a chief architect and 2 days of effort from
each of two maintenance programmers. A
SMART analyst should be a person
knowledgeable in software design and
maintenance. It requires about 3 days to be

trained in the method, plus participation in a
SMART application.

Information for the first three activities (on the
left) is gathered during an initial orientation
meeting and through several additional meetings
between the SMART team and the organization
tasked with the migration activities. During these
meetings, the SMART team assesses stakeholder
needs, identifies the SOA vision, and elicits a
high-level description of the architecture and
other features of the legacy system (as listed in
Figure 2). Available documentation is gathered
for the legacy system in general, for legacy
components that may be transitioned to services
(if previously identified), and for the target SOA.
In some cases, the target SOA may not be
complete, so SOA documentation may describe a
future state.

Information-gathering activities for the first three
activities are directed by the Service Migration
Interview Guide (SMIG). The SMIG contains
questions that directly address the gap between
the existing and target architecture, design, and
code, as well as questions concerning issues that
must be addressed in service migration efforts
[4]. Use of the SMIG assures broad and
consistent coverage of the factors that influence
the cost, effort, and risk involved in migration to
services.

The Service Migration Interview Guide (SMIG)
is an instrument that guides the discussions with
stakeholders and developers in the first three
activities of the SMART process:

• Establish Stakeholder Context
• Describe Existing Capabilities
• Describe the Service-Based State

Data collected from the SMIG helps to determine
the degree of difficulty and level of effort
required to migrate legacy code into services.
The use of this instrument assures broad
coverage and consistent analysis of difficulty,
risk, and cost issues.

Information gathered during the interviews
includes:

• Stakeholder information
• General migration issues
• Data concerning legacy components
• Risks and issues specific to the legacy

components

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

• Potential services
• Target SOA characteristics

It is not necessary for the team to complete all
data gathering during these initial activities.
Additional opportunities are provided during the
Analysis activity.

The five activities and associated tasks of
SMART are detailed in Sections 3.1 through 3.5.

3.1 Establish Stakeholder Context
In order to establish the context in which the
migration to services will take place, the
SMART team employs the SMIG to solicit
information about stakeholders. Stakeholders
typically include the owners and current end
users of the legacy system, and the potential end
users of the migrated services operating within
the SOA. Other stakeholders who are sometimes
important include those who are funding or
controlling the migration effort, groups defining
the target SOA, and Verification and Validation
groups that will certify the properties of the new
services.

The key to this activity is to identify who knows
most about the legacy system, what it currently
does, and what it should do as a service or set of
services. A significant but non-obvious goal is to
identify the parties who are best situated to
indicate whether there is sufficient demand for
the service to warrant migration efforts. Input
from these parties is critical to counteract any
tendency toward assuming without evidence that
the legacy system is a good source for useful and
appropriate services. Their input will also
influence the interface design for the resulting
services.

This activity also initiates the construction of a
list of legacy component characteristics that will
later drive the analysis process. A list of
migration issues is also begun.

The SMIG contains questions that will guide the
capture of information related to:

• Goal of Migration

• Expectations

• Potential Service Users

• Legacy System End Users and Owners

• Contractors

• Legacy Components and Potential Services

Selected examples of SMIG related questions for
this activity include:

• Who owns the legacy system? If there is

more than one owner, are these separate

organizations?

• Who are the potential end users of the

services? Have they provided requirements?

In what form? What types of applications

will be using the services?

• Have legacy components to be migrated to

services been identified? What was the

process? Is the list of components available?

• Have potential services been identified?

What was the process? Is the list of services

available?

3.2 Describe Existing Capability

The goal of the second activity of SMART is to
obtain descriptive data about the components of
the legacy system. The activity employs the
SMIG to gather data about a specific set of topics
related to the legacy system, but the SMART
team has the latitude to pursue interesting leads.
For example, the SMART team may ask
questions about the philosophy and strategies
applied for use of COTS products in the legacy
system on learning that the system developers
opted to use a custom (non-standard) interface to
a commercial database.

Basic data solicited during this activity includes
the name, function, size, language, operating
platform, and age of the legacy components.
Technical personnel are questioned about the
architecture, design paradigms, code complexity,
level of documentation, module coupling,
interfaces for systems and users, and
dependencies on other components and
commercial products.

In addition, data about the relative quality and
maturity of legacy components is gathered,
including outstanding problems, change history,
user satisfaction, and likelihood of meeting
longer term needs. Historical cost data for
development and maintenance tasks is collected
to support effort and cost estimates.

The SMIG contains questions that will guide the
capture of information related to

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

• legacy system characteristics

• legacy system architecture

• code characteristics

3.3 Describe the Target SOA State

The third activity of SMART is intended to

• gather evidence about potential services that

can be created from the legacy components

• gather sufficient detail about the target SOA

to support decisions about what services

may be appropriate and how they will

interact with the each other and the SOA

Initial information about potential services often
comes via SMIG-directed conversations with
legacy component owners. However, the
information gathered must be tempered by data
from users, corporate architects, domain groups,
communities of interest, and reference models
that address service definition. In some cases,
these groups and models will define the entire set
of services that support the organization’s goals,
and into which any potential services built from
the legacy components must fit.

The characteristics of the target SOA will temper
decisions about whether legacy components can
be reused. The degree to which a legacy
component is inconsistent with these
characteristics will profoundly influence the
overall migration costs.

Note that the target SOA can be owned by the
same organization that owns the legacy
components, or by another organization. It may
provide a fixed or pre-existing architecture, or
the architecture for the SOA may be developed
simultaneously with the reengineering of legacy
components. The actual placement along this
spectrum will have important technical and
political consequences for decisions that are
made.

The SMIG contains questions that will guide the
capture of information related to

• service requirements

• target SOA and legacy system adaptation

• service-oriented changes

• support

3.4 Analyze the Gap

The goal of the fourth activity is to identify the
gap between the existing state and the future
state and determine the level of effort and cost
needed to convert the legacy components into
services. This analysis may also suggest
potential tradeoffs between the target
architecture and the legacy components. For
example if the target SOA is flexible, or if it is
still in the process of being defined, a relatively
minor change to its requirements may allow
more legacy components to be converted to
services or may simplify the conversion effort.
However, substantial risks to the migration effort
are introduced when the target SOA has a large
number of to-be-defined areas.

SMART uses several sources of information to
support the analysis activity. The issues,
problems, and data gathered as the SMART team
investigates the available components, required
services, and SOA requirements form one source
of information. A second, optional source of
information involves the use of code analysis
and architecture reconstruction tools [2,5] to
analyze existing source code. Where
documentation is insufficient or where there is
uncertainty about code characteristics such as
dependencies on commercial products, tool
analysis is very helpful. This option can also be
used with great effect to survey representative
portions of the code to verify other opinions and
judgments.

3.5 Develop Migration Strategy

The final activity of SMART involves
recommending one or more of the options
documented in the Component Service Options
Table, selecting a strategy to achieve the goal,
and presenting the SMART team findings. In
many cases, the migration strategy may involve
multiple steps, such as an initial “quick and
dirty” wrapping, followed by restructuring of the
application (now service) into appropriate layers,
and finally by modification to use other services.
Example elements of a strategy include

• the identities of specific components to

migrate

• recommendations regarding the ordering of

migration efforts

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

• specific migration paths to follow (simple

wrapping vs. rewriting of code)

• identification of increments that lead to

increasing capability

• suggestions regarding organization(s) best

equipped to lead the migration effort

• suggested coordination with related efforts

(for example, SOA infrastructure builds)

SMART provides a preliminary analysis of the
viability of migrating legacy components to
services, migration strategies available, and the
costs and risks involved. In particular, it attempts
to answer several questions:

• Which components can reasonably be used

to derive services?

• What sorts of activities must be performed

to accomplish the migration?

• What strategies are most appropriate for the

migration effort?

The sponsoring organization receives a detailed
briefing of the results of SMART, but the
briefing is not intended to replace system
engineering activity. It is assumed that the
organization will reflect on the results and pursue
further engineering analysis along the lines
recommended by SMART.

4. Summary of Results From A Pilot
Implementation

An early version of SMART was applied in a
recent analysis of the potential for migrating a
set of legacy components from a DoD command
and control (C2) system to a target SOA. An
overview of this application is presented below.
More complete information is available in [4].

The owners of the systems recognized that a
selected set of components from their C2 system,
if converted to application domain services
(ADS), would have broad applicability. They
had targeted potential services as part of their
initial analysis of ADS requirements. The
SMART team’s role was to perform a
preliminary evaluation of the feasibility of
converting a set of their components into these
application domain services.

To determine the existing capabilities of the C2
system, the SMART team met with the
contractor and representatives of the government

to focus on a limited number of legacy
components and to select characteristics for
further screening. These sources provided
significant detail about the legacy system, but the
available architecture documentation was
incomplete. In particular, logical and
development views of the system architecture
were not available. This represented a problem
for our analysis.

The current system, written in C++ on a
Windows operating system, had a total of about
800,000 lines of code and 2500 C++ classes. In
addition, the system had dependencies on a
commercial database and a second product for
visualizing, creating, and managing maps. Both
commercial products have only Windows
versions.

The team focused on the 29 specific C++ classes
that would presumably provide the basis for the
seven potential services that the government
team had previously identified, and that offered
high probability of providing useful insight. The
team identified characteristics that would be the
focus for analyzing the components, starting
with those provided by OAR and supplemented
with team knowledge of the necessary
characteristics of services operating within the
target SOA.

In examining the potential for reuse of the
existing legacy components, the team found that
the current legacy code represents a set of
components with significant reuse potential.
However, because the current legacy system
does not have sufficient architecture or other
high-level documentation, it was difficult to
understand the “big picture” as well as
dependencies between classes.

To avoid this problem with future systems, the
team recommended that the organization require
the following changes from its contractors to
make reuse of its legacy components more
viable:

• documentation in the form of a suitable set

of architectural views

• consistent use of programming standards

• documentation of code so that comments

can be extracted using an automated tool

• documentation of dependencies, especially

when they violate architectural patterns

A good starting point was provided by the

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

analysis of the legacy components, based on the
characteristics identified as important during the
data gathering activities. However, the team
performed additional analysis of the code, as
well as an architecture reconstruction to obtain
additional data. The architecture reconstruction
provided an “as-built” representation of the
structure of the system and its dependencies. It
suggested that the significant dependencies
between classes will make reuse and deployment
of services more difficult. If the migration effort
moves forward, the results of the architecture
reconstruction can be a starting point for
understanding how to disentangle dependencies.

The largest risk in reusing the legacy
components concerns the fact that the SOA has
not been fully developed. While its overall
structure has been defined, many of the specific
mechanisms for interacting with it are still
pending. Thus, it is not yet clear what the
requirements for being a service in this
environment will be in 12 or 18 months.

To address the SOA instability issue head on, the
team recommended that the organization take a
proactive approach in working with the
developers of the target SOA to understand the
implications of the evolving SOA on services.

The organization should also work closely with
the developers of the applications who will be
using these services. Even though the technical
part of the communication will be handled by a
common service, the data to be transferred
during that communication must be negotiated—
the contents of both the request and the response
message that is communicated between the
application and the service must be defined. An
initial and crucial element of discussion should
be the data model, given that it is used by all the
potential services.

Dependencies on commercial products including
mapping software and a database are a concern
in the target environment. The Windows-based
mapping software, for example, would need to
be verified for use within the target SOA. A
different mapping service might be required by
the target SOA. There are also dependencies on a
commercial database. These would have to be
replaced by data access methods endorsed for the
target SOA.

The team also noted that because there are
dependencies between the primary services that
were analyzed and a second forthcoming project
that was being planned by the organization, there

will be duplication of work if these are treated as
separate projects.

5. Conclusions and Next Steps

The task of determining whether and how to
expose legacy functionality as services can be
complex. Disciplined analyses of existing
components and the target SOA are necessary for
sound migration decisions. SMART provides
such disciplined analysis through a thorough and
consistent process, a set of data-gathering
activities that capture the scope of technical work
to be accomplished, and artifacts that record
critical aspects of the process.

We applied an early version of SMART to a
command-and-control system and observed both
significant potential for migration to services as
well as shortcomings in documentation and code.
In truth, the system owners will have a difficult
time defining their services until the interfaces
and expectations of the target SOA are better
defined.

While the early version of SMART used to
analyze the system proved valuable, there is
significant room for improvement. SMART is
being updated with the following goals in mind:

• Improve the breadth and consistency of

information gathered about the engineering

effort necessary to change the legacy artifact

into a service. The SMIG is the first tool

intended for this purpose. By incorporating

significant technical “know how” into the

SMIG, we also further an ultimate goal of

transitioning the technique to other users.

• Incorporate decision rules on when it is most

useful to include the code analysis and

architecture reconstruction steps as part of

the process.

• Develop machine support for capturing and

analyzing data gathered during the SMART

process. This will entail building templates

for major artifacts, including the:

- Stakeholder List

- Characteristics List

- Migration Issues List

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

- Component Table

- Service Table

- SOA Description

- Component Service Options Table

- Migration Alternatives Table

- Service Migration Strategy

- Final Presentation

• Develop techniques and criteria for

determining when a SMART team has

captured sufficient information to complete

the analysis process.

• Establish a mechanism to capture the net

effect of SMART on migration efforts. This

information is essential for continued

evolution and improvement of SMART.

As we continue to refine SMART, we plan to

apply it to other projects and legacy systems. We

are actively seeking organizations interested in

applying the technique. We are also well on the

way to establishing relationships with other

organizations interested in adopting and
improving SMART with us.

References

[1] Bergey, J.; O'Brien, L.; & Smith, D.
“Using the Options Analysis for
Reengineering (OAR) Method for Mining
Components for a Product Line,” 316-327.
Software Product Lines: Proceedings of
the Second Software Product Line
Conference (SPLC2). San Diego, CA,
August 19-22, 2002. Berlin, Germany:
Springer, 2002.

[2] Kazman, R; O'Brien, L.; & Verhoef, C.
Architecture Reconstruction Guidelines,
2nd Edition (CMU/SEI-2002-TR-034
ADA421612). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon
University, 2003.
http://www.sei.cmu.edu/publications/docu
ments /02.reports/02tr034.html.

[3] Lewis, Grace A. and Wrage, Lutz.
Approaches to Constructive
Interoperability (CMU/SEI-2004-TR-020
ESC-TR-2004-020). January 2005.
http://www.sei.cmu.edu/publications/docu
ments/04.reports/04tr020.html

[4] Lewis, G., Morris, E. O’Brien, W., Smith,
D. and Wrage, L. SMART: The Service-
Oriented Migration and Reuse Technique.
(CMU/SEI-2005-TN-029)

[5] O'Brien, L.; Stoermer, C; & Verhoef, C.
Software Architecture Reconstruction:
Practice Needs and Current Approaches
(CMU/SEI-2002-TR-024, ADA407795).
Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University,
2002.
http://www.sei.cmu.edu/publications/docu
ments/02.reports /02tr024.html.

Proceedings of the 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05)
0-7695-2639-X/05 $20.00 © 2005

