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ABSTRACT

Most approaches developed to query sensor-
actuator networks (SANETS) are either applica-
tion-specific or generic. Application-specific
SANET:S provide limited reusability, are not cost
effective, and may require extensive reprogram-
ming efforts to make the network able to serve
new applications. Generic SANETSs usually
require that a sizeable code be deployed on the
nodes regardless of the specific requirements of
the application at hand. More important, they
may not be optimized to fully exploit the specific
characteristics and query patterns of a given
application. In this article we introduce service-
oriented SANETs (SOSANETS) as a novel
approach to building customizable SANETSs.
SOSANETS provide the benefits of both applica-
tion-specific SANETSs (e.g., energy efficiency,
scalability) and generic SANETS (e.g., reusabili-
ty) and avoid most of their limitations. We
implemented our approach in TinySOA, a
SOSANET developed on top of TinyOS. We
conducted an evaluation of TinySOA that includ-
ed a comparison with TinyDB, an established
query processing system for sensor networks.
The obtained empirical results show that
TinySOA outperforms TinyDB in many aspects
including energy consumption, scalability, and
response time.

INTRODUCTION

Sensor networks have enabled a range of appli-
cations where the objective is to observe an envi-
ronment and collect information about the
observed phenomena or events. In many cases
appropriate actions must be taken upon the
occurrence of a given event (e.g., switching the
light of a room off when it has been empty for
more than five minutes or switching the light on
when the presence of a human is detected). This
has led to the emergence of a new generation of
sensor networks, called sensor-actuator networks
(SANETS), that have sensor nodes and actuator
nodes.! Sensors and actuators communicate and
collaborate to perform distributed sensing and
acting tasks. Sensors gather information about
the physical world, while actuators make deci-
sions and perform actions that affect the envi-
ronment [2]. Actuators are able to change
parameters in their environment (e.g., tempera-

ture, light) as well as their intrinsic properties
(e.g., location, speed, volume). Applications of
SANETsS include environmental applications
(e.g., forest fire detection), business applications
(e.g., inventory management), health applica-
tions (e.g., patient monitoring), home automa-
tion, and entertainment (e.g., interactive
museums).

For years, SANETSs have been closed net-
works deployed for specific applications with spe-
cific sets of characteristics. Typically, a single
party (e.g., a government agency, research insti-
tution, private company) owns, maintains, and
uses the SANET. As a consequence, in most
early SANET deployments an ad hoc, applica-
tion-specific architecture was adopted. In recent
years the need to decouple SANETS from the
applications using them has led to the emer-
gence of generic SANETS, an alternative design
model where an application-independent query
system is deployed on the SANET. In this model
the query system is designed to answer queries
from any application. As SANETSs evolve, they
are expected to become open, ubiquitous, inter-
operable, multipurpose infrastructures. This
would translate into new requirements not sup-
ported by existing architectures. We argue that
next-generation SANETSs require customizable
architectures that provide developers the ability
to select individual software components from
several SANETSs and integrate them in new
applications that achieve higher levels of effi-
ciency and scalability. We next elaborate on the
inadequacy of current architectures and then
introduce the proposed alternative of customized
SANETs:.

Application-specific SANETs: In application-
specific SANET deployments, the application
consists of a distributed code installed on some
or all of the nodes of the network. In simple
applications the same code is installed on all
nodes. In more complex applications different
code modules are installed on different nodes.
This approach has several drawbacks. First,
SANETS deployed for one or a few applications
are often of limited reusability and are therefore
inherently not cost-effective. This translates into
a low return on investment. Another drawback is
the tight coupling between the application and
the underlying SANET. The application is often
designed as a monolithic code of tightly coupled
modules where each module implements a spe-
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cific functionality, such as user interface, data
access (i.e., retrieving sensor readings), or actua-
tor activation. To develop these modules, pro-
grammers invoke functionalities at several layers
in the SANET’s architecture. The reason behind
this monolithic application-specific design is
often optimization. By enabling programmers to
manipulate parameters and mechanisms at dif-
ferent layers, the code may be tailored to achieve
better efficiency for the application at hand. A
consequence of this tight coupling between the
application and the SANET is that considerable
reprogramming efforts are often necessary to
make the network able to serve new applica-
tions.

Generic SANETSs: Generic SANETS are not
intended to be used by a specific application.
They usually require that a generic code (i.e.,
the query processing system) be installed on all
nodes of the network. Examples of generic query
systems include Cougar [4], TinyDB [8], and
REED [1]. This approach also has a number of
limitations. First, the same code is installed on
each node. A particular node may not need or
be able to support all the functionalities of the
installed query system. For example, a typical
query system would include code for in-network
data aggregation, collaborative event detection,
actuation coordination, and so on. The latter
functionality, for example, is not needed at a
node with no actuation capabilities. As a result,
a sizeable query processing system has to be
installed on all nodes of the network regardless
of their capabilities. A more important drawback
of generic SANETS is that they must often trade
efficiency for genericity. Typically, a generic
query system may not be optimized to fully
exploit the specific query patterns of a given
application. Also, nodes in a SANET do not
necessarily have the same hardware configura-
tion. A generic query system may not be opti-
mized to efficiently manage the hardware
resources of specific nodes. As a consequence,
generic SANETs may not scale to handle high
query loads typical in next-generation, potential-
ly Web-accessible SANETS.

As sensor technologies mature and new appli-
cations proliferate, current design models for
sensor-actuator systems seem increasingly unable
to cope with the requirements of the next gener-
ation of open, ubiquitous, interoperable, multi-
purpose SANETs. Architectures for future
sensor systems will have to be able to serve dif-
ferent applications and adapt to different post-
deployment query patterns. Networks from
different providers will have to be individually
programmed, yet able to interoperate efficiently.
Both application-specific and generic architec-
tures are obviously unable to satisfy these
requirements. To enable next-generation sensor-
actuator systems, new customizable architectures
are needed.

Customizable SANETs: We define cus-
tomizable SANETs as SANETS that are read-
ily configurable, after they are deployed, to
serve different types of applications with arbi-
trary query patterns. A node in a customiz-
able SANET would expose its capabilities as
identifiable resources that may be accessed by
any entity that may communicate with the

node and not necessarily by other nodes from
the same network. Customizable SANETSs
would provide developers the flexibility to
combine the resources provided by nodes in
one or more (existing) SANETSs to meet the
requirements of new applications and yet
expect the same levels of performance that
would result from an application-specific
deployment.

A possible alternative to building customiz-
able SANETs: is to use generic SANETS as their
backbone and develop additional software layers
that customize the functionalities of generic
SANETS: to satisfy the requirements of the given
application. This, however, would only lead to
further lower performance and memory avail-
ability. In this article we introduce service-orient-
ed SANETs, or SOSANETS, as a novel approach
to building customizable SANETs. In
SOSANETS nodes’ sensing and actuation capa-
bilities are exposed to applications in the form of
a collection of programmatic abstractions called
services. A service deployed on a node is a
lightweight code unit that provides some func-
tionality supported by the node. These services
may be individually invoked or combined in
complex ways to form a virtual SANET with far
richer sensing and actuation capabilities. In the
proposed approach we deploy services directly
on top of the operating system, and services are
accessible directly by applications. We imple-
mented this approach in TinySOA (service-ori-
ented architecture), a prototype SOSANET built
on top of TinyOS. Our evaluation of TinySOA
shows that the proposed service-oriented
approach is a viable alternative for building cus-
tomizable SANETS.

SERVICE-ORIENTED QUERY MODEL

In this section we present our service-oriented

query model for SANETSs. We consider a sensor-

actuator network where nodes have heteroge-

neous sensing and actuation capabilities. Each

node exposes its capabilities as services. Concep-

tually, a service is a computational component

that:

* Has a unique network-wide identifier

* May be invoked asynchronously

* May have one or more parameters

* Produces one or more values as a result of
invocation

A service may have multiple service instances,

each running on a given node. The SOSANET

has one or more base stations. Users query the

SOSANET by submitting queries to one of its

base stations or directly to individual nodes.

Queries may be of two types:

Task queries: In a task query the application
requests a reading to be retrieved from one or
more sensors or an operation to be performed by
one or more actuators. The result of a task query
is the value of the reading or a code indicating
the outcome of the actuation operation.

Event queries: In an event query the applica-
tion requests to be notified when an event of
interest occurs. Typically, the result of such an
event query is a notifier message that informs the
application of the occurrence of the event. A
notifier may include additional information such

We implemented
this approach in
TinySOA,

a prototype
SOSANET built on
top of TinyOS.
Our evaluation of

TinySOA shows that

the proposed
service-oriented

approach is a viable

alternative for
building customiz-
able SANETs.
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2 Note, however, that any
node may initiate queries.

as the time the event occurred, the geographical
location where the event occurred, and so on.

Both types of queries may be one-time or
recurrent. A recurrent query is a query an appli-
cation submits to request that a sensing/actua-
tion task be carried out or an event be detected
repetitively with a given frequency and for a
given duration.

QUERY SPECIFICATION

We adopt an extended Event-Condition-Action
(ECA) model for query specification. In general,
queries specify five elements: an event, a condi-
tion, an action, a spatial scope, and a temporal
scope. We use the acronym Event-Condition-
Action-Spatial scope-Temporal scope (ECAST)
to refer to our query model. A query in the
ECAST model has the following syntax:

Query :: event <event>;
condition <condition>;

action <action>;

space <spatial scope specification>;
time <temporal scope specification>

where:

e <event> is the event that triggers the exe-
cution of the query’s action. An event is a condi-
tion expressed in terms of attributes that may be
sensed. For example, event temp > 70 or
light > 110 is an event that occurs when one
of the given conditions becomes valid.

e <condition> is a condition that must be
satisfied to execute the query’s action. Note that,
in queries that specify both an event and a con-
dition, the condition is evaluated only when the
event occurs; the event condition must be evalu-
ated continuously to detect the occurrence of
the event. The query’s condition is also specified
in terms of attributes, for example, condition
temp > 65.

* <action> is an invocation of a service. Each
service invocation specifies the service identifier
and the values for the service parameters. For
example, action getLight () requests that

nodes involved in the query read and return the
value of their light sensors.

» <spatial scope specification> specifies the
geographical area where the sensing/actuation is
to take place. For example, space Circle (n;,
10£t) specifies all the nodes within 10 feet from
node n;.

* <temporal scope specification> specifies
the start and end times for the query and, for
recurrent queries, the query’s frequency. The
start (resp. end) time is the time at (or after)
which the user wants the query execution to
begin (resp. end). The frequency specifies the
time that must elapse between two successive
executions of the query. If the frequency is not
specified, a new iteration of the query is started
immediately upon completion of the current
iteration; for example,

Query event temp >65 ;
condition humidity > 50%;
action getLight() ;

space Circle(ns, 10 ft);
time start 10:00am

end 5:00pm

frequency 100s;

This query requires all nodes within a 10 foot
distance from node 75 to repetitively read their
light sensor when their temperature reading
exceeds 65 if the condition humidity > 50 per-
cent is true. The query also specifies a start time
of 10:00 a.m. and an end time of 5:00 p.m. as
well as a frequency of 100 s.

SERVICE-DRIVEN QUERY ROUTING

Query routing in SOSANETs: is a distributed pro-
cess in which several nodes cooperate in routing
queries requesting services toward nodes provid-
ing those services. Typically, a query is initiated
by a base station? and requests the invocation of a
given service by a given subset of nodes. A funda-
mental idea in the proposed SOSANETS is to use
service-driven routing (SDR) to efficiently deliver
queries to their appropriate destinations. In SDR
each node perceives another node’s capabilities in
terms of the services it provides. Each node main-
tains a data structure called a service directory
(SD) that stores information about services pro-
vided by reachable nodes. Service directories are
used much as routing tables are used in network-
ing protocols. When a node receives a query
requesting the invocation of a given service, it
makes its routing decision for the received query
based on the content of its service directory. We
elaborate on this later, where we present SDRP, a
service-driven routing protocol that routes queries
efficiently in SOSANETS.

AN ARCHITECTURE FOR SOSANETS

Figure 1 shows an overview of a node’s architec-
ture that supports the proposed service-oriented
query model. The software running on top of the
operating system at each node is organized into
three layers.

SERVICE-ORIENTED QUERY LAYER

The service-oriented query (SOQ) layer receives
queries from the service-driven routing layer,
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interprets them, invokes the appropriate services
specified in the queries, collects the results from
the services, packages these results into query
result messages, and submits those messages to
the service-driven routing layer to send them to
the query issuer. The SOQ layer consists of two
main modules (Fig. 2).

Service invocation scheduling module
(SISM): This module monitors the node’s query
load and schedules service invocations while
considering the frequency and expiration time of
the different queries. The SISM maintains a list
of services to be invoked and the times of invo-
cation in a service invocation schedule (SIS).
This module also conducts multiquery optimiza-
tion by exploiting any relationships that may
exist between several queries. For example, a
single service invocation may be relevant to sev-
eral queries.

Event detection module (EDM): This module
detects the events that are relevant to the cur-
rent query load at the local node. As defined
earlier, an event is a predicate expressed in
terms of one or more attributes. The EDM main-
tains an event list of all the events relevant to the
current query load. It also maintains a mapping
between attributes and events. Each time a
change is detected in the value of an attribute a,
the EDM evaluates the event predicates whose
value depends on the value of the attribute a.
The EDM then activates all the queries whose
event clause evaluates to true.

To understand the role of these modules, we
describe how queries are handled by the SOQ
layer. When the SOQ layer receives a query Q
from the SDR layer, it first determines Q’s type
(i.e., whether it is a task or an event query). It
then processes Q as follows.

Processing task queries: Let Q (s) be the
query the SOQ layer receives from the SDR
layer requesting invocation of service s. The
SOQ layer submits the query to the SISM to
request the scheduling of the invocation of ser-
vice s. If Q is a one-time query, the SISM invokes
the service s and returns the results to the rout-
ing layer (Fig. 1). If Q is a recurrent query, the
SISM adds a new entry in the service invocation
schedule. It then activates a timer Ty to trigger
future invocations of s. Each time T, fires, the
SISM invokes s and returns the results to the
routing layer.

Processing event queries: Let Q (e, s) be an
event query that requests the invocation of ser-
vice s when event e occurs. The SOQ layer first
submits query Q to the EDM. The EDM inserts
the predicate corresponding to e in its event list.
When the EDM detects the occurrence of e, it
submits query Q (s) to the SISM. The SISM
then processes this query as a regular task query
(as previously explained).

SERVICE LAYER

The service layer is a collection of lightweight
services. Each service is a software module that
carries out some sensing, actuation, or control
function. A service may interact directly with OS
components (e.g., sensor controllers, timers) of
its local node. These components interact with
the node’s hardware modules (e.g., actuation
unit, clock).

Service
e i detection
schedule
(SIS) tree (EDT)
Service Service-
. . Event :
invocation |¢ » detection orlenlted
schec(ijullmg e query layer
module
(SISM) L2y
S‘ZI Service
[s3] [s2 layer
Synchronization : .
Interrupt Timers Operating
handlers Clock Networki system
LR etworking

M Figure 2. Service-oriented query layer.

Without loss of generality, we illustrate our
discussion through sensing services that accept
no parameters. We adopt the syntax getAt -
tribute () to express invocations of sensing ser-
vices. For example, an invocation of a sensing
service that samples and returns temperature
would be noted getTemperature (). Similarly,
we consider actuation services that set the single
value that corresponds to the new value to be
assigned to a given parameter. We adopt the
syntax setAttribute (value) to express invo-
cations of actuation services. For example, set -
Light (on) and setLight (off) are invocations
of an actuation service that set the attribute light
on and off. We also assume that all services
return a single scalar value.

ROUTING LAYER

This layer is responsible for:

e Delivering incoming queries to the SOQ
layer of the local node

e Sending out query results produced by the

SOQ layer
* Forwarding received queries and query

results to neighbors
The routing layer consists of two protocols: Ser-
vice-Driven Routing Protocol (SDRP) and Trust-
Aware Routing Protocol (TARP). SDRP routes
queries from the base station to the nodes in the
network, while TARP routes query results from
the network’s nodes to the base station. In this
article we focus on SDRP and refer the reader
to [9] for ample details on TARP.

Existing routing schemes for SANETSs gener-
ally do not exploit the semantics of the queries.
As a result, a query may be routed through sev-
eral hops to end up at nodes that do not provide
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when new nodes are
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It also takes place

deployed or when
new services are
deployed on
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the sensing/actuation capability it requests and
do not have paths to nodes that provide the
requested capability. This obviously incurs exces-
sive communication and processing overhead
that is not strictly required to deliver the query
to its recipients. Consider a node n that receives
a query message m requesting some sensing/actu-
ation capability c. In most current deployments
of SANETsS, n forwards m to (at least some of)
its neighbors regardless of whether or not this
gets the message closer to some node that pro-
vides c. In this scenario it is likely that m travers-
es a large number of hops only to reach dead
ends (i.e., nodes that do not provide the capabili-
ty requested by m). The key idea behind SDRP
is to avoid aimless routing — forwarding query
messages to nodes that neither provide the
requested service nor are on the path to nodes
that provide the requested service. Each node
determines the capability requested by the
received query and forwards a query only if it
determines it is on a path to one or more nodes
that provide the requested capability.

SDRP builds and maintains two data struc-
tures: a service table and a service directory. A
node #;’s service table (S7;) contains information
about n;’s services. In particular, each entry in
ST; contains the service identity (serviceID) of
each service n; provides and the service class of
that service (e.g., getLight () ). The second
data structure each node builds and maintains as
part of the SDR protocol is the service directory.
A node uses its service directory to store infor-
mation about services provided by reachable
nodes. An entry in SD; corresponds to a service
class (e.g., getLight () ) for which the local
node has determined that there is at least one
reachable provider. The service directory may be
thought of as the routing table of SDRP. Using
their respective service directories, nodes coop-
erate to route query messages via paths with no
dead ends.

The basic SDR protocol consists of two con-
current activities: path learning and query routing.

Path Learning — The purpose of this phase is
to let each node know whether it is on the path
to nodes providing any given service. Path learn-
ing takes place at bootstrapping. It also takes
place when new nodes are deployed or new ser-
vices are deployed on existing nodes. After the
network is deployed, all nodes enter a service
dissemination phase through which each node
advertises its sensing and actuation services to its
neighbors. Service dissemination is an incremen-
tal process in which nodes that become aware of
new services further advertise this service in
their neighborhood.

At bootstrapping, each node n; broadcasts a
MyServices message that contains the list of
service classes it provides. When a node n;
receives this message, it iterates through each of
the service classes included in the message. For
each service class, n; checks whether there is an
entry for that class in SD;. If not, n; simply adds
a new entry corresponding to that class to its
service directory SD;. In basic SDRP, n; then
broadcasts a message ServiceUpdate to its
neighbors informing them that node n; provides
the given service. Each node n, (other than n;)

that receives the message ServiceUpdate from
nj updates its service directory as follows: For
each entry in the message ServiceUpdate that
corresponds to a service not already in SDP’ n,
adds an entry for the service to its service direc-
tory SD,. In a more efficient version currently in
development, n; waits until k new entries are
added to its service directory before it broad-
casts the message ServiceUpdate. k, the num-
ber of entries each ServiceUpdate message
contains, is called the update threshold. Using
this threshold, however, may prevent nodes from
disseminating routing updates in a timely man-
ner where adding k new entries to the service
directory takes an excessively long time. To pre-
vent this situation, we use a time limit on how
long a node may wait before it sends routing
updates. If this limit is reached while there is at
least one new entry in the service directory, the
node broadcasts a ServiceUpdate to its neigh-
bors.

Query Routing — The second activity SDRP
performs is routing queries. Query routing in
SDRP is a distributed process in which several
nodes cooperate in routing queries requesting
services toward nodes providing those services.
Typically, a query is initiated by a base station,
which requests the invocation of a given service
by a given subset of nodes. Let Q (s) be a query
the base station issues requesting the invocation
of service s. First, the base station broadcasts Q
to its immediate neighbors. When node n;
receives Q from another node, n;, SDRP first
determines whether Q contains a space clause.
If so, SDRP determines whether #; is involved in
the query (i.e. whether #; is included in Q’s spa-
tial scope). If so, SDRP looks up s in ST; to
check whether n; provides the service requested
by 0 (s). If s is in S7;, SDRP simply passes the
query to the local node’s service-oriented query
layer (Fig. 1). SDRP then looks up s in SD;. If
an entry is found, there is a path from »; to one
or more nodes that provide s. In this case SDRP
forwards the query Q(s) to n;’s neighbors.

IMPLEMENTATION OF TINYSOA

We implemented the proposed approach in
TinySOA, a prototype service-oriented query
processing system built on top of TinyOS 1.1.15.
Depending on the nature of the function to be
provided, services in our implementation may be
coded as one of three types of TinyOS process-
ing units: asynchronous commands, synchronous
commands, and tasks. These types derive directly
from TinyOS’s constraints. Services coded as
asynchronous commands (using async) may be
executed at any time (preempting other code).
Asynchronous commands are therefore used for
services that have time constraints on their invo-
cation time and whose execution is of short
duration. Synchronous commands do not pre-
empt other code. They are used for services with
less stringent constraints on their invocation
time and whose execution may be of longer
duration. Tasks in TinyOS are used to perform
long processing, such as background data pro-
cessing, and can be preempted by hardware
event handlers. They are therefore used for ser-
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vices that are not very critical. Note, however,
that in TinyOS, tasks may not take parameters
and do not return results. Services coded as
tasks are therefore used only when no input val-
ues are needed and no output is expected.

The service-driven routing protocol was
implemented as a separate nesC module, called
SDRP.nc, that may coexist (within a given appli-
cation) with TinyOS’s standard communication
mechanisms. The purpose of providing this flexi-
bility is to enable programmers to select the
routing layer to use when routing a given class of
queries. For example, for queries that must
reach all or most of the nodes, TinyOS’s default
communication primitives would probably be
more efficient.

EvVALUATION OF TINYSOA

In this section we present an evaluation of
TinySOA. We first study the scalability of SDRP,
TinySOA’s query routing mechanism, in terms of
energy consumption. We then conduct compara-
tive experiments between TinySOA and TinyDB
[8]. We also compare TinySOA to some existing
systems where the concept of service is adopted.

ENERGY CONSUMPTION AND SCALABILITY

To evaluate energy consumption in TinySOA,
we developed an evaluation benchmark that uses
the PowerTOSSIM simulator [12] integrated in
the TinyOS package. The benchmark enables a
wide spectrum of simulation scenarios. In partic-
ular, users may specify configuration parameters
such as the total number of different services,
maximum number of services per node, and
update threshold. The benchmark also enables
users to specify executions where any number of
queries is injected in the network, any values for
the parameters of the queries may be selected,
and the time between the injection of two con-
secutive queries may be varied.

Scalability in the Number of Nodes — In
the first experiment we considered SDRP’s scal-
ability with regard to the number of nodes.
Specifically, we measured the energy required to
set up SDRP as reflected in the average energy
consumed by the nodes’ radios and CPUs. We
ran experiments on networks with a number of
nodes varying from four to 961 nodes. We
assumed a lossy radio model and used TinyOS’s
LossyBuilder tool to generate the probabilities
of incorrect bit reception for each considered
network topology. For example, in the first itera-
tion we generated a probability file for a grid of
2 x 2 nodes in an area of 6 ft x 6 ft. In the last
iteration we generated a probability file for a
grid of 31 x 31 nodes in an area of 93 ft x 93 ft.
Note that we kept the same node density (1/9
node/ft?) for all iterations. Each node runs a
number of services selected randomly between 1
and NBS,,,x- NBS,,.« Wwas kept constant at 5 in
this experiment. The identities of the services
running on each node were also selected ran-
domly from a set of NbServices (kept at 50)
services. The experiment ends when no message
remains in transit; that is, when all messages
sent as part of SDRP are either received or lost.
Figure 3a shows the results of the experiment.

The figure shows that energy consumption
increases almost linearly until we reach about 30
nodes. From that point until the number of
nodes reaches 700, energy consumption remains
constant. At that point increases slightly and
then remains constant. The key conclusion from
this experiment is that for topologies of a given
size (30 nodes or more under this experiment’s
conditions), energy consumption in SDRP
becomes almost independent of the number of
nodes. Indeed, SDRP depends only on the num-
ber and distribution of services on the nodes.
This makes SDRP particularly suitable for large
networks.

Scalability in the Number of Queries — In
the second experiment we kept the number of
nodes constant at 100 nodes and measured
TinySOA’s energy consumption when the num-
ber of queries injected in the network varies
from 10 to 150. The other parameters were simi-
lar to the ones used in the first experiment. The
base station submits a query which requires that
each node providing the service getLight ()
invoke it and then send the result to the base
station.3 Here again, the experiment ends when
no message remains in transit. We measured the
average energy consumed by the nodes’ radios
and CPUs from the time the base station sub-
mitted the query until the end of the experi-
ment.

The experiment shows two important results.
First, the setup cost in terms of energy (i.e., run-
ning SDRP before queries may be routed) is
very low. For example, Fig. 3a shows that at 100
nodes, SDRP’s setup requires about 330 mJ. Fig-
ure 3b shows that the total cost of executing 60
queries or more is slightly less than 1500 mJ.
This makes SDRP’s setup cost only about 22
percent of the total cost of executing 60 or more
queries. A more important result is that beyond
a certain number of queries (60 in this case), the
cost of query processing in SDRP increases very
slowly with the number of queries. This is due to
the key characteristic (i.e., service-driven rout-
ing) of SDRP, which reduces a query’s scope in
terms of the number of nodes that receive the
query. This eliminates much of the unnecessary
traffic that would normally occur in traditional
routing protocols.

TINYSOA vs. TINYDB

In this section we compare TinySOA to TinyDB.
We focus on three criteria:

e Energy consumption

e Scalability

* Response time

To conduct our comparison, we considered that
querying for the values of attributes in TinyDB
is the equivalent of invoking simple services in
TinySOA. However, mapping TinySOA’s ser-
vices into TinyDB’s attributes is not straightfor-
ward. TinyDB has a number of specificities and
limitations that had to be considered. In
TinySOA arbitrary services may be deployed on
nodes. In TinyDB, however, this is not possible.
Indeed, TinyDB uses a static set of attributes
(temperature, light etc.). This set is specified in
a file called catalog.xml that is loaded at
bootstrapping. TinyDB then makes all of the

The benchmark
enables a wide
spectrum of

simulation scenarios.

In particular, users

may specify
configuration

parameters such as

the total number of

different services, the

maximum number of

services per node,
the update
threshold, etc.

3 As we said earlier, we
focus here only on the
routing of queries, not
query results.
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attributes defined in the catalog available, and
hence queryable, on all nodes. The second con-
straint was that in TinyDB, populating nodes
with different sets of attributes may not be done
programmatically. TinyDB provides a mecha-
nism to add an attribute for a specific mote on
the fly (i.e., after TinyDB starts). This mecha-
nism, however, is only available through Tiny-
DB’s Java-based GUI. Moreover, this is only
possible for constant attributes. To reflect a sim-
ilar setting, we set the number of services avail-
able on each node in our TinySOA network to
19, which is the number of attributes in Tiny-
DB’s default catalog.

We considered a scenario where the base sta-
tion submits a single query and waits until it
receives a given number of results. In TinyDB
we wrote a Java class that interacts directly with
the TinyDBApp nesC application and injects the
following query into the network:

select nodeid,light
from sensors
sample period 30000

The equivalent TinySOA query is

action getNodeID(), getLight();
time frequency 30000 ms;

In both cases the experiment ended when the
base station received a certain number gr of
query results that was varied from 10 to 110.

Energy Consumption — Figure 4a shows the
average energy consumed by the nodes’ radios
and CPUs with TinySOA and TinyDB. The fig-
ure shows that in the case of TinyDB, energy
consumption increases almost exponentially with
the number of query results received at the base
station. Figure 4b is a closer view that shows
energy consumption in the case of TinySOA.
Energy consumption in this case increases almost
linearly with the number of results the network
generates. The difference between TinySOA and
TinyDB in terms of energy consumption may be
explained by the fact that TinySOA cuts signifi-

cantly the number of messages required to get a
query to all nodes that must contribute to its
evaluation. The length of the paths between the
base station and the target nodes depends almost
entirely on the distribution of services in the net-
work and not much on the size of the network.
If only a few nodes of the network provide the
service requested by a given query, only a pro-
portional number of nodes are involved in rout-
ing the query to those nodes, regardless of how
many other nodes exist in the network. This is
not the case in TinyDB, where the number of
nodes that contribute to routing a given query
increases systematically with the network’s size.
As a result of the difference between TinyOS’s
query routing and TinyDB’s query routing, and
given the size of the network (100 nodes),
queries get to their destination a lot sooner in
TinySOA than in TinyDB. As it takes longer for
TinyDB to get a query to its destination, some
nodes start generating results and sending them
to the base station while some other nodes have
not even received the query. This seems to cre-
ate a significant amount of opposite traffic. This
traffic translates into a large number of colli-
sions, which in turn results in many failed trans-
missions and retransmissions. This, in fact, is
confirmed in the next experiment.

Response Time — We also conducted experi-
ments to compare TinySOA and TinyDB from
the perspective of response time. The purpose
was to measure the time taken by both networks
to route query results from the nodes where they
are generated to the base station. This metric is
important when assessing the suitability of both
networks to support real-time applications.
When conducting this experiment in TinySOA,
we made each node that generates a result for a
query simply broadcast it to its neighbors. Each
neighbor that receives a query result forwards it
until the query result reaches the base station.
We set the number of nodes at 100 nodes, and
measured energy consumption of nodes’ radios
and CPUs until the base station received a given
number of results in both TinySOA and TinyDB.
Figure 4c shows this experiment’s results. Here
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again, we can see that in TinyDB this time
increases exponentially. In contrast, in TinySOA
the increase is linear. While using simple broad-
casting to route query results to the base station
is certainly less efficient than in the case of Tiny-
DB, TinySOA outperforms TinyDB mainly
because of the savings in time TinySOA achieves
when routing queries from the base station to
the nodes using SDRP.

Ad Hoc Network Deployment —A TinyDB
network must be completely defined prior to
deployment. In particular, the attribute catalog
must be defined before the network is deployed.
In addition, all nodes must run TinyDB’s code.
This makes TinyDB unsuitable for the next gen-
eration of sensor systems where different net-
works from different providers run different
operating systems. In contrast, in TinySOA ser-
vices are dynamically discovered and used. In
addition, when new services are discovered,
SDRP is able to automatically update service
directories without any side effects on the nor-
mal operation of the network.

On-node services: Almost all existing service-
oriented architectures for sensor systems intro-
duce services as off-network programs running
on computers, not sensor nodes. Examples
include: [3, 6, 7, 11, 13]. TinySOA deploys on-
node services that may be advertised, discovered,
and invoked by entities within or outside the
network. This makes TinySOA networks open
environments that may readily interoperate with
each other as well as with other types of client
entities. For example, consider a user roaming
an area where different TinySOA networks are
deployed. This user may be able, using a generic
mobile device such as a laptop or cell phone, to
discover and invoke services provided by nodes
that belong to different networks. Interaction
would be possible without any prior configura-
tion of the mobile device to query any given
TinySOA network.

Service-based optimization: Both in-network
and off-network optimization have already been
proposed in a number of existing service-orient-

ed sensor systems. Examples include [6, 10, 13]
for systems capable of off-network optimization
and [5] for systems capable of in-network opti-
mization. These systems, however, do not exploit
services in optimization; they simply provide tra-
ditional application-level forms of in-network
optimization. None of these systems have con-
sidered the idea of exploiting services in low-
level mechanisms such as routing. In TinySOA
services are both a design paradigm and an opti-
mization means. They enable new forms of in-
network and off-network optimization:

e In-network service-based optimization:
TinySOA enables in-network service-based
optimization at the application level (e.g.,
multiquery optimization, result aggregation)
as well as at lower levels. An example of
the former is TinySOA'’s ability to associate
a single service invocation with several
queries. An example of the latter is
TinySOA’s SDRP discussed earlier.

e Off-network service-based optimization:
From the perspective of TinySOA’s clients
(e.g., base station, mobile user), TinySOA
streams query results in ways similar to
existing sensor systems. Traditional off-net-
work optimization techniques (caching,
query rewriting, reprocessing previous
results to answer new queries, etc.) are also
applicable in the context of TinySOA.
Application independence and application

awareness: Application awareness refers to the

ability to exploit the specific characteristics of a

given application to improve the overall efficiency

of the network. Several prior efforts have pro-
posed application-aware solutions. However,
these solutions are often too specific to the con-
sidered class of applications. In contrast, TinySOA
exposes “neutral” services any application may
use with the same efficiency expectations.

TinySOA is therefore application-independent

while still able to exploit any specific characteris-

tics of a given application.

While existing literature has already explored
some aspects of service-oriented design in sensor
networks, our work is a fundamentally novel
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architectures. We
anticipate that taking
the service-oriented
design paradigm to
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the concept of
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wired computing.

approach where services are selectively deployed
on top of the bare operating system controlling
sensor-actuator nodes. Another major difference
is that services in our approach are not only a
means for better expressivity but, more impor-
tant, a key element in query optimization.

CONCLUSION

We have motivated the need for and proposed a
new service-oriented architecture for sensor-
actuator networks. In contrast with current
SANETs, SOSANETS expose their sensing and
actuation capabilities in the form of services that
may be invoked by any application. We show the
potential of SOSANET: in addressing the limita-
tions of current SANET architectures. We have
implemented our approach in TinySOA, a
SOSANET developed on top of TinyOS. Empir-
ical results show that TinySOA achieves signifi-
cant improvements over existing architectures in
many aspects, including energy consumption,
scalability, and response time.

Future SANETSs will require new architec-
tures. We foresee service-oriented architectures
as a highly viable candidate to support the
requirements of tomorrow’s sensor-actuator net-
works. We anticipate that taking the service-ori-
ented design paradigm to wireless networks is
likely to extend the immense impact the concept
of services has had on wired computing.
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