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Fig. 1. We assess SESAME on three tasks (a) image editing with free form semantic
drawings (first row) (b) semantic layout driven semantic editing (second row) (c) layout
to image generation with SESAME discriminator (third row)

Abstract. Recent advances in image generation gave rise to powerful
tools for semantic image editing. However, existing approaches can ei-
ther operate on a single image or require an abundance of additional
information. They are not capable of handling the complete set of edit-
ing operations, that is addition, manipulation or removal of semantic
concepts. To address these limitations, we propose SESAME, a novel
generator-discriminator pair for Semantic Editing of Scenes by Adding,
Manipulating or Erasing objects. In our setup, the user provides the
semantic labels of the areas to be edited and the generator synthesizes
the corresponding pixels. In contrast to previous methods that employ a
discriminator that trivially concatenates semantics and image as an in-
put, the SESAME discriminator is composed of two input streams that
independently process the image and its semantics, using the latter to
manipulate the results of the former. We evaluate our model on a diverse
set of datasets and report state-of-the-art performance on two tasks: (a)
image manipulation and (b) image generation conditioned on semantic
labels.
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Keywords: Generative Adversarial Networks, Interactive Image Edit-
ing, Image Synthesis

1 Introduction

Image editing is a challenging task that has received increasing attention in the
media, movies and social networks. Since the early 90s, tools like Gimp [38] and
Photoshop [36] have been extensively utilized for this task. Yet, both require
high level expertise and are labour intensive. Generative Adversarial Networks
(GANs) [10] provide a learning-based alternative able to assist non-experts to
express their creativity when retouching photographs. GANs have been able to
produce results of high photo-realistic quality [19,20]. Despite their success in
image synthesis, their applicability on image editing is still not fully explored.
Being able to manipulate images is a crucial task for many applications such as
autonomous driving [15] and industrial imaging [7], where data augmentation
boosts the generalization capabilities of neural networks [1,49,9].

Image manipulation has been used in the literature to refer to various tasks.
In this paper, we follow the formulation of Bau et al . [3], and define the task of
semantic image editing as the process of adding, altering and removing instances
of certain classes or semantic concepts in a scene. Examples of such manipula-
tions include but are not limited to: removing a car from a road scene, changing
the size of the eyes of a person, adding clouds in the sky, etc. We use the term
semantic concepts to refer to various class labels that can not be identified as
objects, e.g ., mountains, grass, etc.

Training neural networks for visual editing is not a trivial task. It requires
a high level of understanding of the scene, the objects, and their interconnec-
tions [45]. Any region of an image added or removed should look realistic and
should also fit harmoniously with the rest of the scene. In contrast to image
generation, the co-existence of real and fake pixels make the fake pixels more
detectable, as the network cannot take the ”easy route” of generating simple
textures and shapes or even omit a whole class of objects [4]. Moreover, the lack
of natural image datasets, where a scene is captured with and without an object,
makes it impossible to train such models in a supervised manner.

One way to circumvent this problem is by inpainting the regions of an image
we seek to edit. Following this scheme, we mask out and remove all the pixels
we want to manipulate. Recent works [55,32,37,16] improve upon this approach
by incorporating sketch and color inputs to further guide the generation of the
missing areas and thus provide higher level control. However, inpainting can
only tackle some aspects of semantic editing. To address this limitation, Hong et

al . [12] manipulate the semantic layout of an image, and subsequently, they
utilize it for inpainting the image. Yet, this approach requires access to the full
semantic information of the image, which is costly to acquire.

To this end, we propose SESAME, a novel semantic editing architecture based
on adversarial learning, able to manipulate images based on a semantic input. In
particular, our method is able to edit images with pixel-level guidance of semantic
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labels, permitting full control over the output. Note that our method requires
the semantics only for regions to be edited. The generator seeks to synthesize an
altered image such that the synthesized pixels comply with both the context and
the user input. Moreover, we propose a new approach for semantics-conditioned
discrimination, by utilizing two independent streams to process the input image
and the corresponding semantics. We use the output of the semantics stream
to manipulate the output of the image stream. We employ visual results along
with quantitative analysis and a human study to validate the performance and
flexibility of the proposed approach.

2 Related Work

Generative Adversarial Networks [10] have completely revolutionized a great
variety of computer vision tasks such as image generation [20,19,30], super res-
olution [48,27], image attribute manipulation [28,40] and image editing [12,3].

While in their original formulation GANs were only capable of generating
samples drawn from a random distribution [10], soon multiple models emerged
able to perform conditional image synthesis [29,33]. This gave rise to ap-
proaches that employ a generative model for producing outputs conditioned on
different types of information. There are many approaches targeting multiple
levels of abstraction and locality of features that we seek to encapsulate in the
output. For example, [29,31,57,5] focus on representing images characterized by
a single label. In a different setting, [39,58,59,52] employ a text to image pipeline
to provide a high-level description of the corresponding image. Recently, many
methods utilize information of a scene graph [18,2] and sketches with color [42]
to represent where objects should be positioned on the output image.

A more fine-grained approach aims to translate semantic maps, which carry
pixel-wise information, to realistic-looking images [14,47,35,22]. For all the afore-
mentioned models, the user can control the output image by altering the con-
ditional information. Nonetheless, they are not suitable for manipulating an
existing image, as they do not consider an image as an input.

User-guided semantic image editing is the task where the user is able
to semantically edit an image by adding, manipulating or removing semantic
concepts [3]. Both GANPaint [3] and SinGAN [43] are able to perform such
operations. GANPaint [3] achieves this by manipulating the neuron activations
and SinGAN [43] by learning the internal batch statistics of an image. However,
both are trained on a single image and require retraining in order to be applied
to an another, while our model is able to handle manipulation of multiple images
without retraining.

An other line of work is inpainting [13,56,25], where the user masks a region of
the image for removal and the network fills it accordingly to the image context.
This can been interpreted as a simple form of editing, but the user does not
have control over the generated pixel. To address this, other research works
guide the generation of the missing areas using edges [55,32] and/or color [37,16]
information.
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Recently, researchers shifted their attention to more semantic aware ap-
proaches for inpainting, by focusing on object addition and removal. Shetty et

al . [44], for instance, propose a two stage architecture to address removal op-
erations, by using an auxiliary network that predicts the masks of the objects
during training, while, at inference, users provide their own masks. Note that
their model cannot handle new objects generation. Another line of work is tack-
ling object synthesis by utilizing semantic layout information, which provides a
fine-grained guidance over the manipulation of an image. Yet, a subset of them
is limited by generating objects from a single class [34,51] or placing prior fixed
objects on the semantics plane [23]. Hong et al . [12] are able to handle both
addition and removal, but require full semantic information of the scene to pro-
duce even the smallest change to an image. In contrast, our method requires
only the semantics of the region to be edited.

The majority of the aforementioned works rely on adversarial learning to
tackle the problem of image editing, by primarily focusing on adjusting the
generator. Most recent models use a PatchGAN variant [14] which is able to
discriminate on the high frequencies of the image. This is a desired attribute as
conventional losses like Mean Squared Error and Mean Absolute Error can only
convey information about the lower frequencies to the generator. PatchGAN can
also be used for conditional generation of images on semantic maps, similar to our
case study. Previous works targeting a similar problem concatenate the semantic
information to the image and use it as an input to the discriminator. However,
conventional conditional generation literature suggests that concatenation is not
the optimal approach for conditional discrimination [39,33,31]. In this work, we
extend PatchGAN to better incorporate conditional information by processing
it separately from the image input. In a later stage of the network the two
processed streams are merged to produce the final output of the discriminator.

3 SESAME

In this work we describe a deep learning pipeline for semantically editing im-
ages, using conditional Generative Adversarial Networks (cGANs). Given an
image Ireal and a semantic guideline of the regions that should be altered by
the network, denoted by Msem, we want to produce a realistic output Iout. The
real pixels values corresponding to Msem are removed from the input image.
The generated pixels in their place should be both true to the semantics dic-
tated by the mask and coherent with the rest of the pixels of Ireal. In order to
achieve this, our network is trained end-to-end in an adversarial manner. The
generator is a Encoder-Decoder architecture, with dilated convolutions[53] and
SPADE[35] layers, explained in section 3 and the discriminator is a two-stream
patch discriminator, described in section 3.

SESAME Generator. Semantically editing a scene is an Image to Image
translation problem. We want to transform an image where we substituted the
RGB pixels of the regions with an one-hot semantics vector. From the generator’s
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Semantic Generator

Fig. 2. The SESAME Generator aims to generate the pixels designated by the semantic
mask so they are both (1) true to their label and (2) fit naturally to the rest of the
picture. It is an encoder-decoder architecture with dilated convolutions to increase the
receptive field as well as SPADE layers in the decoder to guide in-class generation

output, only the pixels on the masked out regions are retained, while the rest
are retrieved from the original image:

Igen = G(Im,M,Msem), (1)

Iout = Igen ·M + Ireal · (1−M). (2)

This architecture should accomplish two goals: generated pixels should 1) be
coherent with their real neighboring ones as well as 2) be true to the semantic
input. To achieve these goals we adapt our generator from the network proposed
by Johnson et al . [17] to fill the gaps: two down-sampling layers, a semantic core
made of multiple residual layers and two up-sampling ones.

We conceptually divide our architecture into two parts: the encoder and the
decoder. In the encoder we aim to extract the contextual information of the pixels
we want to synthesize. In the decoder part we combine the semantic information
using Spatially Adaptive De-Normalization [35] blocks to every layer. As the
area to be edited can span over a large region, we would like the receptive field
of our network to be relatively large. Thus, we use dilated convolutions in the
last and first layers of the encoder and the decoder respectively. A scheme of our
SESAME generator can be seen in the Fig. 2, and for further details refer to the
supplementary materials.

SESAME Discriminator. Layout to image editing can be seen as a sub-
task of label to image translation. Inspired by Pix2Pix [14], more recent ap-
proaches [47,35] employ a variation of the PatchGAN discriminator. The Marko-
vian discriminator, as it is also called, was a paradigm shift that made the
discriminator focus on the higher frequencies by limiting the attention of the
discriminator into local patches, producing a different fake/real prediction value
for each of them. The subsequent methods added a multi-scale discrimination
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Convolutional Layer

Sum Global Pooling

OR

Fig. 3. The SESAME discriminator, in contrast to the commonly used PatchGAN, is
handling the RGB Image and its Semantics independently. Before the last convolutional
layer the two streams, DRGB and DSem, are merged. The semantics stream is reduced
via a Sum Global Pooling operation to a 2D matrix of spatial dimensions equal to the
number of output patches. The feature vector of DRGB at each path is scaled by DSem

and a residual is added to product

approach, the Feature Matching-Loss [47] and the use of Spectral Normaliza-
tion [30] instead of Instance Normalization [35], which stabilized training and
further improved the quality of the generated samples. However, the way the
conditional information was provided to the discriminator remained unchanged.

Label to image generation is a sub-task of conditional image generation. In
this more general category of methods, we can observe how the discriminator has
evolved from the cGAN’s input concatenation [29], to concatenating the class
information with a hidden layer [39], and lastly, to take the form of the projection
discriminator [31]. In the latter approach, the inner product of the embedding of
the conditional information and a feature extracted from the hidden layers of the
discriminator are summed with the output of the discriminator to produce the
final prediction. Each step of the conditional discriminator evolution improved
the results over the näıve concatenation at its input [31]. On these methods the
discriminator produces, nonetheless, a scalar output for the whole image.

We aim to design a discriminator for label to image generation that combines
the aforementioned attributes. On the one hand, it should preserve the ability
of PatchGAN to discriminate on high-frequencies. On the other hand, we want
to enforce the semantic information guidance on the discriminator’s decision. If
the pixels of the whole image shared semantic class, the projection discriminator
would be easily extended to PatchGAN. In contrast, our case is characterized
by fine-grained per pixel semantics: each output patch encompasses a variety of
classes and different compositions of them.

Our proposed SESAME discriminator is comprised by two independent streams
that handle the RGB and Semantic Labels inputs. As Fig. 3 depicts, the two
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streams have identical architectures. Before the information is merged a Sum

Global Pooling operation is applied on the outputs of the Semantics Stream.
The output of the semantics stream is used to scale each output coming from
the RGB stream. The resulted feature map is passed as input to a last 3 × 3
convolutional layer, which produces the final output. The process can be written
as follows:

D(I, Sem) = Conv3×3(DRGB(Iout) · (1 +
∑

channels

Dsem(Sem)) ), (3)

where the DRGB is the output of the RGB stream and Dsem of the semantics
stream before the Global Sum Pooling. We also integrate the changes made to
PatchGAN by Pix2PixHD [47] and SPADE [35]. We use a multi-scale discrimi-
nation scheme with squared patches and two different edge-sizes of 70 and 140
pixels, in order to provide also discrimination at a coarser level and Spectral
Normalization. The input to the semantic stream is the same for both fake and
real images discrimination, so we only need to calculate Dsem once. Moreover,
it makes sense to apply the Feature Matching Loss only to the Feature Maps
produced by the RGB stream.

Training Losses. We train the Generator in an adversarial manner using the
following losses: Perceptual Loss [17], Feature Matching Loss [41] and Hinge
Loss [24,46,30] as the Adversarial Loss. Early experiments with Style Loss [17]
did not improve the results. Accordingly:

LG = λpercept · Lperc + λfeat · LFM − Ez∼p(z)[Dk(Iout,M,Msem))]. (4)

For the discriminator at each scale the Hinge Loss takes the following form:

LDk
= Ez∼qdata(x)[min(0,−1 +Dk(Ireal,M,Msem))]+

Ez∼p(z)[min(1,−1−Dk(Ireal,M,Msem))], (5)

which is then combined to form the full discrimination loss,

LD = LD1
+ LD2

. (6)

4 Experiments

In Section 3 we described how the SESAME Generator can be used to semantic
edit images for addition, manipulation and removal and how we designed the
SESAME discriminator to tackle both image editing. To elucidate the merits of
our approach we conducted a series of different experiments:

– In order to quantify the performance of our network we follow the data
preparation and evaluation steps of Hong et al . [12] , for generating and
removing objects based on a give semantic layout.
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(a) (b) (d)(c) (a) (b) (d)(c)

Fig. 4. Visual results of addition on Cityscapes: (a) input image (b) edited semantics
(c) SESAME (d)Hong et al . [12] . Note that Hong et al . [12] require the whole semantics
while we use only the semantics of the box

– We train our model to permit free form semantic input from users to ma-
nipulate scenes and show qualitative results.

– We train our SESAME discriminator along with SPADE Generator for Label
to Image Generation.

Implementation Details. For training we are using the Two Time-Scale Up-
date Rule [11] to determine the scale between the learning rate of the generator
and the discriminators, with lrgen = 0.0001 and lrdisc = 0.0004. We train for
200 epochs. After 100 we start to linearly decay the learning rates to 0. For our
generator losses we multiplied the Feature Matching Loss and Perceptual loss
by a factor of 10 before adding them to the adversarial loss. We use the Adam
optimizer [21] with coefficient values of b1 = 0 and b2 = 0.999, similar to [35].

Datasets. In line with the literature we conduct experiments:

– Cityscapes [8]. The dataset contains 3,000 street-level view images of 50
different cities in Europe for the training set and 500 images for the validation
set. The images are accompanied by fine grained information of the per-pixel
semantics and instance segmentation with original resolution of the images is
2048× 1024 pixels. For addition and removal we down-sample to 1024× 512
pixels before patches of 256 × 256 pixels are extracted. Following Hong et

al . [12] , we choose 10 of the 30 available semantics classes as foreground
objects, e.g ., pedestrians, cars, bicycles, etc.. For generation we resize the
image to 512× 256 pixels.

– ADE20K [60,61] ADE20K has over 20,000 images together with their de-
tailed semantics for 150 different semantic classes. In addition, 2,000 more
images are offered for validation. We use this dataset for Image Generation.
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(a) (b) (d)(c) (a) (b) (d)(c)

Fig. 5. Visual results of addition on ADE20k: (a) input image (b) edited semantics (c)
SESAME (d) Hong et al . [12] . In this setting we use the full semantic information to
guide the editing

– ADE20K-bedroom Following Hong et al . [12] we experiment on a subset of
the ADE20K dataset comprised of bedroom scenes. Similarly to Cityscapes,
31 objects are chosen as foreground objects. In total, we consider 49 semantic
categories for training and evaluation.

– Flickr-Landscapes Datasets [35] Similar to SPADE [35], we first scrapped
200,000 images from Flickr with only landscape constraint. As our main pur-
pose is to show image editing over significant areas within a landscape, we
use a DeepLab-v2 [6] network trained on COCO-Stuff in order to extract
images that contain at least 80% pixels of clouds, mountains, water, grass,
etc. After post-processing, our curated dataset consists of 7367 training and
500 validation images with their corresponding segmentation for 17 different
semantic classes.

Data Pre-processing. Free-form semantic editing is not trivial to achieve. The
model can easily overfit on mask shapes used during training. In order to train
our free-form semantic editing experiments, we randomly draw a box mask in
conjunction with random strokes [55] with 70% chance, otherwise we drop all
the pixels belonging to a semantic class of the training image.

For layout driven editing, we extend the data pre-processing scheme intro-
duced by Hong et al . [12]. A rectangular area is removed from the input image
and we try to inpaint it using the semantic labels. To train the addition opera-
tion, they extract the boundary boxes based on the instances of the foreground
classes. For the removal sub-task, they randomly choose and remove blocks to
train the network to inpaint background classes. While this makes sense for a
dataset like ADE20k where the foreground objects can be found anywhere in
the pictures, in Cityscapes the foreground objects placement follow certain dis-



10 E. Ntavelis et al.

Mountain Sea Trees Ground Clouds Sky Grass

Fig. 6. Free-form image manipulation. The user can select a semantic brush and paint
over the image to adjust as they see fit

Table 1. Results for the Cityscapes dataset [8]. For the SSIM and mIoU higher is
better, while for FID, lower is better. We follow [35] and use the DRN [53,54] for
segmenting

Addition Removal
Method SSIM↑ accu↑ mIoU↑ FID↓ SSIM↑ accu↑ mIoU↑ FID↓

Hong et al . [12] 0.377 83.8% 60.7% 12.11 0.584 83.9% 65.3% 10.34
SESAME 0.410 86.0% 65.3% 11.03 0.797 85.0% 67.6% 7.43

tributions [23]. Thus we only extract a randomly chosen rectangular area if it
contains at least a pixel of ground, road, sidewalk and parking.

Quantitative Results. For measuring the performance of our network we com-
bine the evaluation approach of previous methods [12,35]. To assess the visual
quality of our synthesis we use the Frechet Inception Distance (FID) [11]. Then
we compare the mean Intersection over Union (mIoU) and the pixel-accuracy
loss between the ground truth semantic layout and the inferred one. For all our
experiments, we chose every time the same object in order to maintain consis-
tency. Additionally, in our comparison with Hong et al . [12] , we compute the
Structural Similarity Index (SSIM) [50] between each 〈Ireal, Iout〉 pair, taking
into account only the generated pixels. Naturally, as in the case of Editing only
a small percentage of image pixels are changed we expect better results than in
the Generation experiments, but also better methods yield larger performance
gains when tackling the latter.
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Table 2. Quantitative Results for the proposed SESAME in comparison to Hong et

al . [12] on ADE20K dataset [61,60]. Note that the majority of the pixels used to
calculate these metrics are real, thus reducing the actual numerical improvement of
SESAME over our baseline

Addition Removal
Method SSIM↑ accu↑ mIoU↑ FID↓ SSIM↑ accu↑ mIoU↑ FID↓

Hong et al . [12] 0.236 92.5% 33.9% 27.53 0.456 91.7% 40.0% 24.98
SESAME 0.267 93.4% 36.7% 24.88 0.491 92.3% 41.6% 23.30

Table 3. Comparison in number of parameters

Parameters in millions
Method Generator Discriminator

Hong et al . [12] 190m 5.6m
SESAME 20.5m 11.1m

Our Baselines. For our semantic image editing baseline we are using the work
of Hong et al . [12]. They introduced a hierarchical model to tackle the task of
image editing. In the first stage, they inpaint the semantic classes of an image
with a missing region. Then they combine the predicted output with the ground
truth and after concatenating the real image with the missing pixels, they use
their second stage model to fill the image. Similar to their work, we focus on
the mask to image generation task and compare our model against their image
generator trained on the ground truth labels. Their approach consists of an
encoder and a decoder. The encoder has two input streams where the image and
the semantics are processed separately and are then fused based on the mask of
the object location. The result of the fusion is then passed to an image decoder
which produces the end result. The generator is trained in conjunction with a
PatchGAN discriminator. We use different architectures and largely decrease the
number of parameters for the generator and have a larger discriminator as shown
in Table 3. However, during inference time only the generator is used. Reduced
number of parameters for the generator is clearly beneficial during execution.
For Image Generation our Baseline is SPADE [35].

Addition and Removal of Objects To elucidate the ability of our network to
perform well both on the addition and the removal part we compare on both tasks
separately. The computed metrics for these cases can be found in Tables 1 and
2 for Cityscapes and ADE20k, respectively. For a fair comparison, we showcase
a version of our model where a rectangular region of pixels is removed from the
input image.

For Cityscapes and ADE20K we use the boundary box (BBox) semantics and
the full semantics, respectively. In the visual results we can observe that objects
look sharper and their features are more distinctive. Furthermore, as Figures 4
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Fig. 7. Label to Image Generation results. For each triplet of images we are showing
the semantic layout input (left), generation using PatchGAN (center) and SESAME
(right) discriminator on top of SPADE generator

and 5 illustrate, our method generates different patterns for different clothes,
and cars in which the windows are not mixed with the rest of the car. Besides
our better numerical results, our user study (see Section 4) further illustrates
the superiority of our approach. In the case of removal, artifacts of the BBox are
commonly left in picture by the method of Hong et al . [12] , whilst in our case
this effect is difficult to notice.

Labels to Image Generation The SESAME Discriminator is designed to
tackle the shortcomings of the naive concatenation of an image and its seman-
tics label when generating images. We measure the performance on Labels to
Image Generation against SPADE [35] using the same generator. The results for
Cityscapes and ADE20k datasets can be found on Table 6 and Fig. 7.

Free-Form Semantic Image Editing The user selects a brush of a semantic
class and paints over the image. The pixels that are painted over are removed
from the image and SESAME is filling the gaps based on the painted semantic
guidance. Examples of hand painted masks and corresponding results can be seen
on Fig. 6. We should note that snow is a different semantic label from mountain

and we can observe when draw with the mountain brush the model learned to
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Table 4. We ablate on the semantics availability, the generator architecture and the
discriminator architecture for adding objects on street scenes from Cityscapes w.r.t.
FID score (lower is better)

Discriminator
Full semantics BBox semantics

Generator Patch Ours Patch Ours

SPADEPix2PixHD 11.92 12.74 12.32 12.66
Ours 11.95 11.64 11.13 11.03

differentiate this from snow. Additionally, the context is very important for the
label we want to add: a patch of grass cannot be drawn in the middle of the sky.
More results can be found in the supplementary materials.

Ablation Study SESAME incorporates a Generation/Discrimination pair able
to edit a scene by only considering the Semantics of regions in the image that the
user seeks to edit. In order to showcase the benefits of our approach we ablate the
performance of our architecture by varying (a) the generator architecture, (b)
the discriminator architecture and (c) the available semantics, by utilizing either
the Full semantic layout or the semantics of the rectangular region we want to
edit, which we refer to as BBox Semantics. Regarding the generator architecture,
we compare our generator against Pix2PixHD++ [47], with SPADE layers on
the decoder part. Regarding discriminator architecture, we compare against the
commonly used PatchGAN.

The performance assessment is reported in Table 4. The use of our discrim-
inator over PatchGAN improved the results in almost all cases. However, we
observe that while our generator-discriminator combination performs the best,
the second combination is without any of our networks. We argue that our pro-
posed method works better together as the large receptive field provided by the
dilated convolutions in our generator synergizes well with the highly focused
gradient flow coming from our discriminator.

In another series of experiments, we substituted our Semantics merging op-
eration. Instead of applying Sum Global Pooling, we experiment with 1) con-
catenating the two streams of information and 2) calculating their element-wise
product resulted in a lower FID score compared to the proposed approach, 11.96
and 12.02 respectively.

User Study We employed Amazon Mechanical Turk4 to conduct two exper-
iments for the user study. For each of them, we sampled 100 images from our
validation set and asked 20 Turkers: Which among the images looks more photo-

realistic?

The first experiment presented the Turkers with three options: our method
with access to only the BBox information and both ours and Hong et al . [12]

4 https://www.mturk.com

https://www.mturk.com
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Table 5. User Study Results: Which image is the most photo-realistic? The first
study invited the users to choose between Hong et al . [12] with full semantics informa-
tion and ours with full and bbox semantics, respectively. The second study invited to
choose between the results produced by our SESAME and the PatchGAN discrimina-
tor, for different availability of semantics

User Study I

Setting Preference [%]

Hong et al . [12] 22.50
Ours w Full 35.83
Ours w BBox 41.67

User Study II

Discriminator: SESAME PatchGAN

FullContext 56.67 43.33
BBoxContext 61.04 38.96

Table 6. Layout to image generation results. For the SSIM, mIoU and accu, higher is
better, while for FID, lower is better

Cityscapes ADE20k
Method mIoU accu FID mIoU accu FID

Pix2PixHD 58.3 81.4 95.0 22.4 68.38 81.8
SPADE 62.3 81.9 71.8 38.5 81.9 33.9
Ours 66.0 82.5 54.2 49.0 85.5 31.9

model using the Full Semantics. As shown in Table 5 the results of our SESAME
approach were clearly preferred by the users over the results of our baseline.
Moreover, in agreement with our quantitative analysis, the proposed scaling
scheme in our discriminator benefits from less irrelevant semantic information.
Another group of settings compared the results when the PatchGAN is used
instead of our SESAME discriminator. The results consistently show that the
independent processing of the semantic information leads to better perceptual
quality of the results; they are picked more often by the human subjects.

5 Conclusion

In this work, we introduce SESAME a novel method for semantic image editing
covering the complete spectrum of adding, manipulating and erasing operations.
Our generator is capable of manipulating an image by only conditioning on the
semantics of the regions the user seeks to edit, namely without requiring the
information about the full layout. Our discriminator processes the semantic and
image information in separate streams and overcomes the limitations of the con-
catenating approach inherent in PatchGAN. SESAME produces state-of-the-art
results on the tasks of (a) semantic image manipulation and (b) layout to image
generation and permits the user to edit an image by intuitively painting over it.
As a future research direction, we plan to extend this work on image generation
conditioned on other types of information, e.g ., scene graphs, could also benefit
from our two-stream discriminator. We refer to supplementary material for more
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details. We will open-source the code and the models under the repository name
OpenSESAME.
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A Supplementary Material

Model Architectures The detailed architectures of the SESAME generator
and discriminator are depicted in Tables 7 and 8 respectively. Please note that
for the discriminator we use this architecture twice, once for each scale.

Table 7. SESAME generator architecture. We depict the number of Filters, theKernel
size, the Stride and the Dilation factor

Layer Normalization Activation

ConvBlock F = 64, K = 7, S = 1, D = 1 Instance ReLU
ConvBlock F = 128, K = 3, S = 2, D = 1 Instance ReLU
ConvBlock F = 256, K = 3 , S = 2, D = 1 Instance ReLU
ResBlock F = 256, K = 3, S = 1, D = 1 Instance ReLU
ResBlock F = 256, K = 3, S = 1, D = 2 Instance ReLU
ResBlock F = 256, K = 3, S = 1, D = 2 Instance ReLU
ResBlock F = 256, K = 3, S = 1, D = 2 Instance ReLU
ResBlock F = 256, K = 3, S = 1, D = 2 SPADE LeakyReLU(0.02)
ResBlock F = 256, K = 3, S = 1, D = 2 SPADE LeakyReLU(0.02)
ResBlock F = 256, K = 3, S = 1, D = 2 SPADE LeakyReLU(0.02)
ResBlock F = 256, K = 3, S = 1, D = 2 SPADE LeakyReLU(0.02)
ResBlock F = 256, K = 3, S = 1, D = 1 SPADE LeakyReLU(0.02)

Nearest Neighbour Upsampling ×2 - -
ResBlock F = 128, K = 3, S = 1, D = 1 SPADE LeakyReLU(0.02)

Nearest Neighbour Upsampling ×2 - -
ResBlock F = 64, K = 3, S = 1, D = 1 SPADE LeakyReLU(0.02)
ConvBlock F = 3, K = 3, S = 1, D = 1 - TanH

Replacement of objects Apart from adding and removing objects, SESAME
can also be used to replace an instance of an object, given that we know its class
and its outline. SESAME can be utilized in this manner for dataset augmenta-
tion. We conduct experiments on replacing objects in street scenes of Cityscapes
and we ablate on the usage of our SESAME discriminator against the Patch-
GAN. In Table 9 we measure the FID score of the image results, the SSIM of
the generated regions and we also devoted a part of our user study, described in
Section 4 of the main paper, to test which of the two discriminators produces
the most photo-realistic results. Visual results can be found in Figure 8.

Visual Results We show more edited and generated images produced by our
method:

– Figure 8 contains visual results of our ablation analysis on various access
levels of semantics and different discriminators.

– Figure 9 contains visual results for removing objects under different config-
urations.
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Table 8. SESAME discriminator architecture per scale, We depict the number of
Filters, the Kernel size, the Stride and the Dilation factor

Layer Normalization Activation

Image Stream

ConvBlock F = 64, K = 4, S = 2, D = 1 - LeakyReLU(0.02)
ConvBlock F = 128, K = 4, S = 2, D = 1 SpectralInstance LeakyReLU(0.02)
ConvBlock F = 256, K = 4, S = 2, D = 1 SpectralInstance LeakyReLU(0.02)
ConvBlock F = 512, K = 4, S = 1, D = 1 SpectralInstance LeakyReLU(0.02)

Semantics Stream

ConvBlock F = 64, K = 4, S = 2, D = 1 - LeakyReLU(0.02)
ConvBlock F = 128, K = 4, S = 2, D = 1 SpectralInstance LeakyReLU(0.02)
ConvBlock F = 256, K = 4, S = 2, D = 1 SpectralInstance LeakyReLU(0.02)
ConvBlock F = 512, K = 4, S = 1, D = 1 SpectralInstance LeakyReLU(0.02)

Sum Global Pooling - -

Common Head

ConvBlock F = 1, K = 4, S = 1, D = 1 - -

Table 9. Object Replacement - Cityscapes. We show the performance of our SESAME
model with our discriminator and the PatchGAN[14,35] discriminator as well as the
percentage of user answers to the question: Which image looks more photo-realistic?

Discriminator SSIM↑ FID↓ User Preference(%)

PatchGAN 0.390 10.63 45.03
SESAME 0.433 9.3 54.97

– Figure 10 shows results for editing ADE20k-Bedroom scenes[61,60].
– Figure 11 showcases examples of free-from semantic editing.
– On Figures 12 and 13 we can observe layout to image generation results for

Cityscapes and ADE20k.

Label to Image Generation: Comparison with CC-FPSE: Concurrently
to our work, Liu et al . [26] developed an approach to tackle image generation
conditioned on semantic layouts. They propose a generator architecture that
learns to predict convolutional kernel weights conditioned on the semantic in-
put. Moreover, they propose a feature pyramid semantics-embedding (FPSE)
discriminator using a U-Net architecture. Each upsampling layer outputs two
per-patch score maps, one trying to measure the realness and one to gauge the
semantic matching with the labels; the later is derived after a patch-wise inner
product operation with the down-sampled semantic embeddings.

Their FPSE discriminator, while it also addresses the shortcomings of previ-
ous models, follows a different approach to our SESAME discriminator. Although
they similarly aim to short-circuit the guidance of the semantic labels to the
discrimination, they choose to do so by embedding the patch with a 1×1 convo-
lution and down-sampling via average pooling the semantic layout to match the
size of their image processing pipeline. As we explained in the main paper, the
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Fig. 8. Visual results for addition on Cityscapes[8]. We ablate on: (a) using the Full
context, using only the labels of the rectangular areas to be edited and only replacing an
object given its mask (b) generations due to training with the PatchGAN Discriminator
and SESAME. Finally, we show the results produced by the method of Hong et al . [12]
, using the full semantics information
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Fig. 9. Visual results for removal on Cityscapes[8]. We ablate on: (a) using the Full
context and using only the labels of the rectangular areas to be edited (b) generations
due to training with the PatchGAN Discriminator and SESAME. In the first row we
show the results produced by the method of Hong et al . [12] , using the full semantics
information

Label Masked Hong et al. SESAME

Fig. 10. Visual results for editing Bedroom scenes from ADE20K dataset. Here we are
using the Full semantic information to alter the gray area
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Mountain

Sea

Trees

Ground

Clouds

Sky

Grass

Sand

Input Edited Generated Input Edited Generated

Fig. 11. Examples of free form editing using semantic brushes. Note that in the last,
row instead of the mountain brush, we used rock and tree, on the left and right side
respectively. The model fails to correctly depict a semantic concept out of context or
with an unexpected shape
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real label SPADE SESAME

Fig. 12. Cityscapes[8]: Visual results for image generation conditioned on Semantic La-
bels. We showcase the results using the generator from SPADE[35] with the PatchGAN
Discriminator(SPADE) and ours(SESAME)
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real label SPADE SESAME real label SPADE SESAME

Fig. 13. Ade20k[61,60]: Visual results for image generation conditioned on Semantic
Labels. We showcase the results using the generator from SPADE[35] with the Patch-
GAN Discriminator(SPADE) and ours(SESAME)
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Table 10. Layout to image generation results. For the mIoU and accu, higher is better,
while for FID, lower is better.

Cityscapes ADE20k
Method mIoU↑ accu↑ FID↓ mIoU↑ accu↑ FID↓

Pix2PixHD[47] 58.3 81.4 95.0 20.3 69.2 81.8
SPADE[35] 62.3 81.9 71.8 38.5 79.9 33.9
CC-FPSE[26] 66.5 82.3 54.3 43.7 82.9 31.7

SESAME 66.0 82.5 54.2 49.0 85.5 31.9

receptive field of a patch may contain a multitude of different semantic classes
with a variety of compositions. Trivially down-sampling the semantic label can
result into loss of information. Thus, we proposed a dedicated part of the dis-
criminator to derive a meaningful representation for such an intricate semantic
patch. Moreover, our model independently processes the semantic information
for each scale.

In this work, we develop a solution to tackle the problem of semantic image
editing and we apply our SESAME discriminator on top of SPADE’s generator
to produce our label to image generation results. However, Liu et al . [26] focus
solely on this task and achieve results similar to ours when incorporating all
components to their model, as seen in Table 10. Note that their performance de-
teriorates when using SPADE’s generator, a setup comparable to our approach.

The values in italics of Table 10 are corrections of the ones reported on the
main paper.




