
Tao Yu Æ Kwei-Jay Lin

Service selection algorithms for Web services
with end-to-end QoS constraints

� Springer-Verlag 2005

Abstract Web services are new forms of Internet software that can be uni-
versally deployed and invoked using standard protocols. Services from dif-
ferent providers can be integrated into a composite service regardless of their
locations, platforms, and/or execution speeds to implement complex business
processes and transactions. In this paper, we study the end-to-end QoS issues
of composite services by utilizing a QoS broker that is responsible for
selecting and coordinating the individual service component. We design the
service selection algorithms used by QoS brokers to construct the optimal
composite service. The objective of the algorithms is to maximize the user-
defined utility function value while meeting the end-to-end delay constraint.
We propose two solution approaches to the service selection problem: the
combinatorial approach, by modeling the problem as the Multiple Choice
Knapsack Problem (MCKP), and the graph approach, by modeling the
problem as the constrained shortest path problem in the graph theory. We
study efficient solutions for each approach.

Key words Web service Æ QoS broker Æ Service compostion Æ Service
selection Æ End-to-end constraint

1 Introduction

The Web services framework has evolved as the software foundation for next
generation enterprise and Web-based systems. By adopting standard-based
protocols SOAP (Gudgin et al. 2003), WSDL (Christensen et al. 2001) and

This research was supported in part by NSF CCR-9901697.

T. Yu Æ K.-J. Lin (&)
Dept. of Electrical Engineering and Computer Science, University of California, Irvine,
Irvine, California 92697-2625, USA. E-mail: Klin@uci.edu

ISeB (2005) 3: 103–126
DOI 10.1007/s10257-005-0052-z

ORIGINAL ARTICLE

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [479.055 728.504] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

UDDI (OASIS Universal), service components from different service pro-
viders can be conveniently integrated into a composite service regardless of
their locations, platforms and/or execution speeds. Instances of Web services
may now interact with each other, fulfilling individual requests that carry out
parts of complex transactions or workflows. As more composite Web
services are deployed, many of them may share common services such as
real-time data services, search engines, supply chains, etc. With growing
demands, many service providers have started to offer different QoS service
levels (SLA’s) so as to meet the needs of different user groups, by offering
different service qualities based on user needs or service cost. One example of
such projects is the Oceano project at IBM (The Oceano and IBM).

For composite services, one of the QoS issues is to define the service
integration model and identify the optimal service selection to meet a user’s
QoS requirement. Due to the dynamic nature of Web services, there are
several basic system properties that must be considered:

– The set of candidate services that are capable of providing a given func-
tionality may be large and constantly changing;

– The quality of a composite service is measured by its end-to-end quality,
rather than any individual service component only. Moreover, the end-to
-end quality is decided collectively by all individual service components;

– For a composite Web service, there may be many possible ways to fulfill a
business process;

– The services that make up a business process may continue to evolve. A
business process also needs to accommodate to the system variations on a
global level, such as service failure and upgrade;

Due to these considerations, a rigorous mechanism is needed to ensure
the end-to-end quality of a composite Web service. Our research on the QoS
of composite services has proposed the QoS-Capable Web Service archi-
tecture, QCWS (Chen et al. 2003), that implements a QoS broker between
Web service clients and providers. In QCWS, every service provider is as-
sumed to offer many service levels for a service functionality. A QoS broker
collects the QoS information of candidate service providers (servers), makes
service (and service level) selection decisions for clients, and then checks with
servers to receive QoS service commitments. Although a broker is modeled
as a separate entity from clients and servers, a QoS broker may be practically
implemented as part of a client, part of a server, or an independent Web
service. The functionalities of a broker may vary slightly depending on the
setting of the broker.

In this paper, we study the service selection algorithms used by QoS
brokers. A broker receives service requests from clients and identifies services
that may meet the functional and QoS needs of those requests. The service
selection algorithm considers service cost, service response time, server load,
and network delay to make the best selection decision, under the end-to-end
delay constraint. We have studied several selection algorithms and compared
their performance using randomly generated test cases. Our study shows that
the problem can be efficiently solved. The proposed algorithms may be
adopted by QoS brokers to make dynamic on-line decisions.

104 T. Yu, K-J. Lin

The contribution of this research is as follows:

1. We define the QoS broker service mechanism for managing end-to-end
QoS for composite Web services. The QoS broker service can work with
existing Web service standards, such as the process service in the BPEL
process composition, the coordinator service in WS-Transaction, and
the registry service for UDDI registries. The QoS broker is designed to
make service selection for client requests, based on their QoS constraints
and requirements.

2. The objective function (called utilities in this paper) and constraint used
by the proposed algorithms are based on a comprehensive set of system
parameters, including static server information (service level), client QoS
requirement (QoS constraint), dynamic server capacity (service benefit),
and network communication delay. They could also consider service
reliability, availability, etc. Moreover, the definition of a composite
service includes individual services that may be structured as a sequence
or a DAG (Directed Acrylic Graph). Each individual service may itself
be a composite service or a single service.

3. We study the end-to-end QoS service selection using two different
approaches, the combinatorial approach and the graph approach, and
compare the pros and cons of the two approaches.

4. We present several service selection algorithms in both combinatorial
and graph approaches. The most suitable algorithm depends on the
structure of the composite service, the number of candidates for each
service group, and the number of constraint definitions. These algo-
rithms can be used by a QoS broker to select the most suitable services
and service levels for clients and to construct optimal business processes.

The rest of this paper is organized as follows. Section 2 presents some
related work. Section 3 provides the QoS models for Web service composi-
tion. Section 4 presents the system model defined for service selection
algorithms. Several algorithms in both combinatorial and graph approaches
for the service selection problem are shown in Sect. 5, with their performance
compared. The paper is concluded in Sect. 6.

2 Related work

The end-to-end Web services selection is an important part of the Web
service composition problem. Many have worked on this topic. Industrial
standard specifications have been proposed. One of the recent proposals is
BPEL4WS (Business Process Execution Language for Web services) (Cur-
bera et al. 2003) which combines Microsoft’s XLANG (Thatte 2001) and
IBM’s WSFL (Web service Flow Language) (Leymann 2001). It is posi-
tioned to be the standard for Web service composition. It provides a lan-
guage for the formal specification of business processes and business
interaction protocols. BPEL4WS can model the behavior of both executable
and abstract processes. Other proposals include WSCI (Web service Cho-
reography Interface) (Arkin et al. 2002), an XML-based interface description

Service selection algorithms for Web services with end-to-end QoS constraints 105

language that describes the flow of messages exchanged by Web services in
choreographed interactions, and BPML (Business Process Modeling Lan-
guage) (BPMI org 2002), which is intended for expressing abstract and
executable processes that address all aspects of enterprise business processes.

In contrast to these industrial standards, researchers in academics are
developing an ontology of services, called DAML-S (DARPA Agent
Markup Language) (Ankolekar et al. 2001). DAML-S supplies Web service
providers with a core set of markup language constructs for describing the
properties and capabilities of their Web services in an unambiguous, com-
puter-interpretable form. DAML-S markup of Web services will enable
automated Web service discovery, invocation, inter-operation, composition
and execution monitoring.

Many projects have studied Web service composition. The SWORD
project (Ponnekanti and Fox 2002) provides a simple and efficient mecha-
nism for Web service composition. It uses a rule-based expert system to
check whether a composite service can be realized by existing services and to
generate the execution plan. SWORD performs the planning at the com-
position time, not at run time. The advantage of offline planning is pre-
dictability and efficiency since no overhead is incurred at run time. However,
the dynamic nature of Web services may cause an offline plan useless or
inefficient since a pre-selected Web service may no longer be available or
some new powerful services may become available.

In VanderMeer et al. (2003), authors describe a framework, called
FUSION, for dynamic Web service composition and automatic execution.
They stress on automatically generating an optimal execution plan from the
abstract requirements that a user may specify, executing according to the
plan, verifying the result against a user’s stated satisfaction criteria and,
finally, initiating the appropriate recovery procedures in case of satisfaction
failure. The satisfaction criteria are defined by users, which are used to
measure whether the actual result is acceptable or not.

Neither SWORD nor FUSION addresses QoS issues such as service
latency, availability, reliability, that are critical to dynamic Web service
composition and determine the performance of the whole system.

eFlow system (Casati et al. 2000) supports specification, enactment, and
management of composite e-services, which are modeled as processes that
are enacted by a service process engine. In eFlow, each node has service
selection rules that can be based on some value-added information (Such as
QoS). When an eFlow engine tries to execute an activity it calls a service
broker that executes the service selection rule and returns a list of choices.
Service selection rules are defined using a service broker-specific language,
which include arbitrary service selection policies.

Patel, Supekar and Lee (Patel et al. 2003) propose a QoS-oriented
framework WebQ for adaptive management of Web service based work-
flows. WebQ conducts the adaptive selection process and simultaneously
provides binding and execution of Web services for the underlying workflow.
Their proposed QoS selection criterion only considers service load and
makes only local decisions.

All of the above systems have a centralized operator/engine/coordinator
to control the execution of constructed composite services. That is, their

106 T. Yu, K-J. Lin

executions are all centralized. The centralized execution suffers some prob-
lem such as bottleneck and scalability. There are also systems in which the
constructed composite services are executed in a decentralized/peer-to-peer
manner. Such as SELF-SERV platform presented in Sheng et al. (2002).
SELF-SERV relies on a declarative language for composing services based
on state-charts. Web services are grouped into different service communities
according to the functionalities they provided. They are declaratively com-
posed, and the resulting composite services are executed in a peer-to-peer
and dynamic environment among service communities. There is no cen-
tralized coordinator to control the service execution, so it does not suffer of
the scalability and availability problem. Same as SWORD and FUSION
systems, no QoS issues have been addressed in SELF-SERV.

The QoS problem in Web service composition is an end-to-end QoS
problem. None of the previously mentioned projects consider the end-to-end
QoS constraint/requirements. Zeng et al. (2003) gives a quality driven
approach to select component services during execution of a composite
service. They consider multiple QoS criteria such as price, duration, reli-
ability and take into account of global constraints. The linear programming
method is used to solve the service selection problem, which is usually too
complex for run-time decisions.

Shankar et al. (1999) give an end-to-end QoS model and management
architecture for complex distributed real-time system. In their model, a
system contains several dependent components (tasks), the outputs of some
tasks are the inputs of others and the output quality of every task depend on
the input quality. QoS requirements are end-to-end in the user’s point of
view. They focus on how to do the service establishment in this architecture
and give the QoS negotiation and establishment protocol.

3 QoS models for Web service composition

Future business systems require a seamless integration of many business
processes, business applications, business intelligence, and Web services over
the Internet. Delivering quality services to meet user needs is a significant
and critical challenge because of the dynamic and unpredictable nature of
business applications and Internet traffic. Business applications with very
different characteristics and requirements compete for resources used to
provide Web services. Without a careful management of service quality,
critical business applications may suffer detrimental performance degrada-
tion, and result in functional failures and/or financial losses.

3.1 Web service QoS attributes

The area of QoS management covers a wide range of issues to match the
needs of service requesters with those of the service providers. QoS has been
a major area of interest in communication networks, real-time computing,

Service selection algorithms for Web services with end-to-end QoS constraints 107

and multimedia systems. For Web services, QoS guarantee and enhancement
have started to receive great attention.

In our current study, we consider four quality attributes as part of the
Web service parameters (shown in Table 1). These QoS attributes can also be
applied to evaluate QoS of the constructed business process. Since our goal is
to build automated brokers for Web services, the QoS attributes that we
consider must be intuitive to understand and easy to measure. These attri-
bute data can be collected automatically without any user intervention.

Users may have constraints on one or more QoS attributes in their QoS
requirements. In this paper, we only consider the case with only one QoS
constraint, such as response time. The study for composition flows with two
or more QoS constraints will be pursued in our future work.

3.2 Composition flow models

The QoS attributes of a business process are decided by the QoS attributes of
individual services and their composition relationships. There are different
ways that individual services can be integrated to form a business process.
The four basic relationships are: (1) sequential; (2) parallel; (3) conditional;
(4) loop. Figure 1 shows these four basic models. In this paper, we only
consider the sequential composition model, which is the fundamental one.
All the other models can be converted into sequential model. We can show
how to do the conversions in our future report.

As shown in Table 1, the service response time includes service time and
transmission time. In a composite service, the transmission time is the time
needed to send a user’s request to the first server, to pass the result of one server
to the next server in the sequential model, and to return results to the user from
the last server in the server chain. The transmission time estimation is different
in combinatorial approach and graph approach. Figure 1(1) shows a business
process that is composed by individual services sequentially. Each individual
service and the business process have QoS attributes of response time, cost,
availability and reliability. Table 2 shows the aggregation functions for com-
pute the QoS attributes of the business process shown in Figure 1(1).

1. Response time: The response time of the business process s is the sum
each individual service si’s response time at the chosen service level.

2. Cost: The cost of the business process s is the sum of each individual
service si’s cost at the chosen service level.

3. Reliability: The reliability of the business process s is the product of each
individual service si’s reliability at the selected service level. It is a non
-linear function. In order to make all aggregation functions to be linear,
we can transform it using an logarithmic function. Suppose the reli-
ability of the composite service is Rs ¼

Qn
i¼1 Rsi : By applying logarithmic

function log, we obtain logðRsÞ ¼ logð
Qn

i¼1 RsiÞ ¼
Pn

i¼1 logðRsiÞ: Let
Rs

¢=log(Rs), R0si
¼ logðRsiÞ; we have a linear function R0s ¼

Pn
i¼1 R0si

4. Availability: The availability of the business process s is the product of
each individual service si’s availability at the selected service level. Same
as the reliability attribute, we can use an logarithmic function to convert

108 T. Yu, K-J. Lin

T
a
b
le

1
Q
o
S
P
a
ra
m
et
er
s

Q
o
S
p
a
ra
m
et
er
s

D
es
cr
ip
ti
o
n

V
a
lu
e

R
es
p
o
n
se

ti
m
e
(T

)
T
h
e
ti
m
e
in
te
rv
a
l
b
et
w
ee
n
w
h
en

a
u
se
r
re
q
u
es
ts

th
e
se
rv
ic
e
a
n
d

w
h
en

th
e
u
se
r
re
ce
iv
es

th
e
re
sp
o
n
se
.
It

in
cl
u
d
es

se
rv
ic
e

ti
m
e
a
n
d
tr
a
n
sm

is
si
o
n
ti
m
e.

S
er
vi
ce

ti
m
e

:
ti
m
e
to

p
ro
ce
ss

a
se
rv
ic
e
re
q
u
es
t;

T
ra
n
sm

is
si
o
n
ti
m
e:

ti
m
e
to

se
n
d
a
re
q
u
es
t
to

se
rv
er

a
n
d
g
et

a
re
su
lt
fr
o
m

th
e
se
rv
er

(r
o
u
n
d
-t
ri
p
d
el
a
y
);

S
er
v
ic
e
ti
m
e
is
sp
ec
ifi
ed

b
y
se
rv
ic
e
p
ro
v
id
er

S
L
A
.

T
ra
n
sm

is
si
o
n
ti
m
e
is
d
ec
id
ed

b
y
th
e
n
et
w
o
rk

lo
a
d
.

T
=

T
sr
+

T
tr

T
sr
:
se
rv
ic
e
ti
m
e;

T
tr
:
tr
a
n
sm

is
si
o
n
ti
m
e.

C
o
st

(C
)

It
in
cl
u
d
es

se
rv
ic
e
co
st

a
n
d
tr
a
n
sm

is
si
o
n
co
st
.

S
er
vi
ce
co
st

:
th
e

co
st

fo
r
ex
ec
u
ti
n
g
th
e
se
rv
ic
e;

T
ra
n
sm

is
si
o
n
co
st

:
th
e
co
st

fo
r

tr
a
n
sm

it
ti
n
g
re
su
lt
d
a
ta

fr
o
m

a
se
rv
er

to
a
re
q
u
es
te
r;

S
er
v
ic
e
co
st

is
sp
ec
ifi
ed

b
y
se
rv
ic
e
p
ro
v
id
er

S
L
A
.

T
ra
n
sm

is
si
o
n
co
st

is
d
ec
id
ed

b
y
n
et
w
o
rk

o
p
er
a
to
r.

C
=
C
sr
+
C
tr

C
sr
:
se
rv
ic
e
co
st
;

C
tr
:
tr
a
n
sm

is
si
o
n
co
st
.

S
er
v
ic
e
a
v
a
il
a
b
il
it
y
(A

)
T
h
e
p
ro
b
a
b
il
it
y
th
a
t
a
se
rv
ic
e
is
a
v
a
il
a
b
le
.

It
is
co
m
p
u
te
d
fr
o
m

h
is
to
ri
ca
l
d
a
ta
.

A
=

T
a
/T

t

T
a
:

A
m
o
u
n
t
o
f
ti
m
e
th
a
t
se
rv
ic
e
is
a
v
a
il
a
b
le
;

T
t:

T
o
ta
l
ti
m
e
m
o
n
it
o
re
d
.

S
er
v
ic
e
re
li
a
b
il
it
y
(R

)
T
h
e
p
ro
b
a
b
il
it
y
th
a
t
a
re
q
u
es
t
is
co
rr
ec
tl
y
h
a
n
d
le
d
w
it
h
in

th
e

ex
p
ec
te
d
ti
m
e.

It
is
co
m
p
u
te
d
fr
o
m

h
is
to
ri
ca
l
d
a
ta
.R
=

N
s/
N

N
s:

N
u
m
b
er

o
f
re
q
u
es
ts

su
cc
es
sf
u
ll
y
re
sp
o
n
d
ed
;

N
:
T
o
ta
l
re
q
u
es
ts
.

Service selection algorithms for Web services with end-to-end QoS constraints 109

it to a linear formulation. Let As
¢=log(As), A0si

¼ logðAsiÞ; we thus
have A0s ¼

Pn
i¼1 A0si

:

To construct an optimal composite Web service (business process), in
addition to meeting user’s functional and QoS requirements, we could
define an objective function for optimization. In our study, we define a
utility function as the optimization objective. The utility function is based
on a rich set of system parameters, including static server information
(service level), client QoS requirement (QoS constraint), dynamic server
capacity (server load), and etc. Each service level of every individual service
has its own utility computed by the utility function. Detailed information
about utility function will be discussed in the next section. Suppose the
utility of the chosen service level in each individual service si is Usi : The
aggregate function of the utility of the sequential composite service
is Us ¼

Pn
i¼1 Usi :

All QoS attributes and utility’s aggregate functions are linear functions, as
shown in Table 3. The assumption must be true for our service selection
algorithms to work correctly.

s1 s4

s3

s2

(2) parallel

s1 s4

s3

s2p1

p2

(3) conditional
 (p 1+p2=1,

0<p 1<1, 0<p 2<1)

s 1

(4) while/loop

s1 s2 s3

(1) sequential

1

1

n

Fig. 1 Composition flow models

Table 2 QoS parameter aggregation for sequential composition

Attribute Aggregate function

Response time Ts ¼
Pn

i¼1 Tsi
Cost Cs ¼

Pn
i¼1 Csi

Reliability
Rs ¼

Qn
i¼1 RsiAvailability

As ¼
Qn

i¼1 Asi

Table 3 Linear aggregate function for sequential composition

Attribute Aggregate function

Response time Ts ¼
Pn

i¼1 Tsi
Cost Cs ¼

Pn
i¼1 Csi

Reliability
R0s ¼

Pn
i¼1 R

0
siAvailability

A0s ¼
Pn

i¼1 A
0
si

110 T. Yu, K-J. Lin

4 System model

In this section, we present the system model of our proposed service selection
algorithm.

4.1 Notations and definitions

The notations used in this paper are defined as follows:

1. S is a service class. A service class is a collection of individual Web
services with a common functionality but different non-functional
properties (e.g. different locations, different quality levels, etc.);

2. s is an individual Web service in a service class, which resides on a
specific server on the network;

3. l is one of the service levels provided by an individual Web service;
4. R is the constraint on the end-to-end delay.

For an individual service, we make the following definitions:

1. For a service s, the number of service levels it provides is L(s);
2. Each service level guarantees a service time e(s,l) time;
3. Each service level has a maximum capacity Cmax(s,l) on the number of

clients it can accept;
4. Each service level has a current capacity Ccur(s,l), the current number of

clients in this level;
5. Each service level has a cost c(s,l).

To make selection decisions, we define a benefit function based on the
server load. The idea is that new service requests should select a server that
has a light load. This is because a client selecting a server currently with a
lighter load is more likely to experience a shorter response time. We thus use
a benefit function to encourage such selections. Moreover, such selections
will distribute user requests more evenly among all servers and create a
globally balanced server loads. The benefit function b(s,l) for selecting a
service s at level l is a function of server loadCmaxðs;lÞ�Ccurðs;lÞ

Cmaxðs;lÞ ; with the following
properties:

1. b(s,l) increases with increasingCmaxðs;lÞ�Ccurðs;lÞ
Cmaxðs;lÞ ;

2. b(s,l) is continuous;
3. When the current number of clients in a service level is zero, it produces

the maximum benefit, i.e. bmax(s,l)=1, when Ccur(s,l)=0;
4. When the current number of clients in a service level reaches the maxi-

mum capacity of this level, no benefit is produced, i.e. bmin(s,l)=0, when
Ccur(s,l)=Cmax(s,l).

A user may define any benefit function as long as it satisfies the above
criteria. For example, the benefit function may be a linear function or an
exponential function of server load.

Service selection algorithms for Web services with end-to-end QoS constraints 111

Since different services are provided by different service providers, they
communicate by passing requests and data on the network. Transferring
results from one service to another or to the user incurs some overhead. In
this paper, we assume the transmission time and cost between any two ser-
vices or between a service and a client are fixed and predefined. We include
this network communication delay in our model.

Finally, one last constraint of the service selection is that the service
selection for a new request should not disturb the activities of the current
clients. So the service and service level selected by a broker must be among
those currently available candidates i.e. Cmax(s,l)�Ccur(s,l)>0.

4.2 Utility function

For sequential service composition with one QoS constraint, we model the
end-to-end response time as the user’s QoS constraint. Since users want to
maximize the benefit they receive and minimize the cost they have to pay, we
therefore define a utility function as a weighted sum of these two factors:

F ðs; lÞ ¼ wb �
bðs; lÞ � avgb

stdb

� �

þ wc � 1� cðs; lÞ � avgc

stdc

� �

ð1Þ

where
wb,wc weights of the benefit and the cost (0<wb,wc<1, wb+wc=1)
b(s,l), c(s,l) benefit and cost by choosing service s, level l
avgb, avgc average benefit and cost for available services and service levels
stdb, stdc standard deviation of benefit and cost for available services and

service levels

We could include other attributes in the utility function and adjust the
weight according to their importance. For example, we could add a reli-
ability term and an availability term. The selection algorithms presented in
this paper are not affected by the utility defined.

4.3 Pipeline structure and DAG structure

There many be several ways to construct a composite service or business
process, each contains several individual Web services to be executed in
sequential order. We call such way as an execution path of the composite
service. If the composite service has only one execution path, it’s structure is
considered as a pipeline (see Fig. 2). If more than one execution paths exist,
we consider that the composite service is structured as a DAG . For com-
posite service shown in Fig. 3(a), it contains 5 paths shown in Fig. 3(b). Each
path has a best overall utility and the path that produces the highest utility is
the optimal solution for clients.

112 T. Yu, K-J. Lin

5 Service selection algorithms

In this section, we investigate the service selection algorithms used by the
QoS broker for sequential composite flow models with only one QoS con-
straint (i.e. response time). There are two approaches we can use to select the
optimal services for each component of a business process. One is the
combinatorial approach, by modeling the problem as a Multiple Choice
Knapsack problem. The other is the graph approach, by modeling the
problem as the constrained shortest path problem in the graph theory.

5.1 Combinatorial approach

The algorithms we present first can be used by composite services that are
structured as a simple pipeline. However, it can also be used to find the
execution path in a composite service that are structured as a DAG. In order
to find the optimal path in a DAG-structured composite service, we need to
run the algorithms several times, one for each possible execution path. We
then choose the one with the highest utility as the best solution.

In this problem formulation, we assume the network connection over-
heads between any two services in the consecutive steps are the same. That is,
if the data flow direction is service class Sa fi Sb(from a service in Sa to a
service in Sb), we assume the network overhead between any service si in Sa

and any service sj in Sb are all the same. The transmission delay and cost
between any two services are then added to the sending service. That is, the
transmission overhead from si to sj will be added to si. c(si,l)=c(si,l)+cij and
r(si,l)=e(si,l)+dij. The transmission delay and cost between the last service
and the client will be added to the last service.

For a sequential composite service that has k steps (k service classes in an
execution path) (S1,S2,...,Sk), suppose the total response time constraint £
R, the problem can be modeled as a Multiple-Choice Knapsack Problems
(MCKP) which is defined as follows. Given a set of items in several classes

s
1

s
2

s
n-1

s
n

…..

Fig. 2 Pipeline structure

Fig. 3 DAG structure

Service selection algorithms for Web services with end-to-end QoS constraints 113

and a knapsack, where each item has a weight and profit, and the knapsack
has a capacity, MCKP is to select one item from each class to be placed in
the knapsack within the capacity yet has the highest total profit. Figure 4
illustrates the MCKP.

We can model the composite service selection problem as a MCKP in the
following way:

1. The steps of the business process represents the classes in MCKP;
2. Since every service in a service class has many service levels, we consider

each service level is a candidate for service selection; thus every candidate
represents an item in that class;

3. The response time of each candidate represents the weight of the item in
MCKP;

4. The utility a candidate produces represents the profit of the item in
MCKP;

5. The objective is to maximize the total utility produced by the composite
service under the constraint that the total response time £ R;

The problem is thus formulated as:

Max
Pk

i¼1

P

j2si

Fijxij

Subject to
Pk

i¼1

P

j2si

rijxij6R
P

xij ¼ 1; i ¼ 1; :::; k; j 2 si

ij2 f0; 1g; i ¼ 1; :::; k; j 2 si

Fij : Utility value at step i for candidate j
rij : Response time of candidate j at step il
T : Total response time

ð2Þ

The MCKP problem is NP-hard. For large systems, it will be very difficult
to always find the optimal solution. However, some preprocessing on the
candidates of each class may reduce the number of candidates in each class.
The following condition is presented in (Pisinger 1995):

If two items a and b in the same class Si, satisfy

ria � rib and Fia � Fib ð3Þ

Fig. 4 MCKP

114 T. Yu, K-J. Lin

then an optimal solution to MCKP with xib=0 exists. We thus can delete item
b from the candidate list in Si.

In the following we will present three algorithms: exhaustive search,
dynamic programming, and a minimal algorithm for MCKP.

5.1.1 Exhaustive search algorithm

This algorithm is to construct all service combinations and compares their
utilities. It can always produce the optimal solution but is time and memory
consuming. So it is only suitable when the number of classes and the items of
each class are all small. For a composite service contains k steps and step i
has L(i) (i=1,2,...,k) candidates, the time complexity of the exhaustive search
algorithm is Oð

Qk
i¼1 LðiÞÞ:

5.1.2 Dynamic programming algorithm

The MCKP problem can be solved in pseudo-polynomial time using dy-
namic programming. Given a pair of integers l (1 £ l £ k) and ĉð0 � ĉ � T Þ,
consider the sub-instance of MCKP consisting of subsets S1,S2,...,Sl and
capacity ĉ: Let flðĉÞ denotes its optimal solution value. The problem can be
solved by the following dynamic programming formulation:

Let �r¼minfrj; j2Sig i¼1;2;:::;k

f1ðĉÞ¼
�1 ĉ¼0;1;:::; �r1�1
maxfF1j : j2S1;rj� ĉg ĉ¼ �r1;:::;R

�

flðĉÞ¼
�1 ĉ¼0;1;:::;

Pl
k¼1 �rk�1

maxffl�1ðĉ�rjÞþFlj : j2Sl;rj� ĉg ĉ¼
Pl

k¼1 �rk;:::;R

(

2� l�k

ð4Þ

The optimal solution is the state corresponding to fk(T). For a composite
service contains k steps and step i has L(i) (i=1,2,...,k) candidates, the time
complexity of the dynamic programming algorithm is O(

P
i=1
k L(i)*R).

5.1.3 Pisinger’s algorithm

In (Pisinger 1995), Pisinger introduces an algorithm for efficiently solving the
MCKP problem. This algorithm first solves the linear MCKP (LMCKP)
problem by using a partitioning algorithm and derives an initial feasible
solution (initial core) to MCKP. It then uses dynamic programming to
expand the initial core by adding new classes as needed. The algorithm is
outlined below.

1. Solving Linear Multiple-Choice Knapsack Problem (LMCKP) In Eq. (2),
if the integrity constraint xij2 {0,1} is relaxed to 0 £ xij £ 1, the problem

Service selection algorithms for Web services with end-to-end QoS constraints 115

becomes LMCKP. In Zemel (1984) and Dyer (1984), Zemel and Dyer
each developed linear time algorithms for LMCKP. Both algorithms are
based on the convexity of the LP-dual problem to Eq. (2). For the dual
problem, we can pair the dual line segments and delete the unpromising
ones according to some dominance criteria.
Based on Dyer and Zemel’s algorithms, Pisinger (1995) presents a parti-
tioning algorithm to solve the LMCKP. The optimal solution x*to
LMCKP is composed by the LP-optimal choices bi in each class, where
xibi=1. One of the classes Sa may contain two non-zero fractional vari-
ables xaba and xab0a ðxaba þ xab0a ¼ 1Þ: If x* has no fractional variables, it is
already the optimal solution to MCKP. Otherwise, the fractional class Sa

is defined as the initial core for MCKP. It then continues the second step.
2. Solving MCKP from LMCKP Given an initial core and the set of

{bi|i „ a} from step 1, the positive and negative gradient ki
+ and ki

� for
each class Si,i „ a are defined as:

kþi ¼ max
j2Si; rij>ribi

Fij � Fibi

rij � ribi

; i ¼ 1; 2; . . . ; k; i 6¼ a; ð5Þ

k�i ¼ max
j2Si; rij<ribi

Fibi � Fij

ribi � rij
; i ¼ 1; 2; . . . ; k; i 6¼ a; ð6Þ

The algorithm then sorts the sets L+={ki
+} in decreasing values, and

L�={ki
�} in increasing values. Starting from the initial core, it will expand

the core by alternately including a new (not yet selected) class Si that has
the largest ki

+ from L+ or the smallest ki
� from L�. When all classes have

been added to the core, the optimal solution for MCKP is found.

The computational experiments in Pisinger (1995) show that this algorithm
is usually very efficient and much faster than the dynamic programming
algorithm. For a composite service contains k steps (k classes, S1,..,Sk) and
step i has L(i) (i=1,2,...,k) candidates, the time complexity of Pisinger’s
algorithm is Oð

Pk
i¼1 LðiÞ þ R �

P
Si2C LðiÞÞ is the core:

In the worst case, the time complexity of Pisinger’s algorithm is the same
as dynamic programming. However, as we will show later in this paper,
Pisinger’s algorithm usually converges very fast, allowing its computation
time to be much less than dynamic programming.

ExampleNow we present an example of Pisinger’s algorithm used to solve
a sequential composite service. The example is defined as follows.

– The benefit function b(s,l) is defined as:

bðs; lÞ ¼ 1� e�
Cmaxðs;lÞ�Ccur ðs;lÞ

Cmaxðs;lÞ

1� e�1
0 � Ccurðs; lÞ � Cmaxðs; lÞ ð7Þ

– The end-to-end response time constraint R £ 61;
– The composite service contains 4 sequential services (k=4), each has 4 ser-
vice levels (n=4). We assume all service levels are available, i.e.

116 T. Yu, K-J. Lin

Cmax(s,l)�Ccur(s,l)>0. The response time, cost, maximum capacity and
current capacity of each service and service level are shown inTables 4 and 5.

According to the definition of the benefit function Eq. (7) and utility
function Eq. (1), we can get the utility of each service level.We then convert the
utility to non-negative integers using the formula F(s,l)=floor(F(s,l)*200)+
min(F(s,l)). The converted utility is shown in Table 6. Also, we use the pre-
processing criteria 3 to delete some items in each class and get the final r(s,l) &
F(s,l) shown in Table 7. Now we can model the problem as aMCKP shown in
Figure 5.

When using Pisinger’s algorithm, we first solve the corresponding
LMCKP to get the initial solution to MCKP. The initial core contains items:
{7[3],18[18],30[136],36[241]}

S1 : b1 ¼ 2; r1b1 ¼ 12; F1b1 ¼ 167;
S2 : b2 ¼ 3; r2b2 ¼ 18; F2b2 ¼ 232;
S3 : fractional class; initial core
S4 : b4 ¼ 2; r4b4 ¼ 17; F4b4 ¼ 143:

Starting from the initial core, we calculate the positive and negative
gradient k+and k�for each class Si, i „ 3 and sort L+={ki

+} according to
decreasing values (Table 8), and L�={ki

�} according to increasing values
(Table 9).

Table 4 Response time and cost (response time, cost) = (r(s,l), c(s,l))

Level 1 Level 2 Level 3 Level 4

Service 1 (3, 33) (12, 28) (21, 19) (30, 13)
Service 2 (4, 24) (10, 19) (18, 14) (26, 8)
Service 3 (7, 25) (18, 20) (30, 15) (36, 10)
Service 4 (9, 26) (17, 21) (24, 16) (33, 11)

Table 5 Max and current capacity (Max, Current) = (Cmax(s,l), Ccur(s,l))

Level 1 Level 2 Level 3 Level 4

Service 1 (20, 16) (34, 4) (34, 12) (44, 31)
Service 2 (15, 4) (13, 2) (12, 1) (7, 1)
Service 3 (37, 13) (31, 13) (29, 7) (15, 1)
Service 4 (24, 7) (20, 2) (53, 11) (10, 4)

Table 6 Utility Utility F(s,l)

Level 1 Level 2 Level 3 Level 4

Service 1 10 167 191 162
Service 2 10 140 232 240
Service 3 3 18 136 241
Service 4 16 143 143 96

Service selection algorithms for Web services with end-to-end QoS constraints 117

The set of partial vectors YC={(l, pi, ti)} in the initial core C has 4 states:
YC={(54,545,0), (65,560,1), (77,678,2), (83,783,3)}. After performing the
state reduction according to the upper bound test see Pisinger (1995), YC

becomes YC={(54, 545,0), (65, 560,1)}. In this YC , (54, 545,0) is chosen with
item (7[3]) and utility z=545. In the following steps, we will add new classes
to the core until all classes have been considered.

Table 7 Response time and corresponding utility Response time r(s,l)[Utility F(s,l)]

Level 1 Level 2 Level 3 Level 4

Service 1 3[10] 12[167] 21[191] –
Service 2 4[10] 10[140] 18[232] 26[240]
Service 3 7[3] 18[18] 30[136] 36[241]
Service 4 916] 17[143] – –

Fig. 5 MCKP example

Table 8 L+set

No. dr[dF] Class {Items(r[F])}

1 9[24] S1{12[167],21[191],3[10]}
2 8[8] S2{18[232],26[240],4[10],10[140]}
3 1[0] S4{17[143],9[16]}

Table 9 L�set

No. dr[dF] Class{Items(r[F])}

1 9[24] S1{12[167],21[191],3[10]}
2 8[8] S2{18[232],26[240],4[10],10[140]}
3 1[0] S4{17[143],9[16]}

118 T. Yu, K-J. Lin

1. Add class S1{12[167],21[191],3[10]} from L+ to the core,
YC={(54,545,0), (63,569,1)}; The item chosen in S1 is 12[167], the utility
z=545;

2. Add class S2{18[232], 26[240],4[10],10[140]} from L� to the core,
YC={(54,545,1), (63,569,3)}; the item chosen in S2 is 18[232], the utility
z=545;

3. Add class S4{17[143],9[16]} from L� to the core, YC={(63,569,3)}; The
item chosen in S4 is 17[143], the utility z=545;

At this point, the core is complete. The optimal solution includes the
selected item in each class: {12,18,7,17} and the maximum utility value is
z=545.

5.1.4 Performance study

We have conducted many tests using the three algorithms to compare their
running time. Table 10 shows the test result. Since the exhaustive search
algorithm is time and memory consuming, it is only suitable when both k
(service stages of the composite service) and n (number of candidates in each
stage) are small (In our tests, we choose k+n £ 25). When k and n become
larger, this algorithm quickly ran out of memory in our experiments.
Between dynamic programming and Pisinger’s algorithm, Pisinger’s algo-
rithm is much faster and more efficient than dynamic programming. For
example, when k=10 and n=100, it takes dynamic programming 35,668ls
to finish the computation while Pisinger’s algorithm only needs 217ls.

The test result shows that Pisinger’s algorithm is the best algorithm for
service selection in composite service, especially when the number of can-
didates in each service is large.

Table 10 Run time comparison

Service (k) Candidate(n) Running time (ls)

Exhaustive search Dynamic
programming

Pisinger’s

5 5 127 99 56
5 50 – 4649 116
6 5 1131 130 37

10 10 – 1395 88
10 100 – 35668 217
10 1000 – 778990 1701
20 100 – 289071 304
20 1000 – 7 s 67617 ls 3240
50 100 – 1 s 830409 ls 685
50 1000 – 26 s 928142 ls 4778
100 100 – 6 s 273286 ls 1294

Service selection algorithms for Web services with end-to-end QoS constraints 119

5.2 Graph approach

Graph algorithms can be used to handle various composite services, whether
they are structured as pipelines or DAG’s. The algorithms only need to be
run once to find the optimal solution. Our proposed algorithms are based on
the shortest path algorithms that are commonly used in the graph theory. We
modify the classical shortest path algorithms to handle delay constraints. We
present a constrained Bellman-Ford algorithm (Widyono 1994) and a con-
strained shortest path algorithm (CSP).

5.2.1 Graph construction

Each service level in every individual service is represented by a node in
the graph, with a cost and a benefit value. However, the classical shortest
path algorithms designed for graphs usually define costs on edges, not on
nodes. To use algorithms like Bellman-Ford, we need to transform a
composite service graph into a service path graph so that edges, not
nodes, have weights (costs, delays and etc.). The graph can be constructed
as follows.

1. Each service level of each individual service is represented as a node in the
graph;

2. If service si is connected to service sj, all service levels in si are connected to
all service levels in sj;

3. Set link cost, delay and benefit: To remove parameters from graph nodes,
we add the service time and cost of the receiving node to all incoming
links to the node. That is, if data is sent from si to sj, we will add service
time e(sj,l) and cost c(sj,l) to the link connected to sj. So for the link from
service level la of si to service level lb of sj , its delay is set to dij+e(sj,lb) and
its cost is cij+c(sj,lb). The benefit of the link is set to b(sj,lb);

4. Suppose there are k service classes in the execution plan, we add a source
node (S0) and a sink node (Sk+1) to the graph as shown in Figure 6. For
all nodes that have no incoming edges, add links from the source node to
them; the delay, cost and benefit of these links are set to 0. For all vertexes
that have no outgoing edges, connect them with the sink node. The delay
and cost of these links are set to be the transmission delay and cost

Fig. 6 Constructed DAG

120 T. Yu, K-J. Lin

between the service (that provides the start node of the link) and user. The
benefit of these links are set to 0;

5. For each link, according to Eq. (1), we can compute its utility F based on
the benefit and cost of the link.

After these steps, we have a DAG, in which every link has a delay and a
utility. The service selection problem now can be defined as:

Find a path that produces the highest utility between source S0 and sink
Sk+1 subject to the delay constraint R.

5.2.2 Constrained Bellman-Ford (CBF) algorithm

In (Widyono 1994), the CBF algorithm has been used to find the path with
the minimum cost between the source and the destination subject to the delay
constraint. We can use this algorithm to solve our problem. Instead of
searching for the minimum cost path, we search for the highest utility path.
The algorithm uses a breadth-first search, discovering paths of monotoni-
cally increasing delay and updating the highest utility path to every node it
has visited. Detailed description of CBF can be found in (Widyono 1994).
The running time of CBF grows exponentially.

5.2.3 Constrained Shortest Path (CSP) algorithm

In CBF, all paths are searched using the breadth-first approach. However,
since the composite service graph is a DAG, we can modify the classical
DAG shortest path algorithm to a more efficient constrained shortest path
algorithm to solve the problem. The idea is that we can first topologically
sort all nodes in the graph, then visit each node in the topological order and
‘‘relax’’ it. In each node, we maintain a list containing the utility gained for
different paths from the source node to it under the delay constraint. The list

Table 11 Algorithm 1

//every node contains a list (list(node))of paths
Sort every node’s outgoing edges in increasing delay;
Topologically sort the nodes in graph G;
For each node i, in topological order
For each outgoing edge of i, in increasing delay order
j=end_node;
delay=edge.delay; utility=edge.utility;
If (i==source) Relax(i,j,delay,utility);
Else for (each path p in list(i))
delay=delay + p.delay; utility=p.utility;
If (delay £ constraint) Relax(i,j,delay,utility);

// Relax: Add path to end node path list
Relax(source,end,delay,utility)

if new-path np is dominated by an old-path return;
if any old-path p is dominated by np
remove p from link(end)); Add np to link(end)

Service selection algorithms for Web services with end-to-end QoS constraints 121

is sorted in monotonically decreasing order of utility. The relax function used
in our algorithm is defined by the dominate relationship: given two paths a
and b, if (a.utility‡b.utility) and (a.delay £ b.delay), then we say b is domi-
nated by a. The relax function adds a path to the list only when no other path
in the list dominates it. When a new path is added and if there is any existing
path in the list dominated by the new path, the old path will be removed.
After we visit all nodes, the highest utility in the sink node is the solution for
the selection problem. The constrained shortest path (CSP) algorithm is
defined in Table.

5.2.4 Performance study

As discussed, there are three algorithms to find an optimal solution in
composite service structured as a DAG.

1. All Execution Paths (AEP) algorithm. In this algorithm, we first use a
breadth-first-search to find all execution paths in the execution plan.
Second, for each execution path, it use combinatorial approach based
algorithm, such as Pisinger’s algorithm, to find the best utility of this
path. Finally, it compares the utilities of all paths and pick one that
produce the highest utility as the optimal solution.

2. CBF algorithm
3. CSP algorithm

For CBF and CSP, we treat the whole system as a graph and search for
the highest utility path in the graph under the end-to-end delay constraint.

Table 12 compares the running time of the three algorithms. We gener-
ated k service classes , each service class has n candidates, and a service class
is connected to at most b service classes (branch).

Table 12 Running time comparison for DAG

Test cases Running time (ls)

branch(b) service
class(k)

candidate(n) execution
paths(ep)

AEP CBF CSP

2 5 5 3 564 1,377 1,040
2 10 5 8 1,520 82,562 9,382
2 10 10 12 2,628 554,732 131,353
2 10 50 24 17,136 – 1 s 758,156
2 20 10 72 21,816 – 457,371
2 20 50 144 129,600 – 7,507,685
3 10 5 10 1,900 4,130 1,794
3 10 10 10 2,190 171,196 73,103
3 10 50 20 14,280 – 690,372
3 10 100 10 13,580 – 424,052
3 20 10 19 5,757 18,467,446 252,886
3 20 50 49 44,100 – 3,796,061
4 20 10 31 9,393 12,758,279 288,958
4 50 10 108 156,600 – 390,931
5 100 10 297 547,074 – 1,579,118

122 T. Yu, K-J. Lin

The testing result shows CSP is much better than CBF, whose running
time grows exponentially. All empty entries in the table represent very long
executions that were aborted before completion. As the graph becomes large,
CBF takes about 60-100 times longer than CSP. But even CSP algorithm is
slow compared to AEP. As the numbers of services and candidates increase,
CSP grows faster than AEP. In the rare cases when the number of candidates
for each service is small, CSP may have a better performance than AEP.

Although the test result shows AEP runs faster than CSP, we need to be
aware of its limits. The problem of AEP is that it does not model network
transmission delays and costs accurately. Since AEP is based on the multiple
choice knapsack problem, it uses the same value for transmission delays and
costs between all services in two adjacent service classes. As mentioned
before, different services from different service providers may reside in dif-
ferent locations. Services in two adjacent service classes may be connected by
different networks, some with long and unpredictable delays or high delivery
costs. Since AEP models the problem as a knapsack problem, its strength is
on the combinatorial selection of services, not the flow of a graph. Therefore,
Pisinger’s algorithm cannot differentiate different service locations and treat
them differently. This will affect the selection result if the network cost
between two consecutive services is not uniform.

On the other hand, CSP and CBF solve this problem nicely since they are
designed for the graph model. Every link that connects services (or service
levels) in two adjacent service classes can be treated differently and assigned
different values on network transmission delay and cost. They will be more
precise than AEP and the selection result should be more reliable even
though they take more time in large services cases.

The above discussion can be seen from Fig. 7. Suppose service class S1 is
connected to service class S2. S1 has two service candidates s1 and s2, S2 has
service candidates s3 and s4. Each service has two service levels li1and li2
(i=1,2,3,4), and each service level has a service time eij, cost cij and benefit
bij(i=1,2,3,4; j=1,2). The network transmission delay (dij(i=1,2; j=3,4))
and cost (cij(i=1,2; j=3,4)) between these services are shown in Fig. 7.

For CSP, we can add the service time and cost of the receiving node (a
service level) to incoming links. So the links between different services can be

S1 S2

s1 s3

s4s2

d13,c13

d24,c24

d14,c 14

d23,c23

S1 S2

l11

l12

l22

l21

l31

l32

l42

l41

e11,c 11,b11

e12,c 12,b12

e21,c 21,b21

e22,c 22,b22

e31,c31,b31

e32,c32,b32

e41,c41,b41

e42,c42,b42

Fig. 7 Composite service connection

Service selection algorithms for Web services with end-to-end QoS constraints 123

treated separately. As shown in Fig. 8, the link from service level 1 in Service
1 to service level 1 in Service 3 has a delay of d13+e31, cost of c13+c31, and
benefit b31. The delay, cost and benefit of the link from service level 2 in
Service 1 to service level 2 in Service 4 are d14+e42, c14+c42 and b42,
respectively. For each link, we can use Eq. (1) to calculate its utility. Now,
the delay, cost and benefit of the nodes have been transfered to links and we
can use CSP to solve the shortest path problem.

For AEP, in Fig. 9, the links between all services in two adjacent service
classes are treated equally even when they may have different overheads. So
for the system shown in Fig. 7, we derive the transmission delay and cost
from S1 to S2 as: d=max{ d13, d14, d23, d24} and c=max{ c13, c14, c23, c24}.
And all network overheads are added to the sending node . So the service
levels in service s1 and s2 now have the response time and cost as:rij=eij+d,
cij=cij+c (i=1,2; j=1,2). In this way, the network transmission delay and
cost are transfered to the nodes.

The decision of whether to use AEP or CSP depends on whether the
network overheads will be very different in the system. If service candidates
are distributed over a wide area (such as from different countries or across

l11 l31

l
32

l
12

l
21

l
22

l
41

l
42e42+d24,c42+c 24,b42

e31+d 13,c 31+c13,b31

Fig. 8 CSP cost model

Fig. 9 MCKP cost model

124 T. Yu, K-J. Lin

the nation), CSP will be able to take their connection cost into account and
present better solutions. For systems where all candidates are in the same
network area, such as those in an intra-enterprise network, AEP is faster and
can present very good solutions.

6 Conclusions

In this paper, we study the end-to-end QoS constraint issue for composite
business processes that are built using the Web service framework. The QoS
guarantee is provided by a QoS broker that is responsible for coordinating
among composed services to meet the quality constraint for a client. We have
presented service selection algorithms. The objective of the algorithms is to
maximize user-defined service utilities while meeting the end-to-end perfor-
mance constraint. We propose two approaches to solve the problem. One is
the combinatorial approach, by modeling the problem as a MCKP. The
other is the graph approach, by modeling the problem as a constrained
shortest path problem in the graph theory. We have presented efficient
algorithms for both approaches. The performance of these algorithms have
been studied and compared. The selection of algorithms depends on the
problem size, network structure and other factors. Both algorithms have a
reasonable run time even for problems with a large data set. We believe the
proposed models and algorithms present practical solutions to the end-to-
end QoS problem for composite Web services.

References

Ankolekar A, Burstein M, Hobbs JR, Lassila O, Martin DL, McIlraith SA, Narayanan S,
Paolucci M, Payne T, Sycara K, Zeng H (2001) DAML-S: Semantic markup for Web
services. Proc. of the International Semantic Web Working Symposium, Stanford, CA

Arkin A, Askary S, Fordin S, Jekeli W, Kawaguchi K, Orchard D, Pogliani S, Riemer K,
Struble S, Takacsi-Nagy P, Trickovic I, Zimek S (2002) Web service Choreography
Interface (WSCI) 1.0, http://www.w3.org/TR/wsci/

BPMI org (2002) Business Process Modeling Language (BPML). Version 1.0, http://
www.bpmi.org/bpml.esp

Casati F, Ilnicki S, Jin L, Krishnamoorthy V, Shan M (2000) Adaptive and dynamic service
composition in eflow. Technical Report, HPL-2000

Chen H, Yu T, Lin KJ (2003) QCWS: An Implementation of QoS Capable Multimedia
Web Services. Proc. of IEEE 5th Int. Symp. Multimedia Software Engineering, Taiwan

Christensen E, Curbera F, Meredith G, Weerawarana S (2001) Web services description
language (WSDL) 1.1. http://www.w3.org/TR/wsdl

Curbera F, Goland Y, Klein J, Leymann F, Roller D, Thatte S, Weerawarana S (2003)
Business Process Execution Language for Web services, Version 1.1.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

Dyer ME (1984) An O(n) algorithm for the multiple-choice knapsack linear program.
Mathematical Programming 29:57–63

Gudgin M, Hadley M, Mendelsohn N, Moreau JJ, Nielsen HF (2003) Simple object access
protocol (SOAP) 1.2, http://www.w3.org/TR/soap12

Leymann F (2001) Web service flow language (WSFL) 1.0. http://www-.ibm.com/software/
solutions/webservices/pdf/WSFL.pdf

Martello S, Toth P (1990) Knapsack Problems, Algorithms and Computer Implementa-
tions. John Wiley & Sons Ltd

Service selection algorithms for Web services with end-to-end QoS constraints 125

OASIS Universal Description. Discovery and Integration Specification TC, http://
www.oasis-open.org/committees/uddi-spec/

Patel C, Supekar K, Lee Y (2003) A QoS Oriented Framework for Adaptive Management
of Web service based Workflows Database and Expert Systems (DEXA-2003) confer-
ence. Prague, Czech Republic

Pisinger D (1995) A minimal algorithm for the Multiple-choice Knapsack Problem.
European Journal of Operational Research 83:394–410

Ponnekanti SR, Fox A (2002) Sword: A developer toolkit for Web service composition,
11th World Wide Web Conference (Engineering Track), Honolulu, Hawaii

Shankar M, DeMiguel M, Liu JWS (1999) An end-to-end QoS management architecture.
Proc. 5th Real-Time Technology and Applications Symposium

Sheng QZ, Benatallah B, Dumas M, Mak E (2002) SELF-SERV: A Platform for Rapid
Composition of Web services in a Peer-to-Peer Environment. Proc. of the 28th Very
Large DataBase Conference (VLDB’2002), Hong Kong, China

Thatte S (2001) XLANG: Web services for business process design. http://www.gotdot
net.com/team/xml_wsspecs/xlang-c/default.htm

The Oceano project, IBM. http://www.research.ibm.com/oceanoproject/index.html
VanderMeer D, Datta A, Dutta K, Thomas H, Ramamritham K, Navathe SB (2003)

FUSION: A System Allowing Dynamic Web service Composition and Automatic
Execution. Proc. of IEEE International Conference on E-Commerce, Newport Beach,
CA, USA

Widyono R (1994) The design and evaluation of routing algorithms for real-time channels.
Tech. Rep. TR-94-024, University of California at Berkeley, International Computer
Science Institute

Zemel E (1984) An O(n) algorithm for the linear multiple choice knapsack problem and
related problems. Information Processing Letters 18:123–128

Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ (2003) Quality Driven Web
Service Composition. Proc. 12th International World Wide Web Conference (WWW)

126 T. Yu, K-J. Lin

