
Service Provisioning for HLA-based Distributed Simulation on the Grid

Yong Xie1, Yong Meng Teo1,2, Wentong Cai3, Stephen John Turner3
1Singapore-Massachusetts Institute of Technology Alliance

2Department of Computer Science, National University of Singapore, Singapore 117543
3School of Computer Engineering, Nanyang Technological University, Singapore 639798

smaxy@nus.edu.sg, teoym@comp.nus.edu.sg, {aswtcai, assjturner}@ntu.edu.sg

Abstract

Modeling and simulation permeate all areas of business,
science and engineering. With the increase in the scale and
complexity of simulations, large amounts of computational
resources are required, and provisioning of the services is
becoming increasingly difficult. The Grid provides a plat-
form for coordinated resource sharing and application de-
velopment and execution. In this paper, we focus on extend-
ing the High Level Architecture (HLA) to the Grid. More
specifically, we propose a distributed simulation framework,
called HLAGrid. The framework uses a Federate-Proxy-RTI
architecture, which allows resources on the Grid to be uti-
lized on demand by using Grid services. The architecture
also supports federation discovery, security of the simula-
tor logic, and flexible federation construction, such as hier-
archical federations. The architecture hides the heterogene-
ity of the simulators, simulators’ execution platforms, and
how the simulators communicate with the RTI. All inter-
faces used in the framework comply with the standard HLA
interface specification, which provides reusability to simu-
lators. A prototype of the framework is implemented using
DMSO’s RTI 1.3NG version 6 and the Grid system runs the
Globus Toolkit.

1. Introduction

Modeling and simulation provide a low cost and safe al-
ternative to real-world training, experiments, analysis
of natural phenomena, etc. The High Level Architec-
ture (HLA), approved by US Department of Defense
(DoD) in 1995, provides an architecture for interoper-
ability and reuse in distributed simulation [5], and it was
adopted as an open standard through the IEEE Stan-
dard 1516 in September 2000.

A simulation, or a federation in HLA’s terminology, con-
sists of a set of logically related simulators, called federates.

Federates communicate with each other through the Run-
Time Infrastructure (RTI). HLA defines the rules and speci-
fications to support reusability and interoperability amongst
the simulation federates. The RTI software supports and
synchronizes the interactions amongst different federates
that conform to the standard HLA specification [5].

In order to run a distributed simulation over the Wide-
Area-Network (WAN) using the IEEE HLA/RTI directly,
special arrangements have to be made beforehand to en-
sure the availabilities of the required hardware and soft-
ware. Such arrangements are typically made with a central-
ized control or simply within an organization, because inter-
organizational sharing of resources involves issues such as
security. With the increase in the scale and complexity of
simulations, large amounts of resources are required, and
provisioning of services becomes more and more difficult.
In the case of HLA-based distributed simulation, the re-
sources of RTI, the simulation model, and/or the underlying
infrastructure may not be available when they are needed.

The concept of “Grid” computing was proposed by Ian
Foster as secure and coordinated resource sharing and prob-
lem solving in dynamic, multi-institutional virtual orga-
nizations [9]. Much effort has been made in the area of
Grid computing since 2001. Many systems and middleware
for Grid computing have been proposed in the past few
years, and Globus [10] is becoming the de facto standard
middleware for Grid computing. The third version of the
Globus Toolkit [12] is based on the concept of Grid Ser-
vices, which is defined by the Open Grid Services Architec-
ture (OGSA) [11], and is specified by the Open Grid Ser-
vices Infrastructure (OGSI) [21]. The Grid Services archi-
tecture enables resources to be dynamically discovered and
shared on demand, thus supports the provisioning of ser-
vices for large-scale Grid applications, such as HLA-based
distributed simulation.

In this paper, we aim to extend the IEEE HLA to the
Grid, and more specifically we focus on the provisioning
of services to support HLA-based distributed simulation on
the Grid. We present a distributed simulation framework

dcsteoym
Text Box
Y. Xie, Y.M. Teo, W. Cai and S.J. Turner, Service Provisioning for HLA-based Distributed Simulation on the Grid, Proceedings of the 19th ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation, pp. 282-291, IEEE Computer Society Press, Monterey, USA, June 2005.

to address several important issues, such as HLA/RTI ser-
vice provisioning, heterogeneity, federation discovery, fed-
eration construction, and security. The framework supports
the provisioning of the RTI service by using a Federate-
Proxy-RTI architecture, in which a remote proxy acts on be-
half of the federate in interacting with the RTI. It hides the
heterogeneity of the simulators, simulators’ execution plat-
forms, and how the simulators communicate with the RTI.
Moreover, RTI services are exposed as Grid services, and
the communications are through Grid service invocation,
which provides more secure, scalable and coordinated man-
agement. The architecture also supports dynamic discovery
of the federation, and hierarchical federations. All interfaces
used in the framework comply with the standard HLA in-
terface specification, which provides reusability to simula-
tors. A prototype of the framework is implemented using
DMSO’s RTI 1.3NG version 6 and the Globus Toolkit Ver-
sion 3. The DMSO HLA’s benchmark programs have been
converted from C++ to Java, and are used in the testing of
the prototype.

The rest of the paper is organized as follows: Section 2
presents the literature review on related work. Section 3 dis-
cusses the design of the Federate-Proxy-RTI architecture
and our prototype implementation. In Section 4, we de-
scribe the experimental results. Section 5 presents further
discussion on the merits of our proposed architecture. Our
concluding remarks and plan for future work are in Sec-
tion 6.

2. Literature Review

In the literature on improving the HLA, some re-
searchers [13, 22] focus on building tools to ease the
process of modeling and simulation using HLA, and
some [24] focus on adding auxiliary systems to make HLA
more useful in a wide-area-network (WAN), while oth-
ers [7, 8, 19, 20] have a more ambitious objective to
reinvent HLA to be model-driven and composable, or re-
place HLA with a new framework.

Some researchers focus on the extension of HLA’s inter-
operability. For example, in [19, 20], Tolk, et al. propose
a framework to integrate HLA into the Model-Driven Ar-
chitecture (MDA) [18] defined by the Object Management
Group (OMG) to improve interoperability.

Wytzisk, et al. [22] propose a solution that brings HLA
and the Open GIS Consortium (OGC) [15] standard to-
gether. It provides external initialization of federations, con-
trolled start up and termination of federates, interactions
with running federates, and access of simulation results by
external processes. Zajac, et al. [24] propose a system to
enable HLA-based simulations on the Grid, but they focus
on migrating federates. The system also includes discovery,
and information indexing services. However, the commu-

nication between RTI and federates is based on the origi-
nal HLA communication, which requires predefined ports
to be open. Fitzgibbons, et al. [8] present a distributed sim-
ulation framework, called IDSim, based upon OGSI [21]. It
makes use of Globus’s Grid service data elements as sim-
ulation states to allow both pull and push modes of access.
It also aims to ease the integration and deployment of tasks
through inheritance.

The distributed simulation communities initiated a plan,
called the Extensible Modeling and Simulation Framework
(XMSF) [7], which defines a set of Web-based technolo-
gies, applied within an extensible framework, that enables
a new generation of modeling and simulation applications
to emerge, develop and interoperate. Morse, et al. [14] pro-
pose an architecture using Web Services for web based fed-
erates communicating with the RTI. Their approach is based
on formatting the RTI calls via Simple Object Access Proto-
col (SOAP) [17] and employing the Blocks Extensible Ex-
change Protocol (BEEP) [2] communication layer to enable
bi-directional calls and callbacks via web services.

Compared with all the previous work, we have different
focuses, which are the provisioning of services and flexible
construction of federations. We believe these are the char-
acteristics that will differentiate a Grid-enabled HLA-based
distributed simulation from the traditional IEEE HLA/RTI
based distributed simulation.

3. Design and Implementation

3.1. Overview

To provide services to support HLA-based distributed
simulation on the Grid, we leverage on the existing Grid
infrastructure, and the layered framework is shown in Fig-
ure 1. The ideal framework for distributed simulation over
the Grid should sit on top of our HLAGrid and various other
Grid projects, such as Access Grid [1], Semantic Grid [16],
and Data Grid [6]. Our specific goals include:

• to support RTI service to be used on demand

• to support dynamic discovery of federations

• to provide a standard HLA API, for reasons of interop-
erability and reusability.

• to overcome the limitation of firewalls in traditional
HLA/RTI implementations.

• to support hierarchical federations

The HLAGrid framework includes a Federate-Proxy-
RTI architecture, in which different participants (clients) in
the same simulation run their federate codes at their local
sites, and the RtiExec and FedExec are executed on the re-
mote resource. A new entity, proxy, is introduced to act on
behalf of the clients’ federate code to communicate with

Figure 1. A layered framework for distributed
simulation on the Grid.

proxies of other clients through the RTI. Proxies are exe-
cuted at remote grid resources. Federate codes and their re-
spective proxies communicate with each other through Grid
services, and a Grid-enabled HLA API, which provides the
standard HLA API to the federate codes, is implemented
to translate the communications into Grid services invoca-
tions. Our framework also includes additional Grid services
to support the creation of the RTI and discovery of federa-
tions. As a result, the RTI resource can be created, discov-
ered, and used on demand. Moreover, hierarchical federa-
tions can be constructed by using the proxy in a way similar
to the mechanisms used in [3, 4]. Users have the flexibility
to join the federation locally, remotely (using the Federate-
Proxy-RTI architecture), or hierarchically.

In this framework, clients can run their simulator any-
where on any type of machine architecture. This framework
hides the communication over the Grid network, and pro-
vides user transparency and simulator reusability. It also fa-
cilitates migration of federates without affecting other parts
of the simulation, and the Proxy-RTI backbone can also be
migrated, as it does not involve any simulation logic. Dif-
ferent RTI services can be exposed as separate Grid ser-
vices, which provide standard state management schemes
that are required for Grid service composition. This frame-
work incurs additional communication cost and overhead in
embedding HLA communication into Grid service invoca-
tions, which will be quantified in the experiments of our im-
plementation.

3.2. Detailed Design

The framework consists of two major components: client
and resource (proxy-RTI backbone) together with support-
ing Grid services, which are interconnected through the
Grid network, as shown in Figure 2.

3.2.1. Client Side The client side provides the standard
HLA API to the federate code, while allowing communica-
tion through the Grid. We make use of the Globus Grid mid-
dleware as the lower level communication channel, and pro-
vide a Grid-enabled API to translate federate-RTI commu-

nication into Grid service invocations, as illustrated in Fig-
ure 2.

To translate federate-RTI communication, all the method
calls in the RTIambassador class and the callback functions
provided in the FederateAmbassador need to be exposed to
Globus. The RTIambassador method calls across the Grid
are achieved using remote Grid service invocations by em-
bedding the parameters inside invocations. When there is a
FederateAmbassador callback from the RTI, the proxy will
deliver the callback through Grid service invocation to the
client. Figure 3 provides the conceptual view of the interac-
tions between the client side and the proxy.

Note that, the proxy decouples the client and the RTI,
and the simulation logic is maintained securely at the client
side. The Proxy-RTI only provides mechanisms for simula-
tion management, such as federation management and time
management. This architecture facilitates migration of the
federate without affecting other parts of the simulation, be-
cause during the migration of the federate, the proxy could
still respond to the RTI. There is no need for other feder-
ates to suspend their executions, which is required in [24].
Moreover, the proposed framework also supports migration
of the Proxy-RTI backbone, because in the proposed frame-
work, the Proxy-RTI backbone does not involve any simu-
lation logic.

3.2.2. Resource Side At the resource side, the proxy acts
on behalf of the client and communicates with the RTI
through the Local Area Network (LAN), as shown in Fig-
ure 4. The proxy is responsible for translating RTIambas-
sador Grid service invocations into normal federate initi-
ated RTI services, as well as embedding FederateAmbas-
sador callbacks into Grid service invocations to the client’s
FebAmb Grid service.

3.2.3. Other Grid Services Besides the Grid services to
enable the communication between the client’s federate
code and the remote RTI, other Grid services are required
for creating the RTI and discovering the federation.

• RTI services: persistent RTI service factories are
needed to create instances of RTI services.

• Indexing service: a persistent indexing service is
needed for maintaining the mapping between fed-
erations and handles of corresponding RTI services
instances.

For how these services are created, managed and coordi-
nated to provide various services for distributed simulation
on the Grid, please refer to [25] for more details.

3.3. HLA Simulation on the Grid Walk-through

We describe the detailed steps involved in a HLA simu-
lation on the Grid.

Globus

Grid services

Grid−enabled HLA API

Globus

 HLA API

RTI

Globus

Grid−enabled HLA API

Federate codes

Globus

Grid−enabled HLA API

Federate codes

Client side Client side

Resource side

LAN

Proxy

Grid−enabled HLA API

Globus

Proxy

RTI

 HLA API

Figure 2. Architecture of Proxy-based HLA simulation on the Grid.

Embed RTIamb. method calls
into Grid service invocations

Federate codes

Embed ProxyFedAmb. callbacks
into Grid service invocations

Grid network

 Grid service

Proxy

...ProxyRTIamb.
 Grid Service

 MyFedAmb.

Figure 3. Interaction between client side and the proxy in the framework.

• Startup stage: steps 1 to 5

1. Create RTI: the federate code will invoke the per-
sistent RTI service factory to create a RTI ser-
vice instance, and use the instance to run rtiexec
at the resource side. The newly created RTI in-
stance and the federation name need to be regis-
tered with the index service, so that other feder-
ates in the same federation will be able to look up
the correct RTI instance. Note that, there is a con-
currency issue involved in creating the RTI and
registering the RTI with the index service. It can

be resolved using a reservation table and a refer-
ence table, and the details are in [25].

2. Create federate ambassador and RTI ambas-
sador: the Proxy is created, and its associ-
ated RTIambassador and FederateAmbas-
sador will be created at the resource side, so
that they will communicate with the RTI lo-
cally.

3. Create and join federation execution: two RTI-
ambassador method calls will be made at the
client side and translated into Grid service invo-

FedAmb.

RTIamb.

Local Area Network (LAN)

into Grid Service invocation
Embed ProxyFedAmb. callbacks

Grid Service
ProxyRTIamb.

Grid network

Proxy

...

Figure 4. Interaction between the proxy and the RTI at the resource side.

cations to the resource side.

4. Initialize, publish and subscribe: all simulation
settings will be initialized by invoking the RTI-
ambassador at the resource side.

5. Enable time constrained and time regulating if re-
quired as in step 4.

• Main loop: step 6

6. This is the main body of the federate code, which
includes RTIambassador method calls and Fed-
erateAmbassador callbacks, as shown in Figure 5
and Figure 6.

• Shutdown: steps 7 to 9

7. Resign from federation: this involves a method
call to the remote RTIambassador.

8. Destroy federation execution: besides the Grid
service invocation to destroy the federation, the
federation should be deregistered in the index
service.

9. Destroy RTI: this will be done according to the
administrative rules at the resource side.

3.4. Implementation

A prototype of our proposed framework is implemented
in Java, and the Grid system runs the Globus Toolkit ver-
sion 3.

At the client side, three main classes are implemented,
as shown in Figure 7:

• HLAGridNullFedAmb class extends the default
NullFederateAmbassador class provided in the
DMSO’s HLA implementation, and all the inter-
faces remain the same.

• ClientProvider class is a Grid service. An instance of
the ClientProvider class will be able to receive Grid
service invocation from the Proxy and translate them
into callbacks of MyFedAmb.

rtiamb method call

encode parameters

invoke Grid service
decode parameters

Client side Proxy side

decode result

resume execution

encode result

actual rtiamb call

Figure 5. Executing a RTIambassador
method call through Grid service invoca-
tion.

• HLAGridRTIAmb embeds all the RTIambassador calls
into a Grid Service invocation.

The client’s own code should contain an instance of
HLAGridRTIAmb and an instance of the client-defined
MyFedAmb which extends the HLAGridNullFedAmb class.

At the resource side, five main classes are used:

• ProxyServiceProvider class implements the Grid ser-
vice class OperationProvider. It accepts remote invo-
cations of RTIambassador method calls, and delivers
FederateAmbassador callbacks to the client by invok-
ing the Client’s Grid service.

• ProxyNullFedAmbassador extends the default
NullFedAmbassador in the DMSO’s HLA implemen-
tation.

• ProxyRTIComponent contains a RTIambassador to
communicate with the RTI.

Federate code

HLAGridRTIAmb

HLAGridNullFedAmb

MyFedAmb ClientProvider
Grid service invocation

Invoke RTIamb Grid Service

NullFederateAmbassador

OperationProvider

Figure 7. The class diagram of the client side.

MyFedAmb method call

decode parameters

Proxy side

ProxyNullFedAmb
method call

encode parameters

Resume

Client side

invoke Grid service

Figure 6. Executing a FederateAmbassador
callback through Grid service invocation.

• ProxyFedComponent also contains a Prox-
yNullFedAmbassador, which embeds callbacks
into Grid Service invocations.

We have implemented the RTIambassador services’
API for Federation Management, Time Management, Ob-
ject Management, Declaration Management, and Own-
ership Management. As mentioned in [14], to imple-
ment the Data Distribution Management (DDM), we need
to keep the state and context for each region and its di-
mension handles. We plan to implement the DDM in fu-

ture. A detailed description of the implementation can be
found in [23].

4. Experiments and Results

In order to investigate the overhead incurred in the pro-
posed framework, we converted the benchmark programs
from DMSO’s HLA package into Java programs, and tested
them under different network configurations. We focused
on two main benchmarks, i.e. Latency and Time Advance-
ment.

The latency benchmark program measures RTI perfor-
mance in terms of the latency of federate communications.
More specifically, the benchmark program measures the
elapsed time it takes for federates to send and receive an
attribute update. The benchmark uses two federates, and it
works as follows: one federate sends an attribute update,
and upon receiving this update, the other federate sends it
back to the sending federate. The elapsed time of this com-
munication is calculated by using the real time taken at the
sending and reflecting federates. All parameters used are
the default values given in the DMSO package. There is no
queuing of messages involved, and the communication pay-
load is assumed to be negligible. The communication pro-
tocol used is reliable.

The time advancement benchmark program measures
RTI performance in terms of the rate at which time advance
requests are processed. The benchmark uses two federates
with timestep cycle of 10, all other parameters are the de-
fault values from the DMSO package.

ProxyServiceProvider

ProxyFedComponentProxyRTIComponent

OperationProvider

NullFederateAmbassador

Invoke RTIamb Grid Service

Invoke Client’s Grid service

RTIambassador ProxyNullFedAmbassador

Figure 8. The class diagram of the resource side.

The testing is done using the Linux cluster in the Paral-
lel and Distributed Computing Centre at the School of Com-
puter Engineering of Nanyang Technological University in
Singapore and a Linux workstation in the School of Com-
puter Science at Birmingham University in the United King-
dom.

There are five components in the experiment: RTI ,
two federates Federate1 and Federate2, two more cor-
responding proxies Proxy1 and Proxy2 required by the
HLAGrid software. The processes RtiExec and FedExec
are executed in Singapore on machines Mrti. The processes
Federate1, Proxy1, and Proxy2 are executed in Singa-
pore on machines Mfed1, Mproxy1, and Mproxy2 respec-
tively. The process Federate2 is executed on Mfed2-SG in
NTU, and on Mfed2-UK in Birmingham as a comparison.
All machines in NTU are inter-connected using ethernet.
There is a connection between machine Mproxy2 in NTU to
machine Mfed2-UK in Birmingham through the Grid net-
work. The experiment hardware configuration is shown in
Figure 9. Individual machines’ specifications are shown in
Table 1. Figure 10 shows the configuration of the latency
benchmark and the major communication involved. As a
comparison study, the same benchmark programs are ex-
ecuted in the cluster and Wide-Area-Network (WAN) us-
ing both the DMSO HLA’s implementation and our HLA-
Grid prototype. Besides the configuration shown in Table 1
for benchmark experiments, we have also demonstrated our
HLAGrid on more heterogenous platforms between Singa-
pore and UK Midland e-Science center at Birmingham Uni-
versity. For example, in the e-Science cluster at Birming-

ham University, each node has 2 GBytes of memory and 2
Intel Xeon 3GHz processors, with Red Hat Enterprise Linux
(RHEL) system version AS 3 as the operating system.

The experimental results are shown in Table 2. The clus-
ter version of the latency benchmark shows that our pro-
totype incurs about 40 millisecond of overhead in a clus-
ter, and this is mainly due to the use of Globus, the encod-
ing/decoding of parameters/result, and the communication
cost. The overhead of Globus and the encoding/decoding of
parameters/result are relatively fixed. But the communica-
tion cost varies significantly between the WAN version and
the cluster version. From the comparison between HLA’s
cluster and WAN version, we can calculate the difference
in communication cost is roughly 300 millisecond. Also,
we can observe that in the HLAGrid’s cluster and WAN la-
tency benchmark comparison, the difference in communi-
cation cost is around 1150 milliseconds, which is about 3-
4 times that of the HLA case. To understand this, we use
the Unix command TCPDUMP to monitor the traffic (SOAP
messages) involved in Grid service requests/responses. We
observe that the size of the SOAP message is around 1-2
KByte per Grid service request/response, which is much
larger than the attribute size used in the benchmark (128
byte), and the overheads involved are the namespace in-
formation and XML tags. The increase of the number of
packets for the communication through Grid service invo-
cation as compared to the pure socket connection in the
existing HLA significantly affects the communication effi-
ciency. The time-advancement benchmark also shows simi-
lar results.

Figure 9. Experiment hardware configuration.

Mproxy2 Mrti, Mfed1, Mfed2-SG Mproxy1 Mfed2-UK

CPU 4xPentiumIII 500MHz PentiumIII 733MHz 2xPentiumIII 733MHz AMD Athlon 1.5GHz
Memory 1 Gbyte 1 Gbyte 1 Gbyte 2 Gbyte

OS Redhat Linux 7.0 Redhat Linux 7.0 Redhat Linux 7.0 Redhat Linux 7.3
gcc 3.0.2 3.0.2 3.0.2 3.0.2

HLA DMSO NG 1.3 V6 DMSO NG 1.3 V6 DMSO NG 1.3 V6 DMSO NG 1.3 V6

Table 1. Specification of machines for experiments.

Figure 10. Benchmark configuration.

HLA HLAGrid

Latency Cluster 10 millisecond 50 millisecond
WAN 305 millisecond 1200 millisecond

Time Advancement Cluster 680 grants/second 150 grants/second
WAN 2 grants/second 0.41 grants/second

Table 2. Experiment results

5. Benefits of the Architecture

Despite the rather lackluster performance results,
the proposed architecture supports service provision-
ing for HLA-based distributed simulation on the Grid in
several aspects.

Firstly, clients only need the Grid-enabled HLA library
for the federates to collaborate with other ones. This library
differs from the HLA/RTI JavaBinding, because it does not
require the HLA/RTI runtime executable code, while the
HLA/RTI JavaBinding executes such code via Java Native
Interface (JNI). Thus, the Grid-enabled HLA Library does
not rely on any HLA/RTI implementation, providing more
flexibility to the users. Moreover, the Grid-enabled HLA
library is implemented using Java, and it hides the het-
erogeneity of the platforms (CPU, Operating System, etc)
where federates can be executed.

Secondly, as one of the main features of the proposed
framework, the actual HLA/RTI services are provided over
the Grid, rather than provisioned by the clients who need
to run the federates. From the architecture’s point of view,
this feature allows users to run simulations without having
to manage the RTI service. Also, the entire simulation can
be provided as a service, so that other clients can discover
and use this service via the Grid-enabled HLA library. For
example, if there exists a HLA-based supply chain manage-
ment simulation available on the Grid, a wafer fab federate
can make use of the proposed framework to get involved in
the simulation without the knowledge of the HLA/RTI ver-
sion and the details of how the supply chain management
simulation is constructed, or how other federates are im-
plemented. The proposed framework provides transparency
not only between federates and the RTI, but also between a
federate and the rest of the federation because of the provi-
sioning of services (both RTI service and the simulation as
a service).

Besides, multiple copies of the HLA/RTI services can
serve multiple federations. The HLA/RTI service could be
provided by different parties on heterogenous platforms,
and this increases the availability of the HLA/RTI services.
Clients can choose which HLA/RTI service to use, which
provides more flexibility to the users. Furthermore, with
the availability of multiple HLA/RTI services, load balanc-
ing among the service providers is possible. Even if one
HLA/RTI service fails due to reasons like a hardware crash,

other services can still be used by clients, providing fault-
tolerance to the system as a whole.

Furthermore, clients can discover services and join a fed-
eration dynamically. In the traditional HLA-based distrib-
uted simulation, special arrangement has to be made before-
hand. But, with the proposed architecture, the HLA/RTI ser-
vice is discovered dynamically, and federates can join into
an existing federation without prior arrangement. This fea-
ture is especially suitable for interactive simulation such
as war-game simulation, where federates (aircrafts, tanks,
troops, etc) join and leave the federation dynamically.

Lastly, the proxy and the Grid-enabled HLA library in
the proposed architecture provides transparent HLA/RTI
method calls and callbacks through Grid service invoca-
tions, and can be used as gateway/bridge to support hier-
archical federations by connecting multiple RTIs [3, 4].

6. Conclusion and Future Work

In this paper, we propose a framework to extend the HLA
to support Grid-wide distributed simulation. More specifi-
cally, we focus on provisioning of resources through Grid
services and flexible construction of hierarchical federa-
tions. The framework achieves interoperability between dif-
ferent simulators (federates) by using a Federate-Proxy-
RTI architecture. This architecture allows federates with
heterogenous platforms to dynamically discover the RTI
service and join a federation on the Grid. Moreover, the
RTI services are exposed as Grid services, which provides
more secure, scalable and coordinated management. All in-
terfaces used in the framework comply with the standard
HLA interface specification, which provides reusability to
simulators. A prototype of the framework is implemented
using DMSO’s RTI 1.3NG version 6 and the Grid sys-
tem runs the Globus Toolkit Version 3 to achieve compati-
bility and interoperability. Experimental results show that
the our prototype incurs more overhead than the DMSO
HLA/RTI, and is suitable for coarse-grained applications.
Much work remains to be done, such as federate migration,
fault-tolerance, and integration with security.

References

[1] Access Grid Project. http://www.accessgrid.org/, 2004.

[2] BEEP. Blocks extensible exchange protocol,
http://www.ietf.org/rfc/rfc3080.txt, 2003.

[3] W. Cai, G. Li, S. J. Turner, B.-S. Lee, and L. Liu. Auto-
matic construction of hierarchical federations architecture.
In Proceedings of Seventh IEEE International Symposium on
Distributed Simulation and Real Time Applications (DS-RT
2002), pages 50–58, 2002.

[4] W. Cai, S. J. Turner, and B.-P. Gan. Hierarchical federa-
tions: an architecture for information hiding. In Proceedings
of Fifteenth Workshop on Parallel and Distributed Simula-
tion, pages 67–74, 2001.

[5] J. S. Dahmann, F. Kuhl, and R. Weatherly. Standards for sim-
ulation: as simple as possible but not simpler-the high level
architecture for simulation. Simulation, 71(6):378–387, June
1998.

[6] Data Grid Project. http://www.globus.org/datagrid/, 2004.
[7] Extensible Modeling and Simulation Framework (XMSF).

http://www.movesinstitute.org/xmsf/xmsf.html, 2004.
[8] J. B. Fitzgibbons, R. Fujimoto, D. Fellig, D. Kleban, and

A. J. Scholand. IDSim: An extensible framework for interop-
erable distributed simulation. In Proceedings of the IEEE In-
ternational Conference on Web Services (ICWS2004), pages
532–539, 2004.

[9] I. Foster. The anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science, 2150:1–
12, 2001.

[10] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[11] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
The physiology of the grid: An open grid ser-
vices architecture for distributed systems integration,
http://www.globus.org/research/papers/ogsa.pdf., 2002.

[12] Globus Toolkit version 3. http://www.globus.org/.
[13] L. Granowetter. RTI interoperability issues – API standards,

wire standards, and RTI bridges. In Proceedings of the
2003 European Simulation Interoperability Workshop, num-
ber 03S-SIW-063, 2003.

[14] K. L. Morse, D. L. Drake, and R. P. Brunton. Web en-
abling an RTI - an XMSF profile. In Proceedings of the IEEE
2003 European Simulation Interoperability Workshop, num-
ber 03E-SIW-046, 2003.

[15] Open GIS Consortium (OGC).
http://www.gis.com/software/ogc.html, 2004.

[16] Semantic Grid Project. http://www.semanticgrid.org/, 2004.
[17] SOAP. Simple Object Access Protocol,

http://www.w3.org/tr/soap/, 2003.
[18] R. Soley and the OMG Staff Strategy Group. Model-driven

architecture. Technical report, Object Management Group
(OMG), November 2000.

[19] A. Tolk. Avoiding another green elephant - a proposal for
the next generation HLA based on model driven architec-
ture. In Proceedings of the 2002 Fall Simulation Interoper-
ability Workshop, number 02F-SIW-004, 2002.

[20] A. Tolk and J. A. Muguira. The levels of conceptual interop-
erability model. In Proceedings of the 2003 Fall Simulation
Interoperability Workshop, number 03F-SIW-007, 2003.

[21] S. Tuecke, K. Czajkowski, I. Foster, J. Rey,
F. Steve, and G. Carl. Grid service specification,
www.globus.org/research/papers/gsspec.pdf, 2002.

[22] A. Wytzisk, I. Simonis, and U. Raape. Integration of HLA
simulation models into a standized web service world. In
Proceedings of the 2003 European Simulation Interoperabil-
ity Workshop, number 03E-SIW-019, 2003.

[23] Y. Xie, Y. M. Teo, W. Cai, and S. J. Turner. A distributed sim-
ulation backbone for executing HLA-based simulation over
the internet. In Workshop on Grid Computing & Applica-
tions, Proceedings of the 2nd International Conference on
Scientific and Engineering Computation, pages 96–103, June
2004.

[24] K. Zajac, M. Bubak, M. Malawski, and P. M. A. Sloot. To-
wards a grid management system for HLA-based interactive
simulations. In Proceedings of Seventh IEEE International
Symposium on Distributed Simulation and Real Time Appli-
cations (DS-RT 2003), pages 4–11, Delft, The Netherlands,
October 2003.

[25] W. Zong, Y. Wang, W. Cai, and S. J. Turner. Grid services
and service discovery for HLA-based distributed simulation.
In Proceedings of the IEEE/ACM Distributed Simulation-
Real Time Application Symposium, pages 116–124, 2004.

	Introduction
	Literature Review
	Design and Implementation
	Overview
	Detailed Design
	Client Side
	Resource Side
	Other Grid Services

	HLA Simulation on the Grid Walk-through
	Implementation

	Experiments and Results
	Benefits of the Architecture
	Conclusion and Future Work

