
Service-Oriented Product Lines:
Towards a Development Process and

Feature Management Model for Web Services
Sebastian Günther

Very Large Business Applications Lab
School of Computer Science

Otto-von-Guericke-Universität Magdeburg
sebastian.guenther@ovgu.de

Thorsten Berger
Business Information Systems

Department of Computer Science
Universität Leipzig

berger@informatik.uni-leipzig.de

Abstract—Service-Oriented Architecture fosters the loose coupling of
services aimed at maximizing flexibility, adaptability and configurability.
Services of different providers can easily be integrated into a common
framework with standardized technology like Web Services. A Software
Product Line depicts a systematic software reuse approach by handling
various types of flexible software artifacts that form a common platform
and are the basis for deriving concrete products. This paper contributes
towards the combination of both concepts by proposing a differentiated
development process for Software Product Lines implementing a Service-
Oriented Architecture. An extensive example shows how parts of this
process can be solved technically with already developed methods for
feature modeling and management using Web Services.

I. INTRODUCTION

Software development has always been a rather sophisticated task.
Requirements, functional and non-functional, described in natural
language are transformed into source code through a number of
steps. A vast number of artifacts is generated in the development
process: architectural descriptions, software interfaces, source code,
documentation and much more [11]. All those artifacts contain
valuable information about the software. Much information is im-
plemented and re-implemented into different systems. A Software
Product Line (SPL) helps to structure the artifacts and to identify
and manage commonalities and variability for a family of related
software products.

In modern IT infrastructures with a multitude of protocols,
languages and technologies, already existing applications need to
be integrated thoroughly. Constant changes, ranging from business
requirements to technological issues [5], demand high flexibility.
SOA envisions a loosely-coupled net of business services, published,
requested and invoke with standardized languages and protocols.
Such services can be used and reused by different service consumers
and quickly adapted to unanticipated changes.

The combination of these two concepts exposes a great poten-
tial to provide solutions for the current challenges in software
development and infrastructure management. Some contributions in
the first Service-Oriented Architectures and Software Product Lines
Conference (SOAPL2007) considered the systematic comparison of
the two concepts [12], proposed a concept to identify and specify
reusable services [18] and suggested the definition of a Service-
Oriented Product Line (SOPL) [28]. This position-paper contributes
to the combination of both concepts by proposing a differentiated
development process for Software Product Lines implementing a
Service-Oriented Architecture. An extensive example shows how
parts of this process can be solved technically with already developed
methods for feature modeling and management using Web Services.
For this, the authors do not claim the contribution, but instead follow

the original contribution of [2] to reuse the ideas and example
stemming from Kästner et al. as a base. In the following paragraphs,
we first present background information to SPL, SOA and Web
Services. We continue with a discussion of the development process
for SPL and point out special considerations when developing a
SOPL. This is followed by an example web store in which we sketch
the application of an algebraic feature model and show how WSDL
artifacts can be used to model features and refinements. A discussion
of possible tool support and the related work precedes the conclusion.

II. BACKGROUND

A. Software Product Lines

The concept of Software Product Lines (SPL) addresses the chal-
lenge of structuring and systematically reusing software development
artifacts1. The goal of an SPL is to provide valuable production
assets that help to implement concrete members of a software family.
According to Withey, a ”product line is a group of products sharing a
common, managed set of features” [32]. Kästner et al. supplements:
”Each feature represents an increment in functionality relevant to
stakeholders” [15]. The core of SPL form features that represent func-
tional and non-functional requirements. The variability management,
meaning the modeling and implementation of commonalities and
variability, is one of the central concept of SPL [30]. SPLs originate
from the embedded systems domain. However, they are not only used
for e.g. mobile phones [16], but also for complex financial software
systems [30].

B. Service-Oriented Architectures

Service-Oriented Architectures (SOA) envisions a web of loosely-
coupled, autonomic services that are published and queried with stan-
dardized languages to be used in flexible IT infrastructures. Typical
properties of services in a SOA are, among others, self-containment,
coarse-grained interfaces, reusability and composability [13]. The
state-of-the-art for implementing a SOA can be considered in the
Web Services technology [8] and the Enterprise Service Bus (ESB)
concept [5]. Web services describe business services via standardized,
XML-based interfaces - the Web Service Description Language
(WSDL). These interfaces specify the operations and messages for
communicating with other services [8]. Finally, the ESB is the central
backbone of a SOA. It provides a uniform bus for information routing
and the overall process flow. All types of applications, databases,

1Other concepts that address similar problems are Aspect-Oriented Pro-
gramming [17], Feature-Oriented Programming [21], Generative Program-
ming [6], Model-Driven Development [23] and Domain-Specific Modeling
[16]



TABLE I
DOMAIN ENGINEERING DEVELOPMENT PROCESS (FROM [11])

Step Sub step Purpose Artifacts

Analysis

Product line defini-
tion Overall problem and context description Text (informal)

Problem domain
scoping

Identification and selection of problems to be solved
and harmonization with features

Problem description (informal), feature description (in-
formal), domain model, feature model

Solution domain
scoping

Describes product line and product requirements, scop-
ing the whole product line

Requirements specification, SPL and product descrip-
tion (informal)

Design
Product line architec-
ture development

Specification how SPL produces concrete products and
maps requirements to architecture

Architecture description, common design features de-
scriptions, variable features description (variability
points)

Product development
process

Overall processes to identify production assets and
describe their use by roles and development context Product development process description

Implementation
Implementation asset
provisioning

Provide basic components for SPL via developing,
reusing or buying

Components and accompanying documents (documen-
tation, tests, tools)

Process asset provi-
sioning

Implements the product development process descrip-
tion with concrete documentation, guidelines and tools

Software development tools, documentation and guide-
lines (informal)

TABLE II
APPLICATION ENGINEERING DEVELOPMENT PROCESS (FROM [11])

Step Purpose Artifacts
Problem
Analysis

Formulate the problem to be solved
by the concrete member

Problem description (in-
formal)

Product
Specification Specify the concrete member Product requirements

specification
Collateral
Development

Produce additional not-executable
artifacts

User documentation, pack-
aging

Product Im-
plementation

Specify concrete product design,
develop executables and test cases,
testing

Concrete components, test
cases

Deployment Deploy the concrete member Complete member

legacy systems and ERP, can be connected to the ESB with a Web
Service wrapper. With such a uniform interface definition, the vision
of a completely integrated information system becomes true [5].
Recent examples for Service-Oriented Architectures are e.g. power
management [19] or a generic market infrastructure [4]

C. Web Services

Web services are ”software applications that can be discovered,
described and accessed based on XML and standard Web protocols”
[7]. The core of a web service can be considered in its WSDL
definition. This description is twofold. The abstract definition de-
scribes the service like a component, with its interface, operations and
messages. A concrete definition describes concrete bindings of the
operations to the so-called endpoints - they contain a data description,
a physical address and the protocol information [8]. In an application
environment, we distinguish between three roles: A service broker,
provider and consumer. The provider registers a service at the broker,
for example in a UDDI repository. The consumer discovers a service
managed by the broker and calls the service at the provider. All
parties are using SOAP, an XML-based protocol standard handling
requests and responses of Web Services calls [13]. A good overview
of other Web Service standards is given in [29]. Past and ongoing
research targets fields like the efficient management of Web Services
[9], semantic extensions of the WSDL [20] [1] and automated Web
Service composition [22].

III. DEVELOPMENT PROCESS FOR SOFTWARE PRODUCT LINES

Existing development processes for SPLs are closely related to
traditional software engineering methods. However, it differentiates
between the two processes Domain Engineering (”develop for reuse”)
and Application Engineering (”develop with reuse”). We assume that
the reader is familiar with such processes and thus only point out
some SPL-specific points in this section. We consider the method

suggested in [11], which is further detailed in Table I for the Domain
Engineering and in Table II for the Application Engineering.

The Domain Enginnering begins with the analysis phase. Its sub
step problem domain scoping is an activity that stems from classical
domain engineering methods [6]. It targets to capture the domain-
specific concepts and their relationships to deepen the knowledge
of developers and domain experts. A domain model represents
this knowledge of the solution. In traditional software engineering,
the concepts are mapped to databases or classes to represent a
computational model of the domain. SPL uses in essence the same
idea: Map domain concepts to software entities. Its distinguishing
characteristic is the identification of variants as features. In essence,
features state ”anything users or client programs might want to
control about a concept” [6]. At this point, the solution domain
scoping intersects with the previous phase. Not only the domain
concepts, but also functional and non-functional properties of the
SPL are considered, with some restrictions, as features. Functional
requirements stem from the domain-model and additional functional
specification. Certain non-functional requirements, like performance
or security, can also be identified as features. Both are put in a central
feature model that represents the complete software family. In order
to effectively describe a concrete software, features are classified
as mandatory, optional, variant or external [25], and can thus form
rich relationships that describe software at a higher abstraction level.
From this description, individual members of the family are specified
by a selection of features, called a concrete configuration of the
product line. Subsequently, the design phase now further details the
SPL. Important considerations about the overall architecture and the
software entities are made. Technological restrictions, like supported
frameworks, libraries, buses and used programming languages are
specified. Within the architecture, the common parts and variable
parts are covered. The latter identify where variants of SPL members
can be implemented. After these discussions, the development process
for the SPL members is sketched. Lastly, the implementation provides
core artifacts of the SPL by either buying or developing. For testing
the feasibility of the SPL and to further detail the separation of
variable and common parts, prototypes for some members can be
developed and tested. If the technological base for the SPL is fully
developed and functioning, the abstract development process for SPL
members is completed with concrete guidelines and tools.

After the SPL has been designed with a complete coverage of the
steps, the Application Engineering now constructs a concrete member
of the SPL by following the steps described in Table II. Beginning
with the overall problem the member tries to solve, a complete
description of the requirements is developed. They are corresponding



to the already identified features in the Domain Engineering. Thus,
the member implements a subset of all possible features. Next, the
concrete member and its accompanying documentation are developed.
In this phase, developers are mapping identified features to software
entities. A mapping is typically not accomplished on a one-to-one
basis from features to classes. Kästner et al. distinguishes between
a compositional approach (features are implemented as feature
modules) as well as an annotative approach (explicit and implicit
annotations of the source code) [15]. It’s essentially a question of
feature granularity and scope which method can be used. Straight
forward additions like a new product category in a web store may
be implemented in a discrete feature, since other parts of the system
access all items via a standardized interface. Logging mechanisms
may require recording in distinguished steps of the application: At
the presentation layer when the customer adds an item to the basket,
and at the database level to log the result of an SQL expression.
This requires fine-grained additions on the method level, either as
direct calls to a logging method or even the explicit change of the
source code receiving the results of the database transaction. A careful
consideration of feature granularity and their implementation can
populate a software repository with reusable artifacts to be used with
other members as well. Once all executables are developed, they need
to be tested and are finally packaged and deployed.

In summary, the whole process of identification, modeling and
implementation of features, denoting functional and non-functional
requirements of the combined solution and problem domain, and
their management is the central issue of SPL engineering [30]. For
a detailed discussion of variability and especially their realization,
further information can be found in [25].

IV. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED PRODUCT

LINES

An SPL can be implemented with different technologies. Choosing
a Service-Oriented Architecture leads to more restrictions and other
changes in the general development process for the Domain Engineer-
ing. The analysis takes only little impact from this decision. Its do-
main model and feature model are chosen technology-independent to
be used with different complete architectures. However, if restrictions
are known prior to this phase, then the concrete modeling language
can be chained to the technology to use e.g. transformation tools
that map models to software entities. In the case of SOA, models
can be enhanced with additional properties that define the feature
granularity. This allows a special generator to produce customized
WSDL specification skeletons. Also, certain requirements may be
either captured as features with services or as part of the overall
architecture, especially the ESB.

This leads directly to the design phase. A SOA consist of the
central ESB and connected web services [5], meaning architecture
choices for an SOPL are limited to these paradigms. The ESB is
responsible for the connection of Web Services, routing messages
between different services, lifecycle and connection management as
well as numerous QoS and security issues [5]. Its functionality is the
common part of the SOPL. The ESB can also be responsible for a
large number of requirements or legal aspects such as compliance. A
careful choice can lead to a better focus of providing services to the
bus and leave other aspects to a developed technology. Considering
Web Services, many options exist for the concrete realization: Gran-
ularity (components, classes, methods), implementation (compiled
and interpreted code) and software entities (applications, databases,
systems). A service itself is differentiated into an interface and its
textitimplementation. These options must be selected appropriately.

Restrictions can be made not only to the WSDL describing the service
interface, but also the message exchange protocol: A unique version
can be chosen to ensure compatibility between Web Services and the
ESB. Another important point is to regard variability management
in Web Service descriptions. All these considerations form the
base for the product development process, which specifies overall
requirements for implementing different services.

The last phase implementation begin with providing the core
assets. With a thorough requirements specification, a suitable ESB
can be either selected or developed. Basic services can be provided
with different ways, according to the required granularity. Service
implementation can encompass components or systems, provided
by in-house developments or bought from the market. The other
way is to use existing services that are offered in repositories via
UDDI 2. Once the major parts are acquired, it remains to detail the
implementation process for the services. Considering the availability
of service descriptions, two different processes are discovered. A
full SOPL process is designed at developing interfaces and its
implementations in concert: Auxiliary guidelines for implementation
technology are needed. This process can also incorporate different
parties, like service providers, in the overall SOPL member imple-
mentation process. When no access to the implementation is required
or available, the light SOPL process is sufficient. The consumer
only considers interfaces and decides how different features and
variants are represented. He specifies the interfaces and uses external
resources to provide the implementation.

Discussing the overall advantages, an SOPL can profit from a
careful choice of the ESB. It can be responsible for a large part
of the requirements and since it is a purchasable asset may actually
speed the development process, especially if the same ESB is reused
in other SPL. The other part is the universal view on services and
features via a WSDL. The interface description hides implementation
details; feature granularity is embedded into the concrete realization.
For illustrating these steps and to show the practical realization of
this process, the next chapter shows selected steps with an example.

V. EXAMPLE FOR A SERVICE-ORIENTED PRODUCT LINE:
WEB STORE

In this section, we show how already developed methods can be
used to practical execute parts of the SOPL process. We regard
a case of Domain Engineering a web store. The three following
sections show how an algebraic feature model for the web store
looks like (analysis), details the use of the feature model to show
the variability management analysis, and finally presents a method
of variability management with WSDLdesign/implementation. As a
base, we take with permission the example from [2]: The therein
proposed formulation of an algebraic feature model for the web store
is extended with additional detail, and supplemental we cover the
variability management for WSDL with the AHEAD tool suite [26]
in greater extend.

In the web store, customers are browsing a catalog of products,
log into the store and place an order. When processing orders, the
credit worthiness is rated and, if accepted, the order is shipped to the
customer. All these requirements are implemented as Web Services.
Figure 1 shows the basic structure and workflow.

A. The Feature Model

After the initial setup of the SOPL, we now engage problem
domain scoping and want to build a corresponding feature model.

2Although a shared repository from IBM, Microsoft and SAP has been
closed in January 2006 [13], the general concept remains useful



Fig. 1. Basic services of the web store (from [2])

We use an algebraic notation for the model [3] [2]. The root of the
model is the concept Store, denoted by STORE. It consists of the
mandatory features ACQ, CHK, CRD, ORD, SHP, BIL, and PAY. The
names are corresponding to Figure 1 (starting from Acquisition to
Payment Checking) since each feature is implemented as a service.
The following equation states that concept BASE consists of several
other concepts or features:

Base = {Acq, Chk, Crd, Ord, Shp, Bil, Pay} (1)

We can now further distinguish the features. CRD can be realized
with either an independent agency AGC or via the self-explanation
of the bank (BAK). SHP can be done via surface transports (SUR),
which includes standard (STD) or express (EXP) mail, or via airmail
(AIR). The corresponding equations are:

Crd = {Agc, Bak} (2)

Shp = {Sur, Air} (3)

Sur = {Std, Exp} (4)

The realization of a program is expressed by a composition
(“•“) of its implemented features. The following equation expresses
the concrete member of the BASE SOPL, named STORE1, that
implements all possible features as specified before.

Store1 = Acq • Chk •Agc •Bak •Ord • Std (5)

•Exp •Air •Bil • Pay (6)

B. Variability Management with the Feature Model

After having used the web store for some time, customers make
suggestions and demand new features. The first feature is discounting
(DISC). When ordering a bigger quantity of items, users get a
discount on the total price. Another feature is the order traceability
(TRCE). Users want to check where their parcel is physically located.
This feature requires to fetch data from an external web service
provided by the postal service and to show the location with another
external map application. These features touch existing services and
add new services to the SOA. Figure 2 shows which services are
affected when adding DISC. The changes address CHK (discount
may lead to higher total price - can the customer afford this?), BIL

(reduced price imposes a certain quantity and a special customer
status) and PAY (again, reduced price must be charged).

The discounting concept thus refines four basic features. Refine-
ments are expressed with a ”∆” suffix.

Disc = {∆Crd = {∆Agc, ∆Bak}, ∆Bil, ∆Pay} (7)

We now build a new web store STORE2 with the complete DISC

feature and the BASE, but limit the shipment to STD.

Store2 = {Base− {Exp, Air}} •Disc (8)

Store2 = Acq • Chk •Agc •Bak •Ord • Std (9)

•Bil • Pay •Disc (10)

Store2 = Acq • Chk •Agc •Bak •Ord • Std (11)

•Bil • Pay •∆Agc •∆Bak •∆Bil •∆Pay (12)

Assuming that the combination of a BASE and a DISC feature
yields a combined feature (e.g. Bil′ = Bil • ∆Bil), the final
representation of STORE2 is

Store2 = Acq • Chk •Agc′ •Bak′ •Ord • Std (13)

•Bil′ • Pay′ (14)

C. Variability Management with WSDL

Inside an SOPL, features and their variants are directly imple-
mented as Web Services, specified by an WSDL. This mapping is
intuitive: The high-level view off an service description is an interface
to an arbitrary software entity, like components or whole systems.
Questions of feature granularity are addressed via the universal
representation of WSDL. The first step is to develop a basic WSDL
description for the features. Due to space limitations, we focus on
the data types of feature BIL and alternations when adding DISC.
We omitted abstract definition of messages and the interface, and
concrete definition for a binding and the service. Figure 3 A) lists
the relevant WSDL data type specification for BIL.

To obtain variation in the feature model, we introduced refinements
of basic features. The refinements just contain enough information
that the composition of the basic and the refined feature yields
the composed variant. For the WSDL, we need a way to specify
refinements that add or change elements at certain positions in the
document. A straight forward solution could combine an expression
for the position of the refinement and an XML fragment to be inserted
or update at this position. This idea is shown in [26] with the AHEAD
tool suite and its component XAK for refining XML artifacts. An
example for this approach is given in Figure 3. In B) we see the
augmented part of the WSDL specifying the available types. Two
identifiers are added: xak:artifact="STOREbillOutput" for
the overall element, and xak:module="billOutput" for the
sequence in which all single elements are contained. In C) we
see an XAK refinement. DISC adds the elements discount and
discountedPrice. The refinement begins with a declaration of
the artifact that is to be refined. The next element xak:extends is
an operation to add code to the module identified as billOutput.

Fig. 2. Affected services of the web store when adding DISC (from [2])



�
1 <types>
2 <xsd:schema

targetNamespace="http://www.example.com/bill.xsd"
xmlns="http://www.w3.org/2000/10/XMLSchema">

3 <xsd:element name="Item">
4 <xsd:complexType>
5 <xsd:sequence>
6 <xsd:element name="itemName" type="xsd:string"/>
7 <xsd:element name="itemID" type="xsd:long"/>
8 <xsd:element name="quantity" type="xsd:integer"/>
9 </xsd:sequence>

10 </xsd:complexType>
11 </xsd:element>
12 <xsd:element name="CalcBillInput">
13 <xsd:complexType>
14 <xsd:sequence>
15 <xsd:element name="cutomerID" type="xsd:long"/>
16 <xsd:element name="orderID" type="xsd:long"/>
17 <xsd:element name="items" type="ItemOrder"

minOccurs="1" maxOccurs="unbound"/>
18 </xsd:all>
19 </xsd:complexType>
20 </element>
21 <element name="CalcBillOutput">
22 <xsd:complexType>
23 <xsd:sequence>
24 <xsd:element name="cutomerName"

type="xsd:string"/>
25 <xsd:element name="customerAddress"

type="xsd:string"/>
26 <xsd:element name="items" type="ItemOrder"

minOcurs="1" maxOccurs="unbound"/>
27 <xsd:element name="totalPrice"

type="xsd:integer"/>
28 </xsd:all>
29 </xsd:complexType>
30 </element>
31 </schema>
32 </types>� �

A) Schema definition for ItemOrder, CalcBillInput und CalcBillOutput

�
1 <!-- Other definitions omitted --!>
2 <element name="CalcBillOutput"

xak:artifact="STOREbillOutput">
3 <xsd:complexType>
4 <xsd:sequence xak:module="billOutput">
5 <xsd:element name="cutomerName" type="xsd:string"/>
6 <xsd:element name="customerAddress"

type="xsd:string"/>
7 <xsd:element name="items" type="Item" minOcurs="1"

maxOccurs="unbound"/>
8 <xsd:element name="totalPrice" type="xsd:integer"/>
9 </xsd:all>

10 </xsd:complexType>
11 </element>
12 <!-- Other definitions omitted --!>� �

B) Schema definition for CalcBillOutput with XAK extensions�
1 <xak:refines xak:artifact="STOREbillOutput">
2 <xak:extends xak:module="billOutput">
3 <xak:super xak:module="billOutput"/>
4 <xsd:element name="discount" type="xsd:integer"/>
5 <xsd:element name="discountedPrice"

type="xsd:integer"/>
6 </xak:extends>
7 </xak:refines>� �

C) Refinements for billOutput to add elements “discount” and “discountedPrice”�
1 <!-- Other definitions omitted --!>
2 <element name="CalcBillOutput"

xak:artifact="STOREbillOutput">
3 <xsd:complexType>
4 <xsd:sequence xak:module="billOutput">
5 <xsd:element name="cutomerName" type="xsd:string"/>
6 <xsd:element name="customerAddress"

type="xsd:string"/>
7 <xsd:element name="items" type="Item" minOcurs="1"

maxOccurs="unbound"/>
8 <xsd:element name="totalPrice" type="xsd:integer"/>
9 <xsd:element name="discount" type="xsd:integer"/>

10 <xsd:element name="discountedPrice"
type="xsd:integer"/>

11 </xsd:all>
12 </xsd:complexType>
13 </element>
14 <!-- Other definitions omitted --!>� �

D) Composition of the base and its refinement

Fig. 3. Complete WSDL specification of an basic WSDL data typ description and its XAK variants

The xak:super statement marks the exact position where the
following code in line 4 and 5 is going to be inserted. When the
refinement and the base are composed (in feature model notation:
Bil′ = Bil • ∆Bil) we yield the result in D): The additional
statements are merged into the final representation.

VI. DISCUSSION AND RELATED WORK

The example showed that current feature modeling methods can
be applied to services as well - especially if only their interfaces
are considered. With the usage of existing tools, we can also facili-
tate variability management with WSDL descriptions. The AHEAD
tool suite already implements refinements for XML artifacts. The
identified phases in the SPL development process that are especially
treated in SOPL development (problem domain scoping, product line
architecture development and implementation asset provisioning) can
be managed with the proposed methods as well. Open issues are a
detailed description of the processes and possible differences when
using a full SOPL process.

Although a valid representation, the formalism of a mathematical
feature notation and the specifics of WSDL are not suitable for the
end-user. The most promising method to conquer the abstraction-gap

in current software modeling is the use of Domain-Specific Modeling
for full code generation [16]. In this approach, the infrastructure engi-
neer, language engineer and method user [14] discuss and specify the
problem. Together they generate a domain model and subsequently
a domain-specific language (DSL) [31] that is suitable to bridge the
gap. With this method, users apply modeling concepts of the DSL to
specify the solution they want. The DSL then translates specifications
to full code, which gives them the character of a configuration
language. With a mapping from DSL to the feature model, users can
specify the concrete member, and the DSL interpretation configures,
implements and deploys the member of a SOPL. In a variation
for web portlets, this is proposed in [27]. This approach also has
interesting points into the domain model view on SOPL: Can parts
of the model be implemented with different services, and can we thus
implement the whole product line with a high-level view of integrated
models? If different services are also instances of another SOPL, an
implementation vehicle for Very Large Business Applications [10]
could be developed.

Related work already showed how the algebraic feature model
can be utilized with SOPL and also gave a clear discussion of
benefits when SOA is approached with a feature perspective [2].



Other considerations that could not be covered here are the discussion
of service classification into molecular and orchestrating services
[18], a complete architectural modeling for SOA [24] or discussion
of different domain-analysis techniques like DEMRAL, FeatuRSEB
and more [6].

VII. CONCLUSION

This paper gave an overview to Software Product Lines, Service
Oriented Architectures and Web Services. It showed differences
between a traditional software development process and the devel-
opment of an SPL. We then further differentiated the aspects of
developing a Service-Oriented Product Line. In the main part of the
paper, we gave an extensive example of a web store. We showed
how the service can be modeled leveraging an algebraic notation and,
furthermore, how feature additions and refinements can be handled.
Then we continued with implementation details using WSDL. We
presented a solution to manage the variability of service descriptions
by customizing the existing tool suite AHEAD. As pointed out
in the discussion section, we believe that a further integration of
Feature-Oriented Programming and Domain-Specific Modeling using
an Domain-Specific Language is an ideal base for a tool supporting
the development of Service-Oriented Product Lines.

ACKNOWLEDGEMENTS

We thank Christian Kästner for his insightful comments and the
permission to use the example in [2].

REFERENCES

[1] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara et al., “Daml-s:
Semantic markup for web services.” The Emerging Semantic Web:
Selected Papers from the First Semantic Web Working Symposium,
2002, pp. 131–152.

[2] S. Apel, C. Kästner, and C. Lengauer, “Research challenges in the
tension between features and services,” Proceedings ICSE Workshop
on Systems Development in SOA Environments (SDSOA). New York,
NY, USA: ACM, 2008, pp. 53–58.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Transactions on Software Engineering, vol. 30, no. 6,
pp. 355–371, 2004.

[4] I. Chao, R. Brunner, F. Freitag, L. Navarro, P. Chacin, O. Ardaiz, and
L. Joita, “A decentralized grid market infrastructure for service oriented
grids,” Wirtschaftsinformatik, vol. 50, no. 2, pp. 25–30, 2008.

[5] D. A. Chappell, Enterprise Service Bus: Theory in Practice. Sebastopol,
California, USA: O’Reilly Media, 2004.

[6] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co.
New York, NY, USA, 2000.

[7] M. C. Daconta, L. J. Obrst, and K. T. Smith, The Semantic Web: A Guide
to the Future of XML, Web Services, and Knowledge Management: A
Guide to the Future of XML, Web Services and Knowledge Management.
Indianapolis, Indiana, USA: Wiley Publishing, Inc., 2003.

[8] T. Erl, Service-Oriented Architecture: A Field Guide to Integrating XML
and Web Services. Upper Saddle River, New Jersey: Pearson Education,
Inc., 2004.

[9] D. Fensel and C. Bussler, “The web service modeling framework wsmf,”
Electronic Commerce Research and Applications, vol. 1, pp. 113–137,
2002.

[10] B. Grabski, S. Günther, S. Herden, L. Krüger, C. Rautenstrauch,
and A. Zwanziger, “Very Large Business Applications,” Informatik-
Spektrum, vol. 30, no. 4, pp. 259–263, 2007.

[11] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks and Tools.
Crosspoint Boulevard, Indianapolis: Wiley Publishing, Inc., 2004.

[12] A. Helferich, G. Herzwurm, and S. Jesse, “Software product lines and
service-oriented architecture: A systematic comparison of two concepts,”
Proceedings of the First Workshop on Service-Oriented Architectures
and Software Product Lines (SOAPL), Kyoto, Japan, 2007.

[13] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design.
Sebastopol, California, USA: O’Reilly Media, Inc., 2007.

[14] D. Karagiannis and H. Kühn, Metamodelling Platforms, ser. Lecture
Notes in Computer Science. Berlin, Heidelberg, Germany: Springer-
Verlag, 2002, vol. 2455, pp. 451–464.

[15] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” Proceedings of the 30th International Conference on
Software Engineering (ICSE). New York, NY, USA: ACM, 2008, pp.
311–320.

[16] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation. Hoboken, New Jersey, USA: John Wiley & Sons,
Inc., 2008.

[17] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin, Aspect-Oriented Programming. Berlin,
Heidelberg, Germany, New York, USA: Springer-Verlag, 1997, vol.
1241, pp. 220–242.

[18] J. Lee, D. Muhtig, M. Naab, M. Kim, and S. Park, “Identifying and
specifying reusable services of service centric systems through product
line technology,” Proceedings of the First Workshop on Service-Oriented
Architectures and Software Product Lines (SOAPL), Kyoto, Japan, 2007.

[19] T. Luhmann, J. Meister, and C. Wulff, “Serviceorientierte Produktplat-
tform für das Energiemanagementsystem der Zukunft,” Wirtschaftsinfor-
matik, vol. 49, no. 5, pp. 343–351, 2007.

[20] S. Narayanan and S. A. McIlraith, “Simulation, verification and auto-
mated composition of web services,” Proceedings of the 11th interna-
tional conference on World Wide Web (WWW). Honolulu, Hawaii,
USA: ACM, 2002, pp. 77–88.

[21] C. Prehofer, “Feature-oriented programming: A fresh look at objects,”
Lecture Notes in Computer Science, vol. 1241, pp. 419–443, 1997.

[22] J. Rao and X. Su, A Survey of Automated Web Service Composition
Methods, ser. Lecture Notes in Computer Science. Berlin, Heidelberg,
Germany: Springer-Verlag, 2005, vol. 3387, pp. 43–54.

[23] T. Stahl and M. Völter, Modellgetriebene Softwareentwicklung. Tech-
niken, Engineering, Management. Heidelberg: Dpunkt Verlag, 2005.

[24] Z. Stojanovic, A. Dahanayake, and H. Sol, “Modeling and design of
service-oriented architecture,” vol. 5. IEEE International Conference
on Systems, Man and Cybernetics (SMC), 2004, pp. 4147–4152.

[25] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques: Research articles,” Software Practice and Expe-
rience, vol. 35, no. 8, pp. 705–754, 2005.

[26] S. Trujillo, D. Batory, and O. Diaz, “Feature refactoring a multi-
representation program into a product line,” Proceedings of the 5th
international conference on Generative programming and component
engineering (GPCE). Portland, Oregon, USA: ACM, 2006, pp. 191–
200.

[27] ——, “Feature oriented model driven development: A case study for
portlets,” in Proceedings of the 29th international conference on Soft-
ware Engineering (ICSE). IEEE Computer Society, 2007, pp. 44–53.

[28] S. Trujillo, C. Kästner, and S. Apel, “Product lines that supply other
product lines: A service-oriented approach,” Proceedings of the First
Workshop on Service-Oriented Architectures and Software Product Lines
(SOAPL), Kyoto, Japan, 2007.

[29] A. Tsalgatidou and T. Pilioura, “An overview of standards and related
technology in web services,” Distributed and Parallel Databases, vol. 12,
no. 2-3, pp. 135–162, 2002.

[30] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Berlin: Springer-Verlag, 2007.

[31] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, pp.
26–36, 2000.

[32] J. Withey, “Investment analysis of software assets for product lines,”
Software Engineering Institute, Carnegie Mellon University, Technical
Report CMU/SEI-96-TR-10, 1996.


