
Service Selection Algorithms for Composing
Complex Services with Multiple QoS Constraints

Tao Yu and Kwei-Jay Lin

Dept. of Electrical Engineering and Computer Science,
University of California, Irvine, California 92697-2625, USA

Abstract. One of the promises of the service-oriented architecture
(SOA) is that complex services can be composed using individual ser-
vices. Individual services can be selected and integrated either statically
or dynamically based on the service functionalities and performance con-
straints. For many distributed applications, the runtime performance
(e.g. end-to-end delay, cost, reliability and availability) of complex ser-
vices are very important. In our earlier work, we have studied the service
selection problem for complex services with only one QoS constraint. This
paper extends the service selection problem to multiple QoS constraints.
The problem can be modelled in two ways: the combinatorial model and
the graph model. The combinatorial model defines the problem as the
multi-dimension multi-choice 0-1 knapsack problem (MMKP). The graph
model defines the problem as the multi-constraint optimal path (MCOP)
problem. We propose algorithms for both models and study their per-
formances by test cases. We also compare the pros & cons between the
two models.

1 Introduction

Web services present a promising technology to compose complex service ap-
plications from individual (atomic) services. Using Web services, distributed
applications and enterprise business processes can be integrated by individual
service components developed independently. The service components may also
be upgraded or replaced dynamically at run time as system conditions change
or applications’ needs evolve. The enhanced service composability provides a
desirable flexibility and reusability in building distributed enterprise or grid so-
lutions. This is important for enterprise computing since the fast and dynamic
construction of business processes (for supply chain or service network) is essen-
tial for companies in order to adapt their operations to dynamic market condi-
tions. Similar needs exist in global transaction systems, health care and travel
industry.

However, the composition flexibility comes at the price of increased system
engineering complexity. The complexity of Web service composition includes
three main factors: (1) the large number of atomic services that may be available;
(2) the different possibilities of integrating atomic service components into a
complex service; (3) various performance requirements (e.g. end-to-end delay,

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 130–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Service Selection Algorithms for Composing Complex Services 131

service cost, server capability) of a complex service. Web service composition
thus creates a QoS engineering problem since the service selection must select
the best services to compose an efficient complex service.

In recent years, it has become a common practice for service providers to offer
different service levels so as to meet the needs of different customers. Companies
have offered different service qualities (e.g. first class vs. coach class, gold card
member vs. regular member) based on user qualifications or service costs. Simi-
larly, although many atomic services have a similar functionality (e.g. checking
market condition, making reservations, planning meetings, etc.), they differ from
each other by non-functional qualities, such as service time, transaction cost, and
system availability. The QoS of a Web service may be offered by different service
level agreements (SLA) between service providers and clients [5].

In our study, we have proposed a broker-based framework (QCWS) for QoS-
aware Web service composition [16]. In QCWS, Web service composition with
QoS assurance includes two steps: service planning and service selection, which
are are performed by the Composition Manager (CM) and Selection Manager
(SM) in the QoS broker, respectively. In [15], we study the service selection
problem for complex service with one QoS requirement. In this paper, we ex-
tend the system model to handle multiple QoS requirements. We study this
problem using two different models: the combinatorial model, by defining the
problem as a multi-dimension multi-choice 0-1 knapsack problem (MMKP) and
the graph model, by defining the problem as a multi-constraint optimal path prob-
lem (MCOP). The objective of service selection is to maximize a user-defined
utility function under the overall QoS constraints. The utility function definition
may include an extended set of system parameters to achieve some user specific
objective. We propose several service selection algorithms and report simulation
results to compare their performances.

The rest of this paper is organized as follows. Section 2 reviews some related
work. Section 3 presents the system model and assumptions for the Web ser-
vice composition with QoS assurance in our study. Section 4 discusses various
algorithms in both combinatorial and graph approaches, including heuristic and
optimal ones. Section 5 shows the performance evaluation and comparison of
different algorithms. The paper is concluded in Section 6.

2 Related Work

Web service composition has received much interest for supporting enterprise
application integration. Many industry standards have been developed, such as
BPEL4WS (Business Process Execution Language for Web Services) [4] and
BPML (Business Process Modelling Language) [2]. Many projects have studied
the Web service composition problem. The SWORD project [13] gives a simple
and efficient mechanism for offline Web service composition using a rule-based
expert system. SWORD is more focused on the service interoperability and no
QoS issue has been addressed. The eFlow project [3] provides a dynamic and
adaptive service composition mechanism for e-business process management. In
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eFlow, each service node contains a search recipe, which defines the service
selection rule to select a specific service for this node. The selection rule is based
on local criteria and does not address the overall QoS assurance problem of the
business process.

QoS guarantee for Web services is one of the main concerns of the SLA frame-
work [5]. The framework proposes differentiated levels of Web services using au-
tomated management and service level agreements (SLAs). The service levels
are differentiated based on many variables such as responsiveness, availability
and performance. An initial version of the framework was released as part of
the IBM Emerging Technologies Toolkit (ETTK) version 1.0 in April 2003. Al-
though it included several SLA monitoring services to ensure a maximum level
of objectivity, no end-to-end QoS management capability was implemented.

There are projects studying QoS-empowered service selection, such as [17]
and [1]. In [17], authors propose a quality driven approach to select compo-
nent services during execution of a composite service. They consider multiple
QoS criteria such as price, duration, reliability and take into account of global
constraints. [1] has studied a similar approach. Both of them use the integer
linear programming method to solve the service selection problem, which is too
complex for run time decisions.

3 System Model and Assumptions

We assume that the same service interface definition is used by all atomic service
candidates for a specific service component. So we are not concerned about the
compatibility issue among services and focus on the QoS service selection prob-
lem. In this study, we define the concept of service class. A service class (denoted
as S) is a collection of atomic Web services with a common functionality but
different non-functional properties (e.g. time, quality). A class interface param-
eter set (Sin, Sout) is defined for each service class. We also assume each atomic
Web service (denoted as s) in the service class can provide a service according
to the class interface.

Each atomic service may provide L different service levels; each level is associ-
ated with a QoS vector q(s, l) = [q1(s, l), .., qn(s, l)] (1 ≤ l ≤ L) which contains n
application-level QoS parameters such as service time, cost, reliability, availabil-
ity [5]. Each service level is a candidate in the service class for service selection.
Each service level also has an associated utility function F . The utility function
is defined by a set of system parameters including system load, cost and/or other
QoS attributes. The system load can be considered by a benefit function ([15]).
Definition 1 shows the utility function definition. Users can set the number of
QoS values to be considered as well as their weights according to their require-
ments. In our study each user has m QoS attribute constraints in their QoS
requirements: Qc = [Q1, .., Qm] (1 ≤ m ≤ n).

Definition 1 (Utility Function). Suppose there are α QoS values to be max-
imized and β QoS values to be minimized. The utility function for candidate k
in a service class is defined as:
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Fig. 1. QoS Web service composition model

F(k) =
α∑

i=1

wi ∗ (
qai(k) − µai

σai
) +

β∑

j=1

wj ∗ (1 − qbj(k) − µbj

σbj
)

where w is the weight for each QoS parameter set by a user (0 < wi, wj < 1,∑α
i=1 wi +

∑β
j=1 wj = 1, α + β = m). µ and σ are the average value & the

standard deviation of the QoS attribute for all candidates in the service class.

In our study, the QoS Web service composition is conducted in two steps: ser-
vice planning and service selection, as shown in Figure 1. For each user request,
the Composition Manager in the QoS broker first matches the request with one
or more process plan(s). Each of them is an abstract process that defines a flow
of component functions (F , each can be accomplished by a service class) as well
as their relationships. All potential process plans together constitute a function
graph. The Selection Manager then maps the function graph into a service can-
didate graph and constructs an executable complex service. The mapping from
a user request to process plans (step 1 ) only considers the functional require-
ments of the user request and does not handle the QoS requirement. It performs
the parametric consistency checking of service classes in order to integrate them
with each other. This problem has been addressed by several research work such
as [13, 6]. The mapping from a function graph to an executable complex service
(step 2) is decided by the distributed performance of services and a user’s QoS
requirements. Step 2 is the focus of this paper.

The QoS attributes of the complex service are decided by the QoS attributes of
its component services as well as their integration relationships, such as sequen-
tial, parallel, conditional or loop. In this paper, we only consider the sequential
composition model in which the QoS attribute and the utility of the complex
service is the sum of its component services’ QoS attributes and utilities at the
selected service level. If a QoS attribute is the product of its component QoS,
such as reliability and availability, we can apply a logarithm operation to con-
vert it into a summation relationship. For QoS attribute with convex/concave
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characteristic, it may be processed by a filter operation and is not considered in
this paper. Other composition models, such as parallel, conditional or loop, may
be reduced or converted to the sequential model.

4 Service Selection Algorithms

In this section, we present the service selection algorithms used by the QoS
broker for service composition with two or more QoS constraints. There are two
models to solve the problem: the combinatorial model and the graph model.

4.1 The Combinatorial Algorithm

The Multi-choice, Multi-dimension 0-1 Knapsack Problem (MMKP) [12] is de-
fined as follows: Suppose there are K groups, each has li (1 ≤ i ≤ K) items,
where each item has a profit pij and requires resource rij = (rij1, ..rijm). The
total amount of available resources in the knapsack are R = (R1, .., Rm). The
objective of MMKP is to select exactly one item from each group to be included
in the knapsack within the resource constraint while maximizing the total profit.

For a complex service that contains N service classes (S1, S2, ..., SN ) in a
process plan and with m QoS requirements, the service selection problem can be
mapped to an MMKP as follows: (1) each service class can be viewed as a group
in MMKP; (2) every candidate in a service class represents an item in a group;
(3) the QoS attributes of each candidate are equivalent to the resources needed
by the item; (4) the utility a candidate produces is mapped to the profit of the
item; (5) a user’s QoS requirements are considered as the available resources
of the knapsack. The objective of service selection is to select one candidate
from each service class to construct a complex service that meets a user’s QoS
requirements yet maximize the total utility. The problem is formulated as:

Max

N∑

i=1

∑

j∈Si

Fijxij

Subject to

N∑

i=1

∑

j∈Si

qα
ijxij ≤ Qα (α = 1, .., m) (1)

∑
xij = 1

xij ∈ {0, 1} i = 1, ..., N, j ∈ Si

The MMKP problem is NP-hard [12]. [7] proposes a branch and bound algo-
rithm (BBLP) to find the optimal solution for MMKP. The branch and bound
method uses a search tree to find a solution. A node in the search-tree represents
a solution state where some classes are fixed (an item has been chosen in these
classes) and some others are free (no item has been selected). A node that has
free classes may be expanded to generate new nodes. BBLP has a very high
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complexity and is not suitable for large size problems. The detailed description
about the BBLP algorithm can be found in [7].

A heuristic algorithm (HEU) for MMKP has been presented in [8]. The idea
of the algorithm is to find a feasible solution at first, then iteratively improve the
solution by replacing items with a low utility with items with higher utilities in
each group while keeping the solution feasible. If no such item can be found, it
tries to replace items with a higher utility in a group (which makes the solution
infeasible) followed by replacing items in other groups with a lower utility and
less resource requirements to keep the solution feasible. This method of upgrades
followed by downgrades may increase the total utility of the solution.

We modify HEU by always selecting a feasible solution (if one exists) at first
without considering those infeasible ones. (In HEU, an infeasible solution may
be picked at first and iterations are needed to make it feasible.) The modification
can shorten the algorithm execution time. The modified algorithm WE HEU is
presented in Algorithm 1. The algorithm is used to select services for one process
plan. If a user request can be matched with more than one process plans, we need
to apply the algorithm to every plan and produce several executable complex
services. Among them, the one with the highest utility is the final solution.

Algorithm 1. WS HEU

Step 1: Select item ρi from each group i (i = 1, 2, .., N), such that ρi =
minj{maxα{ qα

ij

Qα }}; if ∀α,
∑N

i=1 qα
iρi

≤ Qα, use it as the initial feasible solu-
tion and proceed to step 2 ; If no feasible solution exists, stop;

Step 2: Iteratively upgrade the current solution with another solution;
(a) For each item in the solution, find an item with a higher utility from the same
group under resource constraint with the highest �aij = (qiρi − qij) × C/ | C |,
where q = [q1, .., qm], C =

∑N
i=1 qiρi . C is the current resource usage;

(b) If no such item is found in group i, then select the item under resource
constraint that maximizes the value gain per unit of extra aggregate resource:
�pij = (Fiρi − Fij)/ � aij ;
(c) If no feasible upgrade is possible, go to Step 3 ;

Step 3: Upgrade the solution by using one upgrade followed by downgrades;

Step 3.1: Find a higher-utility item in any group with the highest value of
�p′ij = (Fiρi − Fij)/ � t′ij and �t′ij = (qiρi − qij)/(Q − C). Qc = [Q1, .., Qm]
indicates user’s QoS requirements;
Step 3.2: Find a lower-utility item in any group with the highest value of
�p

′′

ij = (Fiρi −Fij)/�t′′ij and �t′′ij = (qiρi −qij)/(C−Qc) while after downgrade,
the total utility is still higher than achieved in Step 2 ;
Step 3.3: If an item ρ

′

i is found in Step 3.2 and ρ
′

i satisfies the resource con-
straint, use ρ

′

i to replace ρ and go back to Step 2. If ρ
′

i is found in Step 3.2 but
violates the resource constraint, go back to Step 3.2 for another downgrade. If
no item can be found in Step 3.2, the algorithm stops.
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To include the network performance factor in the model, we could add the
network QoS attribute (such as transmission delay) to the sender service. That
is, if service a ∈ Si → b ∈ Sj (b = 1, 2, ...l), the corresponding network QoS
attribute can be set to q = 1

l

∑l
b=1 qα(a, b) (α = 1, ..m), and qα

a = qα
a + qα.

The utility of every candidate in a service class can be computed according to
Definition 1 after the network attributes are included.

4.2 The Graph Algorithm

Algorithms designed for the graph model can process more than one process
plans at a time to find the best solution, although they have a higher complex-
ity than the combinatorial algorithms. We first generate a candidate graph as
follows: (1) Each candidate item in the service class is represented by a node in
the graph, with a benefit value and several QoS attributes; (2) If service si is
connected to service sj , all service levels in si are connected to all service levels
in sj ; (3) Set the network QoS attributes of every links; (4) Add a virtual source
node vs and sink node vd. vs is connected to all nodes without incoming link
and vd is connected to all nodes without outgoing links. The QoS attributes of
these links are set to zero; (5) Add QoS attributes of the node to its incoming
link and compute the utility of every link according to Def. 1.

After these steps, we have a Directed Acyclic Graph (DAG), in which every
edge has a set of QoS attributes and a utility value. A service candidate graph
is shown in Figure 2. The selection problem is to find a path that produces
the highest utility from source vs to sink vd subject to the multiple constraints
Qc = [Q1, .., Qm]. This is the well-known multi-constraint optimal path problem
in the graph theory. Based on the CSP algorithm designed for one QoS constraint
[15], we propose the MCSP algorithm to solve the MCOP problem. Same as CSP,
during the execution of MCSP, each node needs to keep several paths from the
source to it.

MCSP is shown in Algorithms 2 and 3. One potential problem for MCSP is
that, for every intermediate node, the number of paths a node needs to keep may
be huge if none of them dominates each other. That may cause the algorithm to
run very slow. In order to speed up the algorithm and reduce the space needed,
we modify the MCSP algorithm by keeping only K paths on each node. This

v1

v2

v3

v4

v5

v6

v7

v11

v8

v9

S1
S2 S3 S4

v10 v12 S6
S5

vs vd

nFq ,..1, =>< αα

Fig. 2. Service Candidate Graph



Service Selection Algorithms for Composing Complex Services 137

Algorithm 2. MCSP
MCSP (G = (V, E), vs, vd, Qc)
// every node ν keeps L(ν)paths p(µ, q, F) from source to it that satisfy con-
straints requirements
1 Topologically sort nodes in G;
2 for each node µ, in topological order
3 for each ν ∈ adj[µ]
4 if (µ==s) then
5 qα:=qα(µ, ν) ∀α = 1, 2, ..., m
6 F := F(µ, ν)
7 MCSP RELAX(µ,ν,q,F)
8 else for each p ∈ L(µ)
9 qα=qα(p)+qα(µ, ν) ∀α = 1, 2, ..., m
10 F := F(p) + F(µ, ν)
11 MCSP RELAX(µ,ν,q,F)

12 p∗ ←∃ p∗ ∈ L(vd), ∀p ∈ L(vd), F(p∗)≥F(p)

Algorithm 3. MCSP RELAX
MCSP RELAX (µ, ν, q, F)

1 if (∃α, qα > Qα) then return;
2 for each p ∈ L(ν)
3 if F(p) > F and ∀α qα(p) ≤ qαthen return
4 if F(p) < F and ∀α qα ≤ qα(p) then
5 remove p from L(ν)
6 Add (µ, q, F) to L(ν)

heuristic algorithm is called MCSP-K. The K-path selection criteria are based
on the nonlinear cost function concept that is used to combine the multiple
constraints into one [9]. The cost function for any path p can be defined as:

gλ(p) � (
q1(p)
Q1 )λ + (

q2(p)
Q2 )λ + ... + (

qm(p)
Qm

)λ

where λ ≥ 1. qi(p) is the aggregated ith QoS attribute for path p . As λ → ∞,
g∗(p) � limλ→∞ gλ(p) is equivalent to the cost function

ξ(p) � max{( q1(p)
Q1 ), ( q2(p)

Q2 ), ..., ( qm(p)
Qm )}. The paths with K minimum gλ/ξ

values will be kept at each intermediate node. This ensures that MCSP-K will
never prune out a feasible path if there exists one.

Compared to MCSP, the only difference of MCSP-K lies on the relax function,
in which it needs to check the number of paths it has currently and remove the
path with the maximum gλ/ξ if the maximum number K is reached. The relax
function for MCSP-K is shown in Algorithm 4. MCSP-K drastically reduces the
space cost and speeds up the MCSP algorithm while keeps the result close to
the optimal. The simulation results and comparison of the two algorithms are
shown in the next section.
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Algorithm 4. MCSP-K RELAX
MCSP-K RELAX (µ, ν, q, F , λ)

1 if (∃α, qα > Qα) then return;
2 for each p ∈ L(ν)
3 if F(p) > F and ∀α qα(p) ≤ qαthen return
4 if F(p) < F and ∀α qα ≤ qα(p) then
5 remove p from L(ν)
6 Add (µ, q, F) to L(ν)
7 if size(L(ν)) > K then
8 if λ == ∞ then
9 remove p′ ∈ L(ν), ∀p ∈ L(ν), ξ(p′) ≥ ξ(p)
10 else
11 remove p′ ∈ L(ν), ∀p ∈ L(ν), gλ(p′) ≥ gλ(p)

5 Performance Study

For systems with only one process plan connected in a sequential flow model,
which contains N service classes and each class has l candidates, the worst-
case time complexity of BBLP using the simplex method [11] is an exponential
function 2Nl. Using WS HEU, suppose the number of QoS requirements is m,
the worst case time complexity is O(N2(l − 1)2m) [8]. The worst case time
complexity for MCSP is O(Nl2 + l2N−1) = O(l2N−1) and the maximum space
needed in vd to keep all feasible paths is O(lN ). For MCSP-K, the maximum time
complexity is O(Nl2 + KlN−1) = O(KlN−1) and the maximum space needed
in vd is O(lK). Although the worst case complexity of MCSP and MCSP-K is
not a polynomial function, they perform very well in practice. In this section,
we study their performance by simulations.

5.1 Evaluation Methodology

We have compared the performance of BBLP, WS HEU, MCSP and MCSP-
K algorithms by extensive simulations. First, we use the degree-based Internet
topology generator Inet 3.0 [14] to generate a power-law random graph topology
with 4000 nodes to represent the Internet topology. Then we randomly select
25 ∼2500 (depends on different test cases) nodes as the service candidate nodes
and 2 other nodes as source and sink. In our study, we assume an equal-degree
random graph topology for the service candidate graph. For simplicity, we only
consider one process plan with the sequential composition model. The number
of service class and candidates in each service class involved in the process plan
range from 5 to 50.

For our evaluation we also need to generate the service and network QoS
attributes and utility. Suppose all QoS attributes have the summation properties.
Five QoS attributes are considered for each service/link, each is associated with a
randomly generated values: qk(µ,ν) (k = 1, 2, 3, 4, 5) with a uniform distribution
between [1,100]. We also generate the utility F(µ, ν) of each link as a random
value with a uniform distribution between [1,200]. For QoS attributes of each
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service candidate, a base value is first generated with a uniform distribution
between [1,100]. Then an impact factor (ε) is multiplied to each service. We
consider two different situations with different network impact factors: (1) large:
network QoS value is comparable to services and varies; (2) small: network QoS
value is less than 1

10 of services. The ε is set to 2 and 200 for the two cases
respectively. The utility of each service is also generated as random value with
a uniform distribution between [1, 200].

For the combinatorial model, we compute the average value of QoS attributes
and utility for all outgoing links of a service and add to that service. For services
in the first class, it also needs to add the values of link from the source to it.
For the graph model, we add the QoS attributes and the utility of the service
candidate to every incoming link of it. The number of user’s QoS requirements
ranges from 2 to 5.

Our study includes two parts: (1) Optimal and heuristic algorithms compar-
ison; (2) The comparison of combinatorial and graph models. The metrics we
measure for Part 1 include run time, approximation ratio (heuristic utility vs.
the optimal value), memory usage (for the graph approach). The metric we
use for Part 2 is the provisioning success rate, running time and utility. We
compare two heuristic algorithms: WS HEU and MCSP-K. A composed service
provisioning is said to be successful if the generated result satisfies a user’s QoS
requirements. From the description of MCSP-K, we know its success rate is al-
ways 1 since it never prunes out the optimal path in all intermediate steps. But
for MMKP, since the network QoS attributes are only estimated, the generated
results may not meet a user’s requirements.

In our study, for each test case (representing different numbers of service
classes and service candidates combinations), we randomly generate 10 instances
and run 10 times for each instance. We then use the average value of the 100
rounds as the result for comparison.

5.2 Result Analysis

For performance evaluation about the MCSP-K and MCSP algorithms, 25 test
cases are used in the simulation (Table 1). The cases are divided into 5 groups;
each group has the same number of candidates. For each group, we test different
numbers of service classes (from 10 to 50). There are two parameters: λ is used
to compute the non-linear cost for MCSP-K and k is the number of paths each
intermediate node keeps. We conducted tests on λ = 5, 10, 15, 20, 25, 30, ∞ and
k = 5, 10, 15, 20. We find that λ = ∞ always gets a better performance (in terms
of utility) than other values. So here we only report the results for λ = ∞ under
different k values.

Figures 3 and 4 show the running time and memory usage comparison of
MCSP-K and MCSP under 2 and 5 QoS constraints, respectively. For both
k values, MCSP-K can achieve a near optimal performance (producing utility
> 90% of MCSP). For the cases of 2 QoS constraints, MCSP-K is not attractive
since not much space can be saved and the running time is even longer than
MCSP in some cases (k = 10, 15, 20). The extra time is used to compute the
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Table 1. Test Cases

Test Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617181920 21 22 23 24 25
Test Group 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
No. Candidates 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 40 40 40 40 40 50 50 50 50 50
No. Service Class 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
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non-linear cost and decide the paths to be pruned out. As the numbers of service
classes and candidates in each class increase, MCSP-K outperforms MCSP. The
advantage of MCSP-K is more obvious in the cases of 5 constraints. Both running
time and space needed are significantly lower while the performance remains
nearly optimal (> 95% for k = 10, 15, 20). So if the process plan contains a large
number of service classes or there are many candidates in each service class, using
the heuristic algorithm MCSP-K can get a close to optimal solution quickly and
avoid the memory growth problem. λ = ∞ and k = 10 or 15 are the best setting
for MCSP-K.

Figure 5 shows the running time and utility comparison between BBLP and
WS HEU algorithms when the number of QoS constraints is from 2 to 5, re-
spectively. The number of service classes ranges from 5 to 50 and the number of
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Fig. 6. WS HEU vs. MCSP-K (K = 10, λ = ∞)

candidates in each service class is 5. We can see that the performance of WS HEU
is near optimal (> 98.5%) while the running time is dramatically reduced.

The heuristic algorithms in both models perform very well. To see which one
should be used for service composition, we test the provisioning success rate for
WS HEU under 2 and 5 constraints. (The provisioning success rate for MCSP-K
is 1). When the network factor is comparable to the service, the success rate of
WS HEU is very low (0.32 for 2 constraints and 0.04 for 5 constraints). If the
network impact factor is small, the success rate is high (0.96 in both cases). The
reason for the low success rate lies on that MMKP does a combinatorial selection
without the flow concept. Figure 6 shows the run time and utility comparison
of WS HEU and MCSP-K with k = 10 and λ = ∞ in the situation that the
network impact factor is small. It shows that WS HEU outperforms MCSP-K.
So the combinatorial approach should be used in the situation when the network
impact is small. It can also be used in the situation where the network condition
for all services is uniform, such as all are on the same LAN.

From our experiments, we can see that different algorithms should be used
under different system conditions. Table 2 presents a comparison of the four
algorithms presented in this paper and suggests when they should be used.



142 T. Yu and K.-J. Lin

Table 2. Comparison of Algorithms

BBLP WS HEU MCSP MCSP-K
Running Time very slow fast slow fast
Memory Usage low low high low
Optimality optimal near-optimal optimal near-optimal
Network Cost inaccurate inaccurate accurate accurate
Algorithm
Usage

very small size
problem, small
or uniform
network factor

large size prob-
lem, small or
uniform network
factor

small size
problem, net-
work factor
is large

large size
problem, net-
work factor
is large

6 Conclusions

In this paper, we study the problem of complex service composition with multiple
QoS constraints. Two problem models are proposed: the combinatorial model,
by defining the problem as an MMKP, and the graph model, by defining the
problem as an MCOP. The utility function may be defined by an extended set
of system parameters, including static server information (service level), client
QoS requirement (QoS constraint), dynamic server capacity (service benefit),
and network factor. We have presented various algorithms, both optimal and
heuristic, to compose and select services under multiple QoS constraints as well
as to achieve the maximum utility. We have also compared the pros & cons be-
tween the two models and suggested their usage context. We believe the proposed
models and algorithms provide a useful engineering solution to the end-to-end
QoS problem for building distributed complex services.
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