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Let L be an ample line bundle on a projective

variety X over C.

How can we measure the positivity of

L?

The volume Ln is one basic measure, where

n = dim X.

But it is not enough.
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X = P1 × P1, L1 = O(k, k), L2 = O(1, k2).

Then

KX + L1 is nef for k ≥ 2 and very ample for

k ≥ 3,

but KX + L2 is not effective for any k > 0
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The Seshadri constant ε(X, L; p) for p ∈ X is;

ε(X, L; p) := inf
C

C.L

multp(C)
> 0

= max{ t ≥ 0 | µ∗L − tE is nef },
µ : X̃ → X,E = µ−1(p)

.
Remark (Seshadri criterion)
..
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For a line bundle L,

L is ample⇔ inf
p,C

C.L

multp(C)
> 0
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ε(Pn,O(1); p) = 1 for ∀p,

ε(P1 × P1;O(a, b); p) = min{a, b} for a, b > 0,∀ p,

For a smooth cubic surface S ⊂ P3,

ε(S,O(1); p) =

{
1 if p ∈ line

3/2 otherwise.
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(1) For p ∈∀ Z ⊂ X,

ε(X, L; p) ≤ dim Z

√
Z.Ldim Z

multp(Z)
.

In particular, ε(X, L; p) ≤ n
√

Ln holds.

(2) For a flat family (Xt, Lt, pt)t∈T over smooth T and

0 ∈ T,

ε(Xt, Lt; pt) ≥ ε(X0, L0; p0)

holds for very general t (lower semicontinuity).
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By the lower semicontinuities of Seshadri

constants, we can define the following;
.
Definition..
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.

The Seshadri constant ε(X, L; 1) of L at a very

general point is;

ε(X, L; 1) := ε(X, L; p)

for very general p ∈ X.
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Seshadri constants relate to

jet separations of adjoint line bundles

(Demailly),

Ross-Thomas’ slope stabilities of polarized

varieties (Ross-Thomas),

Gromov width (Mcduff-Polterovich), and so

on.
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But it is very difficult to compute Seshadri

constants in general.

In higher dimensional cases, the following results

are known;

ε(X,L; 1) ≥ 1/ dim X holds

(Ein-Küchle-Lazarsfeld),

abelian varieties, (Nakamaye,Lazarsfeld,etc,.),

X : toric, p : torus invariant point (Di rocco).
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In this talk, I will explain how to estimate Seshadri

constants from below. Our strategy is;

estimate ε(X, L; 1) for toric X,

find ”good” toric degenerations and use lower

semicontinuities.

By this strategy, we obtain the following results;
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X ⊂ Pn+1 : a very general hypersurface of degree

d.Then it holds that

⌊ n
√

d⌋ ≤ ε(X,O(1); 1) ≤ n
√

d.

.
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Note that the upper bound comes from

ε(X,O(1); 1) ≤ n
√
O(1)n.
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.
Theorem (Fano 3-folds with Picard number 1)
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For each family of smooth Fano 3-folds with Picard

number 1 (note that there are 17 such families),

ε(X,−KX; 1) =



6/5 (6) ⊂ P(1, 1, 1, 1, 3)

4/3 (4) ⊂ P4

3/2 (2) ∩ (3) ⊂ P5

2 otherwise

3 (2) ⊂ P4

4 P3

holds, where X is a very general member in the

family.
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.
Definition (Toric variety)
..

.
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.

M � Zn,MR = M ⊗Z R
P ⊂ MR: n-dim integral polytope

The polarized toric variety corrsponding to P is

(XP, LP) := (Proj
⊕

k≥0

VkP,O(1)),

where VkP :=
⊕

u∈kP∩M
Cxu ⊂ C[M].
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P ⊂ MR : integral polytope of dim n

v ≺ P : a vertex, xv ⊂ XP : the torus invariant point

Then ε(XP, LP; xv) = min{ |τ| | v ≺ τ ≺ P, dim τ = 1}
holds.

.
Remark..

.

. ..

.

.

For σ ≺ P and p ∈ Oσ, it holds that

ε(XP, LP; p) = min{ε(Xσ, Lσ; p), ε(XP′, LP′; xv′)},

where π : MR → MR/(R(σ − σ)) and

P′ = π(P), v′ = π(σ).
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The following proposition is a key tool to estimate

Seshadri constants on toric varieties;
.
Proposition
..

.

. ..

.

.

π : MR → M′
R
: lattice projection with rank M = n,

rank M′ = r,

P ⊂ MR: n-dim integral polytope.

For u′ ∈ π(P) ∩M′
Q

, set P(u′) = π−1(u′) ∩ P.

If dim P(u′) = n − r, it holds that

min{ε(Xπ(P), Lπ(P); 1π(P)), ε(XP(u′), LP(u′); 1P(u′))}
≤ ε(XP, LP; 1P) ≤ ε(Xπ(P), Lπ(P); 1π(P))
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1

.
Idea of proof.
..
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.

We can construct a rational map ϕ : XP d XP(u′)

such that Xπ(P) ; the general fiber of ϕ.

We study C.LP/mult1P
(C) in case of

ϕ(C) = pt, or , pt separably. �
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ε(Xπ(P), Lπ(P); 1π(P)) = deg Lπ(P) = |π(P)|.
Thus we have ε(XP, LP; 1P) ≤ min
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|π(P)|,

where the right hand side is called the lattice width

of P.

In fact, ε(XP, LP; 1P) = 1 iff min
π:MR→R

|π(P)| = 1.

But in general, ε(XP,LP; 1P) , min
π:MR→R

|π(P)|.
(2) If ε(Xπ(P), Lπ(P); 1π(P)) ≤ ε(XP(u′), LP(u′); 1P(u′)),
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(1) If rank M′ = 1,

ε(Xπ(P), Lπ(P); 1π(P)) = deg Lπ(P) = |π(P)|.
Thus we have ε(XP, LP; 1P) ≤ min

π:MR→R
|π(P)|,

where the right hand side is called the lattice width

of P.

In fact, ε(XP, LP; 1P) = 1 iff min
π:MR→R

|π(P)| = 1.

But in general, ε(XP,LP; 1P) , min
π:MR→R

|π(P)|.
(2) If ε(Xπ(P), Lπ(P); 1π(P)) ≤ ε(XP(u′), LP(u′); 1P(u′)),

then ε(XP,LP; 1P) = ε(Xπ(P), Lπ(P); 1π(P)).
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(1) P = Pn := conv(0, e1, . . . , en) ⊂ Rn,

π : Rn → R : n-th projection.

Since π(P) = [0, 1], P(0) = Pn−1, it holds that

min{ε(Xπ(P), Lπ(P); 1π(P)), ε(XP(0),LP(0); 1P(0))}
= min{1, ε(XPn−1

,LPn−1
; 1Pn−1

)}
≤ ε(XPn

,LPn
; 1Pn

) ≤ ε(Xπ(P),Lπ(P); 1π(P)) = 1
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(1) P = Pn := conv(0, e1, . . . , en) ⊂ Rn,

π : Rn → R : n-th projection.

Since π(P) = [0, 1], P(0) = Pn−1, it holds that

min{ε(Xπ(P), Lπ(P); 1π(P)), ε(XP(0),LP(0); 1P(0))}
= min{1, ε(XPn−1

,LPn−1
; 1Pn−1

)}
≤ ε(XPn

,LPn
; 1Pn

) ≤ ε(Xπ(P),Lπ(P); 1π(P)) = 1

Inductively, we have ε(XPn
, LPn

; 1Pn
) = 1.
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(1) P = Pn := conv(0, e1, . . . , en) ⊂ Rn,

π : Rn → R : n-th projection.

Since π(P) = [0, 1], P(0) = Pn−1, it holds that

min{ε(Xπ(P), Lπ(P); 1π(P)), ε(XP(0),LP(0); 1P(0))}
= min{1, ε(XPn−1

,LPn−1
; 1Pn−1

)}
≤ ε(XPn

,LPn
; 1Pn

) ≤ ε(Xπ(P),Lπ(P); 1π(P)) = 1

Inductively, we have ε(XPn
, LPn

; 1Pn
) = 1.

Note that (XPn
, LPn

) = (Pn,O(1)).
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(2) P = conv(e1, e2,−e1 − e2),

π : R2 → R: 2-nd projection.

Then we have

min{2, 3/2} = 3/2 ≤ ε(XP, LP; 1P) ≤ 2.R2
e1e2

�e1 � e2
//

OO?????????????????
��������������

������������ oooooooooooooooooooooooooo

1

Note that XP is the cubic surface in P3 defined by

T3
0
= T1T2T3,
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(2) P = conv(e1, e2,−e1 − e2),

π : R2 → R: 2-nd projection.

Then we have

min{2, 3/2} = 3/2 ≤ ε(XP, LP; 1P) ≤ 2.R2
e1e2

�e1 � e2
//

OO?????????????????
��������������

������������ oooooooooooooooooooooooooo

1

Note that XP is the cubic surface in P3 defined by

T3
0
= T1T2T3, and ε(XP,LP; 1P) = 3/2 holds.
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The following is a simple generalization of (2), and

will be used to estimate Seshadri constants on

hypersurfaces later;
.
Example
..

.

. ..

.

.

(3) P = conv(e1, . . . , en,−
∑n

i=1 aiei) ⊂ Rn for

0 ≤ ai ∈ Q. Then it holds that

ε(XP, LP; 1P) ≥ min
1≤i≤n

ai + · · · + an + 1

ai+1 + · · · + an + 1
.
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The following is a simple generalization of (2), and

will be used to estimate Seshadri constants on

hypersurfaces later;
.
Example
..

.

. ..

.

.

(3) P = conv(e1, . . . , en,−
∑n

i=1 aiei) ⊂ Rn for

0 ≤ ai ∈ Q. Then it holds that

ε(XP, LP; 1P) ≥ min
1≤i≤n

ai + · · · + an + 1

ai+1 + · · · + an + 1
.

In (2) a1 = a2 = 1, hence

min

{
a1 + a2 + 1

a2 + 1
,

a2 + a1

1

}
= min

{
3

2
, 2

}
=

3

2
.
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Next, we investigate non-toric cases.

As stated in Introduction, toric degenerations play

an important role;
.
Proposition
..

.

. ..

.

.

(Xt,Lt)t∈T : flat family of polarized varieties

over smooth T ∋ 0.

Assume that (X0, L0)nor
� (XP, LP) for some

P ⊂ MR.

Then

ε(Xt, Lt; 1) ≥ ε(XP, LP; 1P)

holds for very general t ∈ T.
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By using above proposition, we obtain the

following computations;
.
Theorem (Hypersurfaces)
..

.

. ..

.

.

X = Xn
d
⊂ Pn+1: very general hypersurface of

degree d. Then it holds that

ε(X,O(1); 1) ≥ min{cn/cn+1, cn−1/cn, . . . , c1/c2}

for any increasing seq. 1 = cn+1 ≤ cn ≤ . . . ≤ c1 = d

of integers.

In particular, we have

⌊ n
√

d⌋ ≤ ε(X,O(1); 1) ≤ n
√

d.
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X0 := (Td
0
= T
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1
· · · Tcn−cn+1

n T
cn+1

n+1
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.
Sketch of proof.
..

.

. ..

.

.

X degenerates to

X0 := (Td
0
= T

c1−c2

1
· · · Tcn−cn+1

n T
cn+1

n+1
) ⊂ Pn+1.

We can show (X0,O(1))nor
= (XP, LP) for

P = conv(e1, . . . , en,−
∑n

i=1(ci − ci+1)ei) ⊂ Rn.

Thus we have

ε(X,O(1); 1) ≥ ε(XP, LP; 1P)

≥ min{cn/cn+1, cn−1/cn, . . . , c1/c2}.

The last part follows if we take

cn = c, cn−1 = c2, . . . , c2 = cn−1 for c = ⌊ n
√

d⌋. �
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(1) When n = 2,

ε(X2
d
,O(1); 1) ≥ min{⌈

√
d ⌉, d/⌈

√
d ⌉} = d/⌈

√
d ⌉

follows from 1 ≤ ⌈
√

d ⌉ ≤ d.
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(1) When n = 2,

ε(X2
d
,O(1); 1) ≥ min{⌈

√
d ⌉, d/⌈

√
d ⌉} = d/⌈

√
d ⌉

follows from 1 ≤ ⌈
√

d ⌉ ≤ d.

Thus we have

ε(X2
d
,O(1); 1) ≥ max{⌊

√
d ⌋, d/⌈

√
d ⌉}.
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(1) When n = 2,

ε(X2
d
,O(1); 1) ≥ min{⌈

√
d ⌉, d/⌈

√
d ⌉} = d/⌈

√
d ⌉

follows from 1 ≤ ⌈
√

d ⌉ ≤ d.

Thus we have

ε(X2
d
,O(1); 1) ≥ max{⌊

√
d ⌋, d/⌈

√
d ⌉}.

For example, ε(X2
7
,O(1); 1) ≥ max{2, 7/3} = 7/3.
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(1) When n = 2,

ε(X2
d
,O(1); 1) ≥ min{⌈

√
d ⌉, d/⌈

√
d ⌉} = d/⌈

√
d ⌉

follows from 1 ≤ ⌈
√

d ⌉ ≤ d.

Thus we have

ε(X2
d
,O(1); 1) ≥ max{⌊

√
d ⌋, d/⌈

√
d ⌉}.

For example, ε(X2
7
,O(1); 1) ≥ max{2, 7/3} = 7/3.

(2) ε(X3
22
,O(1); 1) ≥ min{3, 8/3, 22/8} = 8/3 from

1 ≤ 3 ≤ 8 ≤ 22.
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(1) When n = 2,

ε(X2
d
,O(1); 1) ≥ min{⌈

√
d ⌉, d/⌈

√
d ⌉} = d/⌈

√
d ⌉

follows from 1 ≤ ⌈
√

d ⌉ ≤ d.

Thus we have

ε(X2
d
,O(1); 1) ≥ max{⌊

√
d ⌋, d/⌈

√
d ⌉}.

For example, ε(X2
7
,O(1); 1) ≥ max{2, 7/3} = 7/3.

(2) ε(X3
22
,O(1); 1) ≥ min{3, 8/3, 22/8} = 8/3 from

1 ≤ 3 ≤ 8 ≤ 22.

(3) ε(Xn
cn,O(1); 1) = c holds for any c, n ∈ N.
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∑

j dj = n + k.
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In the above theorem, we do not know whether the

lower bound equals to ε(X,O(1); 1) or not.

But at least in Fano case, we can obtain equalities

as follows;
.
Theorem (Fano complete intersections)
..

.

. ..

.

.

d1 ≥ . . . ≥ dk, n: positive integers s.t.
∑

j dj = n + k.

X ⊂ Pn+k : very general c.i. of degrees d1, . . . , dk.

Then it holds that ε(X,O(1); 1) = d1/(d1 − 1).
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We prove only k = 1 case, thus we show

ε(X,O(1); 1) = (n + 1)/n since d1 = n + 1.

(≥) part follows from 1 ≤ 2 ≤ . . . ≤ n + 1.
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We prove only k = 1 case, thus we show

ε(X,O(1); 1) = (n + 1)/n since d1 = n + 1.

(≥) part follows from 1 ≤ 2 ≤ . . . ≤ n + 1.

(≤) part ; Let X := (F = 0) ⊂ Pn+1 and

p = [1 : 0 : . . . : 0] for a homogeneous polynomial

F = Tn
0
F1 + Tn−1

0
F2 + · · · + Fn+1, deg Fi = i.
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We prove only k = 1 case, thus we show

ε(X,O(1); 1) = (n + 1)/n since d1 = n + 1.

(≥) part follows from 1 ≤ 2 ≤ . . . ≤ n + 1.

(≤) part ; Let X := (F = 0) ⊂ Pn+1 and
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F = Tn
0
F1 + Tn−1

0
F2 + · · · + Fn+1, deg Fi = i.

Set C = (F1 = · · · = Fn−1 = T0Fn + Fn+1 = 0).
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We prove only k = 1 case, thus we show

ε(X,O(1); 1) = (n + 1)/n since d1 = n + 1.

(≥) part follows from 1 ≤ 2 ≤ . . . ≤ n + 1.

(≤) part ; Let X := (F = 0) ⊂ Pn+1 and

p = [1 : 0 : . . . : 0] for a homogeneous polynomial

F = Tn
0
F1 + Tn−1

0
F2 + · · · + Fn+1, deg Fi = i.

Set C = (F1 = · · · = Fn−1 = T0Fn + Fn+1 = 0).

Then we have p ∈ C ⊂ X and

deg C = (n − 1)!(n + 1),
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.
Proof...

.

. ..

.

.

We prove only k = 1 case, thus we show

ε(X,O(1); 1) = (n + 1)/n since d1 = n + 1.

(≥) part follows from 1 ≤ 2 ≤ . . . ≤ n + 1.

(≤) part ; Let X := (F = 0) ⊂ Pn+1 and

p = [1 : 0 : . . . : 0] for a homogeneous polynomial

F = Tn
0
F1 + Tn−1

0
F2 + · · · + Fn+1, deg Fi = i.

Set C = (F1 = · · · = Fn−1 = T0Fn + Fn+1 = 0).

Then we have p ∈ C ⊂ X and

deg C = (n − 1)!(n + 1), multp(C) = (n − 1)!n.
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.
Proof...

.

. ..

.

.

We prove only k = 1 case, thus we show

ε(X,O(1); 1) = (n + 1)/n since d1 = n + 1.

(≥) part follows from 1 ≤ 2 ≤ . . . ≤ n + 1.

(≤) part ; Let X := (F = 0) ⊂ Pn+1 and

p = [1 : 0 : . . . : 0] for a homogeneous polynomial

F = Tn
0
F1 + Tn−1

0
F2 + · · · + Fn+1, deg Fi = i.

Set C = (F1 = · · · = Fn−1 = T0Fn + Fn+1 = 0).

Then we have p ∈ C ⊂ X and

deg C = (n − 1)!(n + 1), multp(C) = (n − 1)!n.

Thus

ε(X,O(1); 1) ≤ C.O(1)/multp(C) = (n + 1)/n. �
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Theorem (Fano 3-folds with Picard number 1)
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.

For each family of smooth Fano 3-folds with Picard

number 1,
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.
Theorem (Fano 3-folds with Picard number 1)
..

.

. ..

.

.

For each family of smooth Fano 3-folds with Picard

number 1,

ε(X,−KX; 1) =



6/5 (6) ⊂ P(1, 1, 1, 1, 3)

4/3 (4) ⊂ P4

3/2 (2) ∩ (3) ⊂ P5

2 otherwise

3 (2) ⊂ P4

4 P3

holds, where X is a very general member in the

family.
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.
Proof...

.
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.

.

Ilten, Lewis, and Przyjalkowski showed that such X

degenerates to a toric variety. We use it to show ≥.

≤ is proved by finding a suitable curve C ⊂ X. �
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variety whose normalization is toric?
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To apply this method, we have to find toric

degenerations.

For exmaple, any schubert variety and spherical

variety admit a flat degeneration to a polarized
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Which polarized variety degenerates to a polarized

variety whose normalization is toric?

Anderson gave an interesting partial answer;
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Anderson showed that (X,L) admits a flat
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.

(X, L): polarized var. Y•: a flag of subvarieties of X.

We can define the Okounkov body

∆(L) = ∆Y•(L) ⊂ Rn.

Anderson showed that (X,L) admits a flat

degeneration to a not necessarily normal polarized

toric variety whose normalizations is (X∆(L), L∆(L))

under some finitely generatedness condition.

Thus ε(X,L; 1) ≥ ε(X∆(L), L∆(L); 1∆(L)) holds in this

case.

I proved that ε(X,L; 1) ≥ ε(X∆(L), L∆(L); 1∆(L)) holds

without the finitely generatedness condition if we

define ε(X∆, L∆; 1∆) for any closed convex set

∆ ⊂ Rn suitably.
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cases;
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Definition (multi-point Seshadri constant)
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For m = (m1, . . . ,mr) ∈ (R>0)r,

ε(X, L; m) := inf
C

C.L∑
i mi multpi

(C)

= max{ t ≥ 0 | µ∗L − t
∑

i

miEi is nef }

for very general p1, . . . , pr ∈ X.

.
Remark..

.

. ..

.

.ε(X, L; tm) = t−1ε(X, L; m) holds for any t > 0.
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Proposition
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.

(Xt,Lt)t∈T : flat family of polarized schemes

over smooth T ∋ 0.

Assume that general fibers are red. and irred.

and X0 =
∪r

i=1 Yi : reduced.

Then

ε(Xt, Lt; ε1, . . . , εr) ≥ 1

holds for very general t ∈ T,

where εi = ε(Yi, L0|Yi
; 1).
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r∑

i=1

mn
i
⌋ ≤ ε(X,O(1); m) ≤ n

√√
d/

r∑

i=1

mn
i

holds for any m = (m1, . . . ,mr) ∈ (N \ 0)r.

.
Remark..

.

. ..

.

.

Note that the above theorem is false for m ∈ (R>0)r

in general.
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.
Sketch of proof.
..

.

. ..

.

.

Let d1, . . . , dr ∈ N \ 0 such that
∑

di = d.

Since Xd degenerates to
∪r

i=1 Xdi
, we have

ε(Xd,O(1); ε1, . . . , εr) ≥ 1 for εi := ε(Xdi
,O(1); 1).

We take di such that di ≥ (cmi)
n,

where c = ⌊ n

√
d/
∑r

i=1 mn
i
⌋.

Then εi = ε(Xdi
,O(1); 1) ≥ ⌊ n

√
di ⌋ ≥ cmi.

�


	Introduction
	Toric case
	Non-toric case
	Multi-point case

