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Abstract As vehicular networks become popular, more
and more people want to access data from their vehi-
cles. When many vehicles want to access data through a
roadside unit, service scheduling becomes an important
issue. In this paper, we identify some challenges in
vehicle-roadside data access. As vehicles move pretty
fast, the requests should be served quickly. Also, vehi-
cles may upload data to the roadside unit, and hence the
download and upload requests compete for the same
bandwidth. To address these challenges, we propose
several service scheduling schemes. We first propose a
basic scheduling scheme called D ∗ S to consider both
service deadline and data size. We then enhance it by
using a single broadcast to serve multiple requests. Fi-
nally, we identify the effects of upload requests on data
quality, and propose a Two-Step scheduling scheme
to provide a balance between serving download and
update requests. Simulation results show that the Two-
Step scheduling scheme outperforms other scheduling
schemes.
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1 Introduction

Recently, vehicle-roadside data access has received
considerable attention [1–5]. With RoadSide Unit
(RSU) such as 802.11 access point, vehicles can access
data stored in the RSU or even access the Internet
through these RSUs. From 2003, the US Department
of Transportation has invested millions of dollars [6] to
integrate vehicles and RSUs and to make the current
transportation system more intelligent. Chrysler-
Daimler has introduced the “InfoFuel” system to pro-
vide Mercedes drivers the ability to access wireless data
through roadside hotspots (http://www.leearmstrong.
com/DSRC/DSRCHomeset.htm). Also, FCC dedicates
the 5.9 GHz frequency specifically allocated to vehicle-
vehicle and vehicle-roadside communications and
enacts the Dedicated Short Range Communications
(DSRC) standard in 2004. Later, IEEE develops
several standards to ensure that vehicles and roadside
infrastructures can communicate with each other. All
these efforts in academy, government, and industry
make vehicle-roadside data access mature enough to
be used in our daily life.

In vehicle-roadside data access, the RSU can act as a
router for vehicles to access the Internet. Although this
can bring many benefits to the drivers, the deployment
cost and maintenance cost are very high. As another
option, RSU can also be just used as a buffer point (or
data island) between vehicles. In this paper, we focus
on the latter paradigm due to its low cost and easy
deployment. In this paradigm, all data on the RSUs
are uploaded or downloaded by vehicles. For example,
some data, especially those with spacial/temporal con-
straints, only need to be stored and used locally. The
following applications also belong to this case where the

http://www.leearmstrong.com/DSRC/DSRCHomeset.htm
http://www.leearmstrong.com/DSRC/DSRCHomeset.htm
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data are buffered at the RSUs, and will not be sent to
the Internet.

1. Value-added Advertisement and Content Sharing:
Store owners may want to advertise their sale or
activity information in nearby area. Without Inter-
net connection, they can ask the running vehicles to
carry and upload the advertisement information to
nearby RSUs [7] and to share with each other [8].
At the same time, other vehicles driving around can
download these advertisements and visit the stores.

2. Real-Time Traffic: Vehicles can report real-time
traffic observations to RSUs [9]. The traffic data
are stored at RSUs, providing real-time query and
notification services to other vehicles. The data can
be used to provide traffic conditions and alerts such
as road congestion and accidents.

3. Digital Map Downloading: Due to the storage lim-
itations of memory card and frequent road con-
struction, it is impossible for vehicles to install all
the most up-to-date digital maps before traveling.
Hence, vehicles driving to a new area may hope to
update map data locally for travel guidance.

Different from traditional data access system in
which users can always wait for the service from the
data server, vehicles are moving and they only stay in
the RSU area for a short period of time. As a result,
there is always a time constraint associated with each
request. Meanwhile, to make the best use of the RSU
and to share the information with as many vehicles as
possible, RSUs are often set at the roadway intersec-
tions or areas with high traffic. In these areas, download
(query) requests retrieve data from the RSU, and up-
load (update) requests upload data to the RSU. Both
download and upload requests compete for the same
limited bandwidth. As the number of users increases,
what request to be served at what time will be criti-
cal to the system performance. Hence, it is important
to design an efficient service scheduling algorithm for
vehicle-roadside data access. In this paper, we design
efficient solutions for scheduling vehicle-roadside data
access. Our contributions are as follows.

1. We first propose a basic low complexity scheduling
scheme called D ∗ S which considers both data size
and request deadline.

2. We improve the performance of the basic schedul-
ing algorithm by using broadcasting techniques to
serve more requests.

3. We study the tradeoffs between service ratio and
data quality, and propose a Two-Step scheme
to address the tradeoffs between uploads and
downloads;

4. We conduct extensive simulations to study the per-
formance of the proposed scheduling schemes.

The rest of this paper is organized as follows: the
related work is summarized in Section 2. Section 3
presents the background and necessary preliminar-
ies. Section 4 describes the limitation of three naive
schemes and presents a new scheduling scheme called
D ∗ S. In section 5, we study how to optimize schedul-
ing by broadcasting. An improved scheme called
D ∗ S/N is proposed. We discuss the impact of data
staleness and propose a two-step scheduling scheme in
Section 6. Section 7 evaluates the performance of the
proposed schemes. Finally, we conclude the paper in
Section 8.

2 Related work

Vehicle-roadside data access is an important compo-
nent for data access in vehicular networks. The authors
in [1] illustrated a basic picture of how running vehicles
contact with roadside hot spots through a “drive-thru”
data access. They gave us the first understanding of the
impact of the vehicle’s speed, transmission rate, 802.11
bit-rate, and packet size on throughput and delay of
vehicle-roadside communication. Bychkovsky et al. [2]
did another experiment to confirm the advantage of
vehicle-roadside data access. Their findings showed
that there are plenty of Wi-Fi networks in residential
areas in and around cities. The unplanned, community-
driven “openWi-Fi” wireless network composed of in
situ access points can provide feasible and abundant re-
sources for vehicle-roadside data access. Zhao et al. [10]
studied to use roadside infrastructures to store and re-
broadcast their buffered data to “drive-thru” vehicles
at the intersection. Further, several mobile computing
systems such as CarTel [3] and MobiEyes [9] were
designed and implemented by MIT and UCLA, re-
spectively to collect, process and deliver data from
sensors located on vehicles to roadside infrastructures
for analysis. The similar projects include the DieselNet
at Umass [11], FleetNet in Germany [12], InternetCAR
in Japan [13]. Although these works discuss how to
benefit from vehicle-roadside data access, they do not
study the prerequisite problem: if multiple vehicles want
to access the roadside infrastructure at the same time,
how to schedule their service priorities. Scheduling is an
important issue for data access in vehicle networks. In
this work, we will study the application-layer schedul-
ing for vehicle-roadside data access and give the most
optimized solutions.
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There are a large amount of work related to CPU
and job scheduling in the literature. Wong studied
several scheduling algorithms such as first-come-first-
serve (FCFS), longest wait time (LWT), most requests
first (MRF) in the broadcasting environments [14].
Later, many broadcast scheduling algorithms have been
proposed to reduce the waiting time and energy con-
sumption [15–18]. Acharya and Muthukrishnan [19]
addressed the broadcast scheduling problem in hetero-
geneous environments, where data items have different
sizes. The solution is based on a new metric called
Stretch, defined as the ratio of the response time of
a request to its service time. Based on stretch, they
proposed a scheduling algorithm, called longest total
stretch first (LTSF) to optimize the stretch and achieve
a balance between the worst case and the average case.
However, a straightforward implementation of LTSF is
not practical for a large system, as at each broadcast
time, the server has to recalculate the total stretch
for every data item with pending requests in order to
decide which data to broadcast next, and hence the
scheduling algorithm becomes a bottleneck due to the
high computation overhead. The work in [20] intro-
duced the concept of Quality Contracts (QCs) which
combines the two incomparable performance metrics:
response time or Quality of Service (QoS), and stale-
ness or Quality of Data (QoD). QCs allows individual
users to express their preferences for the expected
QoS and QoD of their queries by assigning “profit”
values. They proposed an adaptive algorithm to max-
imize the total profit from submitted QCs. This work is
also based on point-to-point communication and does
not take advantage of broadcasting. All these works
mainly focus on responsiveness such as average/worst-
case waiting time or fairness without considering the
time constraints of the user requests. However, in ve-
hicular networks, time constraint of the request has to
be considered.

Jiang and Vaidya [21], Rajan et al. [22] and Xu
et al. [23] studied the scheduling problem in real-time
broadcasting environment and took time constraint
into account. Jiang and Vaidya [21] and Rajan et al. [22]
investigated only periodic push-based broadcast, which
is fundamentally different from on-demand broadcast
in system architecture. The authors of [23] investi-
gated online scheduling algorithms for time critical on-
demand data broadcast. However, they ignored the
data update issue. They assumed that data are read
only or can only be updated by the server. Hence, they
only tried to improve the service ratio for download
broadcasting. In contrast, our vehicle-roadside data ac-
cess model is different as both update and download

compete for the same bandwidth. Also, missing the
update degrades the data quality.

3 Background and preliminaries

3.1 System model

As shown in Fig. 1, a large number of vehicles retrieve
(or upload) their data from (or to) the RSU when they
are in the communication range. The RSU (server)
maintains a service cycle, which is non-preemptive; i.e.,
one service can not be interrupted until it finishes.
When one vehicle enters the RSU area, it listens to the
wireless channel. All vehicles can send requests to the
RSU if they want to access the data. Each request is
characterized by a 4-tuple: <v-id, d-id, op, deadline>,
where v-id is the identifier of the vehicle, d-id is the
identifier of the requested data item, op is the operation
that the vehicle wants to do (upload or download), and
deadline is the critical time constraint of the request,
beyond which the service becomes useless. All requests
are queued at the RSU server upon arrival. Based on
the scheduling algorithm, the server serves one request
and removes it from the request queue.

Different from traditional scheduling services, data
access in vehicular networks has two unique features:
1) The arrival request is only active for a short period
of time due to vehicle moving and coverage limitations
of RSUs. When vehicles move out of the RSU area, the
requests not served have to be dropped; and 2) Data
items can be downloaded and uploaded from the RSU
server. The download and update requests compete for
the service bandwidth.

Service Queue

Wireless
Channel

Fig. 1 The architecture of vehicle-roadside service scheduling
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We assume that each vehicle knows the service dead-
line of its request. This is reasonable because when a
vehicle with GPS device enters the coverage area of
a RSU, it can estimate its leaving time based on the
knowledge of its driving velocity and its geographic
position.1

3.2 Performance metrics

In most previous work, the metrics for scheduling al-
gorithms are responsiveness (e.g., average/worst-case
waiting time [15, 17, 18]) or fairness (e.g., stretch
[19, 24]). In most of these works, requests do not
have time constraints and the data on the server are
not updated or updated only by the server. However,
in the vehicle-roadside data access scenario, requests
not served within a time limit will be dropped as the
vehicles move out of the RSU area. Since update re-
quests compete bandwidth with other download re-
quests, some data may become stale after an update is
missed, degrading the service quality. Therefore, com-
pared with responsiveness and fairness, providing fresh
data to more vehicles is more important and we use the
following metrics for scheduling vehicle-roadside data
access.

1. Service Ratio: Service ratio is defined as the ratio
of the number of requests served before the service
deadline to the total number of arriving requests.
A good scheduling scheme should serve as many
requests as possible.

2. Data Quality: Data will become stale if a vehicle
has the new version of the data but fails to upload
it before the vehicle moves out of the RSU range.
The staleness of the data will degrade the data
quality for the download service. In this paper, we
use the percentage of fresh data access to represent
the data quality of the system. Therefore, a good
scheduling scheme should update data in time and
try to avoid data staleness.

It is difficult to achieve both high service ratio and
good data quality. Giving more bandwidth to download
requests can have a higher download service ratio, but
a higher update drop ratio and hence low data quality.
If update requests get more bandwidth, the service
ratio decreases. There is always a tradeoff between high

1After a vehicle establishes the connectivity with one RSU, it
can get the geographic information and radio range of the RSU
through beacon messages. With its own driving velocity and
position information, the vehicle can estimate its living time,
which is its service deadline.

service ratio and good data quality. In the following
sections, we first focus on improving the service ratio,
and then design scheduling algorithms considering both
service ratio and data quality.

4 The basic scheduling schemes

The primary goal of a scheduling scheme is to serve as
many requests as possible. We identify two parameters
that can be used for scheduling vehicle-roadside data
access:

• DataSize: If the vehicles can communicate with the
RSU at the same data transmission rate, the data
size can decide how long the service will last.

• Deadline: If a request can not be served before its
deadline, it has to be dropped. Thus, the request
with an earlier deadline is more urgent than the
request with a later deadline.

4.1 Three naive schemes

There are three naive Schemes:

• First Come First Serve (FCFS): the request with the
earliest arrival time will be served first.

• First Deadline First (FDF): the request with the
most urgency will be served first.

• Smallest DataSize First (SDF): the data with the
smallest size will be served first.

Figure 2 compares the service ratios under these
three naive scheduling schemes. The experiment is
conducted using the same simulation environment de-
scribed in Section 7. The inter-arrival time of the
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Fig. 2 Service ratio for FCFS, FDF and SDF scheme
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requests is determined by the percentage of vehicles
that will issue service requests, which is varied along the
x axis.

As shown in the figure, when the request arrival
rate is low, FDF outperforms FCFS and SDF. This is
because when the workload is low, the deadline factor
has more impact on the performance. After the urgent
requests are served, other pending requests can still
have the opportunity to get services. However, when
the request arrival rate increases, the service ratio of
FDF drops quickly while SDF performs relatively bet-
ter. Since the system can always find short requests for
service, SDF can still keep a higher service ratio. FCFS
does not take any deadline or data size factors into
account when making scheduling decision, it has the
worst performance.

Clearly, FDF and SDF can only achieve good per-
formance for certain workloads only. This motivates us
to integrate the deadline and data size to improve the
performance of scheduling.

4.2 The D ∗ S scheduling

FCFS does not consider data size and request dead-
line. FDF gives the highest priority to the most urgent
requests while neglecting the service time spent on
those data items. SDF takes the data size into account
but ignores the request urgency. As a result, none of
them can provide a good scheduling. Inspired by [18],
we propose a new scheduling scheme, called D ∗ S to
consider both data size and deadline when scheduling
vehicle-roadside data access. Intuitively,

• Given two requests with the same deadline, the one
asking for a small size data should be served first.

• Given two requests asking for data with same size,
the one with earlier deadline should be served first.

Motivated by the above observations, each request
is given a service value based on its deadline and data
size, called DS_value, as its service priority weight.

DS_value = (Deadline − CurrentClock) ∗ DataSize

Here, product is used to connect the deadline and
data size factors because these two factors have dif-
ferent measurement scales and/or units. With product,
different metrologies will not bring any negative effect
on the comparison of two DS_values.

At each scheduling time, the D ∗ S scheme always
serves the requests with the minimum DS_value.

4.3 The implementation of the D ∗ S scheme

A straightforward implementation of the D ∗ S scheme
is to compute the DS_values of all requests, and then
select the smallest one at the decision tick. This im-
plementation has a computation complexity of O(m),
where m is the number of pending requests. Here,
we propose a different data structure to reduce the
computation complexity to O(logm). In the following,
we first give the detail of the implementation and then
formally prove its correctness and efficiency.

4.3.1 The data structure and the pruning algorithm

The data structure uses two sorted lists to store the
requests. One list called D-List (Deadline-list) is used
to record the deadline (D value) of each request. The
other list called S-List (dataSize-list) is used to record
the size (S value) of the data item that is asked by the
request. D-List is ordered by the increasing deadline of
each request and S-List is sorted in ascending order of
the data size. As Fig. 3 shows, the searching procedure
starts by examining the entry at the top of D-List. With
an index we can easily find the corresponding size entry
in S-List and calculate its DS_value. The MinDS is
set to the DS_value of the first request in D-List. At
the same time, MinS can be calculated using D’ which
is the deadline value of the next entry in the D-List,
and the current clock time. Since the D-List is ordered
increasingly, it is known that for any unexamined entry
to have a DS_value less than MinDS, it must have an S
value satisfying the inequality

S <
MinDS

D′ − CurrentClock

Fig. 3 Search space pruning structure



88 Mobile Netw Appl (2010) 15:83–96

Then, we examine the entry at the top of S-List and
calculate its DS_value with its S value and its corre-
sponding D value in D-List. The MinDS value need
to be updated with the current DS_value if the current
DS_value is less than MinDS. Similarly, since the S-List
is sorted in ascending order, an unexamined request has
a DS_value less than MinDS only if its deadline value
satisfies

D <
MinDS

S′ + CurrentClock

where S′ is the data size value of the next entry in the
S-List.

The search process keeps alternating between the
D-List and S-List, updating the MinDS value when an
entry with a DS_value less than MinDS is encountered
and pruning the search space. The process stops when
the checked entry goes across MinD or MinS, or when
the search reaches halfway of both lists. At this point,
MinDS is known to be the minimum DS_value for
all requests and that recorded request can be served.
Clearly, with this pruning technique, the search space
can diminish quickly and the computation complexity
can be reduced.

Figure 3 shows a simple example using these two
lists. Suppose that the current clock is 100. First, the top
entry (request a) in D-List is examined and the MinDS
is set as 350 (= (101–100)*350). With this MinDS, we
can calculate MinS=175 (=350/ (102–100)). Next, we
check the entry of request e (the top of the S-List). The
DS_value of request e is 500 (= (110–100)*50), which
is larger than the current MinDS, so MinDS does not
need to be updated. We can also get the value of MinD
as 103.5 (=350/100+100). Then the second entry of D-
List is checked. Its DS_value is 300 (= (102–100)*150).
Since it is less than the current MinDS, MinDS should
be updated to 300, and MinS is set to 60 (=300/ (105–
100)). Next, we go to the second entry (request c)
of S-List. Because its size is larger than the current
MinS value, the search process can stop here since the
unexamined requests (with size ≥ 100 and deadline ≥
103.5) do not have a DS_value less than MinDS=300.
In this example, we only need to check three index
entries to find the most suitable request for service. The
overhead to maintain this data structure is very low.
Once an entry is added to the list, it is not moved until
the corresponding request is served or dropped.

4.3.2 The analysis of the space pruning structure

First, we prove the correctness of the proposed space
pruning algorithm. After that, we show that the com-
putation complexity of the algorithm is O(logm).

Theorem 1 When the pruning process terminates, the
MinDS is obtained.

Proof (Proof by Contradiction.) Assume to the con-
trary that Theorem 1 is not correct. Then when the
pruning process terminates, there must exist at least
one request, whose DS_value is smaller than current
MinDS and it has not been checked yet. Without loss
of generality, we may assume that this request is re-
quest i. According to the algorithm, neither the dead-
line value nor the size value of request i has been
checked. However, both the D-List and the S-List are
ordered increasingly. This means both the deadline
value and the data size value of request i are larger
than those of the request who currently achieves the
MinDS, respectively. Obviously, for all numbers which
is larger than zero, the product of two larger numbers
is always larger than that of two smaller numbers. This
contradicts the assumption that request i has a smaller
DS_value than MinDS while not been examined when
the pruning process terminates. Hence, the supposition
is false and Theorem 1 is correct. ��

Theorem 2 The computation complexity of the pro-
posed pruning algorithm is O(logm), where m is the
number of pending requests.

Proof Since both the deadline list and the data size
list are ordered increasingly. Then as the first request
in deadline list is examined, its data size value can be
located at any position of the size list. Similar to the
property of a binary-search-tree, after the first pruning,
one half of entries in the data size list can be pruned
on average. This process can be executed alternatively
between two lists and recursively among all remaining
entries in the lists until the MinDS value is obtained.
Therefore, similar to the performance of search in a
binary-search-tree, the computation complexity of the
proposed pruning algorithm is O(logm). ��

5 Download optimization: broadcasting

5.1 The basic idea

The D ∗ S scheduling scheme considers both request
deadline and data size, and it serves one request at one
time. Observe that some vehicles may ask for the same
data and the wireless communication has the broadcast
capability. If we can delay some requested data and
broadcast it before the deadlines, several requests may
be served through a single broadcast. For example,
several vehicles at an intersection want to check the
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same traffic information. One broadcast can serve all
these requests. With this optimization, the scheduling
performance can be improved.

To improve the broadcast efficiency, the data with
more pending requests should be served first. We add
one more parameter to the D ∗ S scheme, i.e., the
number of pending requests for the same data (N). We
call the new scheme D ∗ S/N . In this new scheme, the
service value, DSN_value, is calculated as

DSN_value = (Deadline − CurrentClock)

∗ DataSize/Number

5.2 Theoretical analysis of the D ∗ S/N service ratio

In this subsection, we give a theoretical analysis of the
service ratio in the D ∗ S/N algorithm. It has been
shown that “equal spacing” broadcast offers the opti-
mal scheduling performance [21]. That is, the service
ratio of a data item is maximized when the broadcast
instances of the item are equally spaced. Therefore, we
assume our scheduling satisfies the equal spacing prop-
erty with a broadcast interval vector < s1, s2, ..., sn >,
where si is the spacing interval between consecutive
transmissions of item i. As Fig. 4 shows, a request
arriving at time t can be served successfully if and only
if its deadline is shorter than si − t. Moreover, if the
arrival rate of requests becomes large, e.g., approaching
infinity, the number of requests for item i arriving in any
very short duration δt can be approximated by λi ∗ δt,
where λi is the arriving rate for item i. Therefore, if the
deadlines of the requests asking for data item i satisfy
the exponential distribution with mean μ, the service
ratio of requests for data item i can be calculated by

∫ si

0 λie
− 1

μ
(si − t)

dt
∫ si

0 λidt
=

μλi

(

1 − e
− si

μ

)

λisi

=
μ

(

1 − e
− si

μ

)

si

S

S

1

0 t

i

i

i

-t

Fig. 4 Equal spacing broadcast model

Note that the above expression is λi independent.
Therefore, the total service ratio (SR) can be calcu-
lated as

SR =
N∑

i=1

μpi

(

1 − e
− si

μ

)

si

where pi is the access probability of data item i
We use li to denote the time required to serve data

item i, then an inter-broadcast interval of si implied a
fraction li

si
of the bandwidth is used to broadcast item i.

Therefore,

N∑

i

li

si
= 1

With this limitation, we can use Lagrange multiplier
method to calculate the maximum value of SR, if the
service scheduling satisfies

pi

li

(
si

μ
e
− si

μ + e
− si

μ − 1
)

= K, i = 1, 2, ...N

for some constant K.
At this time, the maximum value of SR is the upper

bound of the service ratio of the D ∗ S/N scheme.

5.3 The implementation of D ∗ S/N

The D ∗ S/N scheme can be implemented using a sim-
ilar dual-list data structure as in D ∗ S to reduce the
computation complexity. The difference is that each
entry records the information for each request group
for the same data item instead of individual requests in
D ∗ S. Because there are three parameters (deadline,
data size and pending requests (N)) in consideration,
we need to combine the S value and N value in advance
to form a single S/N list. Since the S/N value of the
corresponding data item can be updated when a new
request comes, this change does not bring much main-
tenance overhead. At each scheduling decision tick, the
same pruning process is executed alternatively between
D-List and S/N-List until the request with minimal
DSN_value is found.

5.4 The selection of representative deadline

With the broadcast optimization, several requests can
be served simultaneously in a single broadcast, which
leads to more efficient use of shared bandwidth and a
higher service ratio. However, when calculating their
DSN_value, we need to assign each pending request
group a single deadline to estimate the urgency of the
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Fig. 5 The service ratio of D ∗ S/N with earliest, median, and
mean deadline

whole group. If there are more than one request waiting
for the service, we can use the earliest, the median
or mean deadline of the group to represent the group
urgency. The earliest deadline reflects the urgency of
satisfying all requests in the group and the mean and/or
median deadline reflects the average urgency of the
requests group. With the same setting in Section 7,
we compare the performance under different represen-
tative deadlines. The simulation results (Fig. 5) show
that selecting different representative deadline does not
have too much impact on the scheduling performance.
The earliest, median, and mean deadlines lead to sim-
ilar scheduling performance. Therefore, in our later
simulation settings, we choose the earliest deadline to
represent the urgency of all pending requests in the
same group.

6 Upload optimization: two-step scheduling

D ∗ S/N can improve the service ratio, but it sacrifices
the service opportunity of the upload (update) requests.
For upload request, it is not necessary to maintain
several update requests for one data item since only the
last update is useful. As a result, the N value of upload
request is always 1 in the D ∗ S/N scheme, and hence it
is not fair for update requests to compete for the service
bandwidth. Clearly, more update requests have to be
dropped and the data quality for downloading degrades
as lots of later arriving download requests will get the
stale data. A possible improvement is to incorporate
a weight value to update requests to help them get
a higher priority in scheduling. However, it is quite

difficult to say how much weight should be given to the
update requests since in a dynamic system the degra-
dation of service quality by staleness and service ratio
are incomparable. Therefore, it is impossible to use one
single queue for both update and download [20]. Next,
we propose a new scheduling scheme with two separate
queues and a Two-Step scheduling approach to achieve
the balance of data quality and service ratio.

6.1 The basic idea

We use two priority queues: one for the update requests
and the other for the download requests. The RSU
server provides two queues with different bandwidth
(i.e., service probability). The benefit of using two sep-
arate priority queues is that we only need to compare
the download queue and update queue instead of indi-
vidual update and download requests. The scheduling
goes through two steps: the first step chooses the service
queue and the second step chooses the most suitable
service request. Because of their specific concerns, up-
date and download queues have their own priority
scheduling schemes, which makes the scheduling more
flexible.

6.2 Step I: update queue or download queue

Here we give a new definition, Service_Profit, as the
sum of the profit gained from update and download
requests. Suppose the download requests share ρ (0 ≤
ρ ≤ 1) of the bandwidth and the update requests share
the rest: 1-ρ. We need to set ρ to the best value to
achieve the maximum Service_Profit. To do that, we
need to find the relationship between bandwidth allo-
cation and the Service_Profit that the system can have.

The download requests can be served with fresh data
or stale data, and hence the profits they bring to the
system are different. Formally, Service_Profit can be
presented as

Service_Profit = Update_Profit

+ FreshDownload_Profit

+ StaleDownload_Profit

We use the number of successfully served requests to
represent the system profit. Then, one update request
contributes the same profit as one download request
with fresh data. However, if one update request is
dropped, all the following download requests on that
data item can only get the stale data. Therefore, their
service qualities degrade with a coefficient, say α. The
service degrades until the data item is updated by the
next update.
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We use ru to denote the service rate of update
requests. Then the update profit rate depends on its
service rate (ru) and the bandwidth allocated to it
(1 − ρ). After a time period t, the update profit can be
approximated as:

Update_Profit � ru · (1 − ρ) · t

Similarly, we use rd to denote the service rate of
the download requests. The download profit relies on
its service rate (rd), the bandwidth allocation, and the
quality for each download. Note that the data quality
is related to uploads. The more bandwidth allocated
to the update queue, the more requests will be served
with fresh data. Therefore, the download profit can be
approximated by:

FreshDownload_Profit � rd · ρ · (1 − ρ) · t

and

StaleDownload_Profit � rd · ρ2 · α · t

Then the total profit can be given by

Service_Profit � ru · (1 − ρ) · t + rd · ρ · (1 − ρ) · t

+ rd · ρ2 · α · t

= rd · (α − 1) · tρ2 + (rd − ru) · t · ρ

+ fu · t (0 ≤ ρ ≤ 1).

We can calculate the optimal ρ to maximize the
Service_Profit by solving the quadratic function with
the lineal constraint on ρ. The optimal solution is:

ρ =

⎧
⎪⎨

⎪⎩

min
(

rd−ru
2(1−α)rd

, 1
)

(0 ≤ α < 1) ∧ (ru < rd)

0 ru ≥ rd

1 (a = 1) ∧ (ru < rd)

When α = 1, which means that the stale data does not
have any negative impact on the service quality, the
bandwidth allocation totally depends on the service
rate of update and download requests. Either update
or download request that has a higher service rate can
take the whole bandwidth.

Since the value of ρ depends on the service rate of
update and download requests, which are related to the
workload, it should be able to adjust adaptively with
the workload. When an accident happens, there will be
more update requests. Also, the request workload at
daytime and night should be different. The workload
is examined with a time period τ , which is referred to
as the adaptation window. At the beginning of each τ ,

ρ is re-calculated. To learn about the gradual change
in workload over a period of time by utilizing some
history information, we record the information of two
time windows and get:

ρnew =

⎧
⎪⎪⎨

⎪⎪⎩

min
(

rd,k−1−ru,k−1
2(1−α)rd,k−1

, 1
)

(0≤α<1)∧(ru,k−1 <rd,k−1)

0 ru,k−1 ≥ rd,k−1

1 (a = 1) ∧ (ru,k−1 < rd,k−1)

ρk = (1 − β) ∗ ρk−1 + β ∗ ρnew

where rd,k−1 and ru,k−1 are the service rates of the
previous time period and β is a parameter to measure
the importance of the most recent value in comparison
with the old value.

6.3 Step II: D ∗ S/N and D ∗ S/R

As discussed in Section 5, entries in the download
queue can be sorted based on their priority values cal-
culated by the D ∗ S/N scheme. In the update queue,
we calculate the priority values with another scheme,
called D ∗ S/R, where R is the service rate of the
download requests in the download queue of one data
item. The basic idea of D ∗ S/R is that we use the
service rate of download requests in the download
queue to optimize the scheduling in the update queue.
For example, given two update requests with the same
DS_value, the request that updates hot data should
have a higher service priority since when the data item
is updated, more download requests can get the fresh
data thus improving the system profit. Therefore, we
add the service rate, denoted by R, as a weight factor
to the priority calculation, that is:

DSR_value=(Deadline−CurrentClock)∗DataSize/R

The pruning process in D ∗ S/R can also be optimized
by using the dual-list data structure, similar to that in
D ∗ S/N . The S/R-List is updated at the beginning of
each adaptation time window and the R value of each
entry can be updated similar to ρ, that is

Rk = (1 − β) ∗ Rk−1 + β ∗ Rnew

where Rnew is the number of served download requests
of one data item in the last adaptation window.

6.4 The implementation of the two-step scheduling

According to previous discussions, the scheduling is
based on two separate priority queues. The bandwidth
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Fig. 6 Flow chart of the two-step scheduling

allocation for the update queue and the download
queue depends on the periodically evaluated ρ. At each
decision tick, the scheduler decides what queue (update
or download) can get the service. After that, it serves
a request in the specific queue. If the update queue is
chosen, the D ∗ S/R scheme is used to pick the next
request to serve. If the bandwidth is assigned to the
download queue, the D ∗ S/N scheme is used. If one
queue is empty, its service opportunity will be given
to the other queue immediately. Figure 6 describes the
flow chart of the Two-Step scheduling.

7 Performance evaluation

7.1 Experimental setup

We developed an ns-2 [25] based simulator to evaluate
the proposed scheduling schemes. The experiment is
based on a 400 m*400 m square street scenario. One
RSU server is put at the center of the area. It is also
the intersection of one horizontal road and one vertical
road, where each two-way road has four lanes (Fig. 7).
To simulate the vehicle traffic, we randomly deploy 40

Fig. 7 The simulation scenario layout

vehicles in each lane initially, i.e., a total of 160 vehicles.
All vehicles move towards either end of the road. They
are moving forth and back during the simulation to
mimic the continuous traffic flow in the intersection
area. When one vehicle reaches the end of the road,
which means the vehicle will move out of the RSU area,
its request not serviced will be dropped. Each vehicle is-
sues service requests with a probability p, (0 < p ≤ 1).
A larger p is used to simulate a heavy service workload
and a smaller p is for low workload. When one vehicle
is served or reaching the end of the road, it waits some
time to issue a new request. The inter-arrival time of
each request follows an exponential distribution with a
mean of λ. Its density function is:

f (t) = λe−λt

Similar to [26], the access pattern of each data item
follows Zipf distribution. In the Zipf distribution, the
access probability of the ith data item is represented as
follows:

Pi = 1
iθ

∑n
j=1

1
jθ

where 0 ≤ θ ≤ 1, n is the database size. When θ = 1, it
is the strict Zipf distribution. When θ=0, it becomes
the uniform distribution. The data item size randomly
distributes between smin and smax. Most of the sys-
tem parameters and their default values are listed in
Table 1.
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Table 1 Simulation Setup

Parameter Value

Simulation time 900 s
Transmission rate 5 Mbit/s = 625 Kbyte/s[1]
Vehicle velocity 15 m/s
Wireless coverage 200 m
Data size 50 K ∼ 5 M, average 2.5 M
Vehicle-vehicle space 20 m
Data set size 25
Zipf parameter θ 0.8
Update percentage 10%
Adaptation window 40 s

7.2 The effect of workload

Figure 8 shows the effect of the request arrival rate
to the scheduling performance for the six schemes dis-
cussed in this paper. As shown in Fig. 8a, more requests
have to be dropped as the request arrival rate increases.
Since FCFS, FDF, SDF and D ∗ S serve each request
individually, their service ratios decrease very quickly
with the increasing of workload. D ∗ S/N and the Two-
Step scheme use broadcast to optimize the service.
With this technique, they can achieve much higher
service ratio than the other four schemes because

several download requests for the same data item can
be served simultaneously using a single broadcast. Since
D ∗ S/N scheduling is not fair to update requests, the
data quality cannot be guaranteed. As Fig. 8b shows,
when 80% of vehicles issue requests for service (heavy
workload), only about 20% of all served requests can
get the up-to-date data, which is much lower than other
schemes. Figure 8c compares the total Service_Profit
ratios of different schemes. Here, we set α = 0.5, which
means if one download request is served with stale data,
it only contributes a 50% profit compared with other
requests that are served with fresh data. As can be seen,
the Two-Step scheme has a much higher service profit
ratio than other schemes.

7.3 The effect of access pattern

7.3.1 θ

Figure 9 shows the performance as a function of the
access skew parameter θ . In Zipf distribution, when
θ = 0, the access pattern is uniformly distributed, and
different data items have similar popularity. As θ

increases, the access pattern becomes more skewed.
Since FCFS, FDF, SDF and D ∗ S make the scheduling

Fig. 8 The effect of workload
(a–c)
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Fig. 9 The effect of Zipf
distribution parameter θ (a–c)
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Fig. 10 The effect of
download/update ratio (a–c)
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Fig. 11 The study of the
adaptivity to traffic condition
(a–d)
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decision based on individual request, the change of θ

does not have too much impact on their performance.
For D ∗ S/N and the Two-Step scheme that use broad-
cast optimization, they can benefit from the skewness of
the data access pattern with the increase of θ . When the
data access pattern becomes asymmetrical, popularity
becomes the major performance factor. The popular
data can have a high service priority weight in D ∗ S/N
and Two-Step scheme, which helps improve the service
ratio.

7.3.2 Download/update ratio

Figure 10 compares the performance of different
schemes when the download/upload ratio changes.
When more download requests come, the service ra-
tio of D ∗ S/N scheme and Two-Step scheme in-
creases quickly. This performance improvement comes
from the benefit of download broadcasting. Because
D ∗ S/N prefers service ratio rather than data qual-
ity, as download rate increases, its fresh data ratio
decreases. This is consistent with our previous discus-
sion. The Two-Step scheme can achieve relatively good
performance on both service ratio and data quality.
Therefore, it has the highest profit ratio.

7.4 Adaptivity to traffic condition

To study the adaptivity of the Two-Step scheme. We
divide the experiment period evenly into four inter-
vals. The first interval and the second interval have
low workloads (p = 0.05) while the third and fourth
have heavy workloads (p = 0.8). At the same time, the
download ratios of the first and third interval are low
(10% download) while the second and fourth intervals
have high download ratios (90% download). We create
a sudden change at the start of each interval. This
experiment is to show how the Two-Step scheme can
react to the changes to different scenarios and adjust ρ

accordingly.
As expected, the Two-Step scheme can achieve good

performance in almost all scenarios. Here, note that
in the third time interval with high workload and
low download ratio, the service ratio is relatively low
compared with that in other intervals (Fig. 11a). This
is because in this service scenario, most arrivals are
update requests. They need to be serviced one by
one and hence the advantage of broadcasting cannot
be well utilized. Also, although there may be sudden
performance drops at the start of a switch interval,
the Two-Step scheme adjusts ρ quickly and keeps a
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high performance. Figure 11d shows the value of ρ

over time. ρ is the probability that download requests
have higher priority than upload requests. As shown in
Fig. 11d, ρ is small when the download rate is low, and ρ

adapts quickly when the download rate becomes high.

8 Conclusions

In the paper, we addressed some challenges in vehicle-
roadside data access. We proposed a basic scheduling
scheme called D ∗ S to consider both service dead-
line and data size when making scheduling decisions.
An efficient search space pruning technique is pre-
sented to reduce the computation complexity for mak-
ing scheduling decisions. To make use of the wireless
broadcasting, we proposed a new scheduling scheme
called D ∗ S/N to serve multiple requests with a sin-
gle broadcast. We also identified the effects of upload
requests on data quality, and proposed a Two-Step
scheduling scheme to provide a balance between serv-
ing download and update requests. Simulation results
show that the Two-Step scheduling scheme outper-
forms other scheduling schemes. Further, the Two-Step
scheduling scheme is adaptive to different workload
scenarios.

This paper focuses on service scheduling issues in
vehicle-roadside data access. In this paper, we assume
the all vehicles have the same transmission rates with
RSU as they are connected. However, [1] has shown
that the transmission rate may vary as the distance be-
tween vehicle and RSU changes. Meanwhile, the num-
ber of successfully served requests, i.e. uploading and
fresh downloading, is used to represent the scheduling
performance, which may bring in some fairness issues.
As future work, we will take multi-rate and fairness
issues into consideration on scheduling. Further, other
unique challenges in vehicular networks such as group
mobility and platoon effect [27] will motivate further
research in this area.
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