Seshadri constants via toric degenerations

Atsushi Ito

University of Tokyo
Chulalongkorn University,
December 23, 2011

Toric case

Non-toric case

Multi-point case

Let L be an ample line bundle on a projective variety X over \mathbb{C}.

Let L be an ample line bundle on a projective variety X over \mathbb{C}.

How can we measure the positivity of

L ?

Let L be an ample line bundle on a projective variety X over \mathbb{C}.

How can we measure the positivity of

$$
L ?
$$

- The volume L^{n} is one basic measure, where $n=\operatorname{dim} X$.

Let L be an ample line bundle on a projective variety X over \mathbb{C}.

How can we measure the positivity of L ?

- The volume L^{n} is one basic measure, where $n=\operatorname{dim} X$.
- But it is not enough.

Example

$$
X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L_{1}=O(k, k), L_{2}=O\left(1, k^{2}\right)
$$

Example

$$
X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L_{1}=O(k, k), L_{2}=O\left(1, k^{2}\right)
$$

Then

- $K_{X}+L_{1}$ is nef for $k \geq 2$

Example

$$
X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L_{1}=O(k, k), L_{2}=O\left(1, k^{2}\right)
$$

Then

- $K_{X}+L_{1}$ is nef for $k \geq 2$ and very ample for $k \geq 3$,

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L_{1}=O(k, k), L_{2}=O\left(1, k^{2}\right)$.
Then

- $K_{X}+L_{1}$ is nef for $k \geq 2$ and very ample for $k \geq 3$,
- but $K_{X}+L_{2}$ is not effective for any $k>0$

Definition (Demailly '92)
The Seshadri constant $\varepsilon(X, L ; p)$ for $p \in X$ is;

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L ; p)$ for $p \in X$ is;

$$
\varepsilon(X, L ; p):=\inf _{C} \frac{C . L}{\operatorname{mult}_{p}(C)}>0
$$

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L ; p)$ for $p \in X$ is;

$$
\begin{aligned}
\varepsilon(X, L ; p):= & \inf _{C} \frac{C . L}{\operatorname{mult}_{p}(C)}>0 \\
= & \max \left\{t \geq 0 \mid \mu^{*} L-t E \text { is nef }\right\}, \\
& \mu: \widetilde{X} \rightarrow X, E=\mu^{-1}(p)
\end{aligned}
$$

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L ; p)$ for $p \in X$ is;

$$
\begin{aligned}
\varepsilon(X, L ; p):= & \inf _{C} \frac{C . L}{\operatorname{mult}_{p}(C)}>0 \\
= & \max \left\{t \geq 0 \mid \mu^{*} L-t E \text { is nef }\right\} \\
& \mu: \widetilde{X} \rightarrow X, E=\mu^{-1}(p)
\end{aligned}
$$

Remark (Seshadri criterion)
For a line bundle L,

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L ; p)$ for $p \in X$ is;

$$
\begin{aligned}
\varepsilon(X, L ; p):= & \inf _{C} \frac{C . L}{\operatorname{mult}_{p}(C)}>0 \\
= & \max \left\{t \geq 0 \mid \mu^{*} L-t E \text { is nef }\right\} \\
& \mu: \widetilde{X} \rightarrow X, E=\mu^{-1}(p)
\end{aligned}
$$

Remark (Seshadri criterion)
For a line bundle L,

$$
L \text { is ample } \Leftrightarrow \inf _{p, C} \frac{C . L}{\operatorname{mult}_{p}(C)}>0
$$

Example

- $\varepsilon\left(\mathbb{P}^{n}, O(1) ; p\right)=1$ for ${ }^{\forall} p$,

Example

- $\varepsilon\left(\mathbb{P}^{n}, O(1) ; p\right)=1$ for ${ }^{\forall} p$,
- $\varepsilon\left(\mathbb{P}^{1} \times \mathbb{P}^{1} ; O(a, b) ; p\right)=\min \{a, b\}$ for $a, b>0,{ }^{\vee} p$,

Example

- $\varepsilon\left(\mathbb{P}^{n}, O(1) ; p\right)=1$ for ${ }^{\forall} p$,
- $\varepsilon\left(\mathbb{P}^{1} \times \mathbb{P}^{1} ; O(a, b) ; p\right)=\min \{a, b\}$ for $a, b>0,{ }^{\forall} p$,
- For a smooth cubic surface $S \subset \mathbb{P}^{3}$,

$$
\varepsilon(S, O(1) ; p)=\left\{\begin{array}{cl}
1 & \text { if } p \in \text { line } \\
3 / 2 & \text { otherwise }
\end{array}\right.
$$

Remark

Remark

(1) For $p \in^{\forall} Z \subset X$,

Remark

(1) For $p \in^{\forall} Z \subset X$,

$$
\varepsilon(X, L ; p) \leq \sqrt[\operatorname{dim} Z]{\frac{Z \cdot L^{\operatorname{dim} Z}}{\operatorname{mult}_{p}(Z)}}
$$

Remark

(1) For $p \in^{\forall} Z \subset X$,

$$
\varepsilon(X, L ; p) \leq \sqrt[\operatorname{dim} Z]{\frac{Z \cdot L^{\operatorname{dim} Z}}{\operatorname{mult}_{p}(Z)}}
$$

In particular, $\varepsilon(X, L ; p) \leq \sqrt[n]{L^{n}}$ holds.

Remark

(1) For $p \in^{\forall} Z \subset X$,

$$
\varepsilon(X, L ; p) \leq \sqrt[\operatorname{dim} Z]{\frac{Z \cdot L^{\operatorname{dim} Z}}{\operatorname{mult}_{p}(Z)}}
$$

In particular, $\varepsilon(X, L ; p) \leq \sqrt[n]{L^{n}}$ holds.
(2) For a flat family $\left(X_{t}, L_{t}, p_{t}\right)_{t \in T}$ over smooth T and $0 \in T$,

Remark

(1) For $p \in^{\forall} Z \subset X$,

$$
\varepsilon(X, L ; p) \leq \sqrt[\operatorname{dim} Z]{\frac{Z \cdot L^{\operatorname{dim} Z}}{\operatorname{mult}_{p}(Z)}}
$$

In particular, $\varepsilon(X, L ; p) \leq \sqrt[n]{L^{n}}$ holds.
(2) For a flat family $\left(X_{t}, L_{t}, p_{t}\right)_{t \in T}$ over smooth T and $0 \in T$,

$$
\varepsilon\left(X_{t}, L_{t} ; p_{t}\right) \geq \varepsilon\left(X_{0}, L_{0} ; p_{0}\right)
$$

holds for very general t (lower semicontinuity).

By the lower semicontinuities of Seshadri constants, we can define the following;

By the lower semicontinuities of Seshadri constants, we can define the following;

Definition
The Seshadri constant $\varepsilon(X, L ; 1)$ of L at a very general point is;

By the lower semicontinuities of Seshadri constants, we can define the following;

Definition

The Seshadri constant $\varepsilon(X, L ; 1)$ of L at a very general point is;

$$
\varepsilon(X, L ; 1):=\varepsilon(X, L ; p)
$$

for very general $p \in X$.

Seshadri constants relate to

Seshadri constants relate to

- jet separations of adjoint line bundles (Demailly),

Seshadri constants relate to

- jet separations of adjoint line bundles (Demailly),
- Ross-Thomas' slope stabilities of polarized varieties (Ross-Thomas),

Seshadri constants relate to

- jet separations of adjoint line bundles (Demailly),
- Ross-Thomas' slope stabilities of polarized varieties (Ross-Thomas),
- Gromov width (Mcduff-Polterovich), and so on.

But it is very difficult to compute Seshadri constants in general.

But it is very difficult to compute Seshadri constants in general.
In higher dimensional cases, the following results are known;

But it is very difficult to compute Seshadri constants in general.
In higher dimensional cases, the following results are known;

- $\varepsilon(X, L ; 1) \geq 1 / \operatorname{dim} X$ holds
(Ein-Küchle-Lazarsfeld),

But it is very difficult to compute Seshadri constants in general.
In higher dimensional cases, the following results are known;

- $\varepsilon(X, L ; 1) \geq 1 / \operatorname{dim} X$ holds
(Ein-Küchle-Lazarsfeld),
- abelian varieties, (Nakamaye,Lazarsfeld,etc,.),

But it is very difficult to compute Seshadri constants in general.
In higher dimensional cases, the following results are known;

- $\varepsilon(X, L ; 1) \geq 1 / \operatorname{dim} X$ holds
(Ein-Küchle-Lazarsfeld),
- abelian varieties, (Nakamaye,Lazarsfeld,etc,.),
- X : toric, p : torus invariant point (Di rocco).

In this talk, I will explain how to estimate Seshadri constants from below.

In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

- estimate $\varepsilon(X, L ; 1)$ for toric X,

In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

- estimate $\varepsilon(X, L ; 1)$ for toric X,
- find "good" toric degenerations and use lower semicontinuities.

In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

- estimate $\varepsilon(X, L ; 1)$ for toric X,
- find "good" toric degenerations and use lower semicontinuities.

By this strategy, we obtain the following results;

Theorem (Hypersurfaces)

$X \subset \mathbb{P}^{n+1}:$ a very general hypersurface of degree
d.

Theorem (Hypersurfaces)

$X \subset \mathbb{P}^{n+1}:$ a very general hypersurface of degree d.Then it holds that

$$
\lfloor\sqrt[n]{d}\rfloor \leq \varepsilon(X, O(1) ; 1) \leq \sqrt[n]{d}
$$

Theorem (Hypersurfaces)

$X \subset \mathbb{P}^{n+1}:$ a very general hypersurface of degree d.Then it holds that

$$
\lfloor\sqrt[n]{d}\rfloor \leq \varepsilon(X, O(1) ; 1) \leq \sqrt[n]{d}
$$

Remark

Note that the upper bound comes from $\varepsilon(X, O(1) ; 1) \leq \sqrt[n]{O(1)^{n}}$.

Theorem (Fano 3-folds with Picard number 1)
For each family of smooth Fano 3-folds with Picard number 1 (note that there are 17 such families),

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1 (note that there are 17 such families),

$$
\varepsilon\left(X,-K_{X} ; 1\right)=\left\{\begin{array}{cl}
6 / 5 & (6) \subset \mathbb{P}^{(1,1,1,1,3)} \\
4 / 3 & (4) \subset \mathbb{P}^{4} \\
3 / 2 & (2) \cap(3) \subset \mathbb{P}^{5} \\
2 & \text { otherwise } \\
3 & (2) \subset \mathbb{P}^{4} \\
4 & \mathbb{P}^{3}
\end{array}\right.
$$

holds, where X is a very general member in the family.

Introduction

Non-toric case

Multi-point case

Definition (Toric variety)

$$
M \cong \mathbb{Z}^{n}, M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}
$$

Definition (Toric variety)

$M \cong \mathbb{Z}^{n}, M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$
$P \subset M_{\mathbb{R}}: n$-dim integral polytope

Definition (Toric variety)

$M \cong \mathbb{Z}^{n}, M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$
$P \subset M_{\mathbb{R}}: n$-dim integral polytope
The polarized toric variety corrsponding to P is

Definition (Toric variety)

$M \cong \mathbb{Z}^{n}, M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$
$P \subset M_{\mathbb{R}}: n$-dim integral polytope
The polarized toric variety corrsponding to P is

$$
\left(X_{P}, L_{P}\right):=\left(\operatorname{Proj} \bigoplus_{k \geq 0} V_{k P}, O(1)\right),
$$

where $V_{k P}:=\bigoplus_{u \in k P \cap M} \mathbb{C} x^{u} \subset \mathbb{C}[M]$.

Remark (Di rocco)

$P \subset M_{\mathbb{R}}$: integral polytope of $\operatorname{dim} n$

Remark (Di rocco)

$P \subset M_{\mathbb{R}}$: integral polytope of $\operatorname{dim} n$
$v<P$: a vertex,

Remark (Di rocco)

$P \subset M_{\mathbb{R}}$: integral polytope of $\operatorname{dim} n$
$v<P$: a vertex, $x_{v} \subset X_{P}$: the torus invariant point

Remark (Di rocco)

$P \subset M_{\mathbb{R}}$: integral polytope of $\operatorname{dim} n$ $v<P$: a vertex, $x_{v} \subset X_{P}$: the torus invariant point Then $\varepsilon\left(X_{P}, L_{P} ; x_{v}\right)=\min \{|\tau| \mid v<\tau<P, \operatorname{dim} \tau=1\}$ holds.

Remark (Di rocco)

$P \subset M_{\mathbb{R}}$: integral polytope of $\operatorname{dim} n$ $v<P$: a vertex, $x_{v} \subset X_{P}$: the torus invariant point Then $\varepsilon\left(X_{P}, L_{P} ; x_{v}\right)=\min \{|\tau| \mid v<\tau<P, \operatorname{dim} \tau=1\}$ holds.

Remark

For $\sigma<P$ and $p \in O_{\sigma}$,

Remark (Di rocco)

$P \subset M_{\mathbb{R}}$: integral polytope of $\operatorname{dim} n$ $v<P$: a vertex, $x_{v} \subset X_{P}$: the torus invariant point Then $\varepsilon\left(X_{P}, L_{P} ; x_{v}\right)=\min \{|\tau| \mid v<\tau<P, \operatorname{dim} \tau=1\}$ holds.

Remark

For $\sigma<P$ and $p \in O_{\sigma}$, it holds that

$$
\varepsilon\left(X_{P}, L_{P} ; p\right)=\min \left\{\varepsilon\left(X_{\sigma}, L_{\sigma} ; p\right), \varepsilon\left(X_{P^{\prime}}, L_{P^{\prime}} ; x_{v^{\prime}}\right)\right\}
$$

where $\pi: M_{\mathbb{R}} \rightarrow M_{\mathbb{R}} /(\mathbb{R}(\sigma-\sigma))$ and $P^{\prime}=\pi(P), v^{\prime}=\pi(\sigma)$.

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

$\pi: M_{\mathbb{R}} \rightarrow M_{\mathbb{R}}^{\prime}$: lattice projection with $\operatorname{rank} M=n$, $\operatorname{rank} M^{\prime}=r$,

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

$\pi: M_{\mathbb{R}} \rightarrow M_{\mathbb{R}}^{\prime}$: lattice projection with $\operatorname{rank} M=n$, rank $M^{\prime}=r$,
$P \subset M_{\mathbb{R}}: n$-dim integral polytope.

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

$\pi: M_{\mathbb{R}} \rightarrow M_{\mathbb{R}}^{\prime}$: lattice projection with $\operatorname{rank} M=n$, $\operatorname{rank} M^{\prime}=r$,
$P \subset M_{\mathbb{R}}: n$-dim integral polytope.
For $u^{\prime} \in \pi(P) \cap M_{Q}^{\prime}$, set $P\left(u^{\prime}\right)=\pi^{-1}\left(u^{\prime}\right) \cap P$.

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

$\pi: M_{\mathbb{R}} \rightarrow M_{\mathbb{R}}^{\prime}$: lattice projection with $\operatorname{rank} M=n$, $\operatorname{rank} M^{\prime}=r$,
$P \subset M_{\mathbb{R}}: n$-dim integral polytope.
For $u^{\prime} \in \pi(P) \cap M_{\mathbb{Q}}^{\prime}$, set $P\left(u^{\prime}\right)=\pi^{-1}\left(u^{\prime}\right) \cap P$.
If $\operatorname{dim} P\left(u^{\prime}\right)=n-r$, it holds that

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

$\pi: M_{\mathbb{R}} \rightarrow M_{\mathbb{R}}^{\prime}$: lattice projection with $\operatorname{rank} M=n$, $\operatorname{rank} M^{\prime}=r$,
$P \subset M_{\mathbb{R}}: n$-dim integral polytope.
For $u^{\prime} \in \pi(P) \cap M_{\mathbb{Q}}^{\prime}$, set $P\left(u^{\prime}\right)=\pi^{-1}\left(u^{\prime}\right) \cap P$.
If $\operatorname{dim} P\left(u^{\prime}\right)=n-r$, it holds that

$$
\min \left\{\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right), \varepsilon\left(X_{P\left(u^{\prime}\right)}, L_{P\left(u^{\prime}\right)} ; 1_{P\left(u^{\prime}\right)}\right)\right\}
$$

$$
\leq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)
$$

Idea of proof.
We can construct a rational map $\varphi: X_{P} \rightarrow X_{P\left(u^{\prime}\right)}$ such that $X_{\pi(P)} \fallingdotseq$ the general fiber of φ.

Idea of proof.

We can construct a rational map $\varphi: X_{P} \rightarrow X_{P\left(u^{\prime}\right)}$ such that $X_{\pi(P)} \fallingdotseq$ the general fiber of φ. We study $C . L_{P} / \operatorname{mult}_{1_{P}}(C)$ in case of $\varphi(C)=\mathrm{pt}$, or $\neq \mathrm{pt}$ separably.

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,

Remark

(1) If $\operatorname{rank} M^{\prime}=1$, $\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}$

Remark

(1) If $\operatorname{rank} M^{\prime}=1$, $\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.

Remark

(1) If $\operatorname{rank} M^{\prime}=1$, $\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$,

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,
$\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$, where the right hand side is called the lattice width of P.

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,
$\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$,
where the right hand side is called the lattice width of P.
In fact, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=1 \mathrm{iff}$

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,
$\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$,
where the right hand side is called the lattice width of P.
In fact, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=1$ iff $\min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|=1$.

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,
$\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$,
where the right hand side is called the lattice width of P.
In fact, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=1$ iff $\min |\pi(P)|=1$.

$$
\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}
$$

But in general, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \neq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$.

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,
$\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$, where the right hand side is called the lattice width of P.
In fact, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=1$ iff $\min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|=1$.
But in general, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \neq \min _{\pi: M_{R}}|\pi(P)|$.
(2) If $\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right) \leq \varepsilon\left(X_{P\left(u^{\prime}\right)}, L_{P\left(u^{\prime}\right)} ; 1_{P\left(u^{\prime}\right)}\right)$,

Remark

(1) If $\operatorname{rank} M^{\prime}=1$,
$\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=\operatorname{deg} L_{\pi(P)}=|\pi(P)|$.
Thus we have $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq \min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|$, where the right hand side is called the lattice width of P.
In fact, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=1$ iff $\min _{\pi: M_{\mathbb{R}} \rightarrow \mathbb{R}}|\pi(P)|=1$.
But in general, $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \neq \min _{\pi: M_{R}}|\pi(P)|$.
(2) If $\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right) \leq \varepsilon\left(X_{P\left(u^{\prime}\right)}, L_{P\left(u^{\prime}\right)} ; 1_{P\left(u^{\prime}\right)}\right)$,
then $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)$.

Example

Example

(1) $P=P_{n}:=\operatorname{conv}\left(0, e_{1}, \ldots, e_{n}\right) \subset \mathbb{R}^{n}$,

Example

(1) $P=P_{n}:=\operatorname{conv}\left(0, e_{1}, \ldots, e_{n}\right) \subset \mathbb{R}^{n}$,
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}: n$-th projection.

Example

(1) $P=P_{n}:=\operatorname{conv}\left(0, e_{1}, \ldots, e_{n}\right) \subset \mathbb{R}^{n}$,
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}: n$-th projection.
Since $\pi(P)=[0,1], P(0)=P_{n-1}$, it holds that

Example

(1) $P=P_{n}:=\operatorname{conv}\left(0, e_{1}, \ldots, e_{n}\right) \subset \mathbb{R}^{n}$,
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}: n$-th projection.
Since $\pi(P)=[0,1], P(0)=P_{n-1}$, it holds that
$\min \left\{\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right), \varepsilon\left(X_{P(0)}, L_{P(0)} ; 1_{P(0)}\right)\right\}$
$=\min \left\{1, \varepsilon\left(X_{P_{n-1}}, L_{P_{n-1}} ; 1_{P_{n-1}}\right)\right\}$
$\leq \varepsilon\left(X_{P_{n}}, L_{P_{n}} ; 1_{P_{n}}\right) \leq \varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=1$

Example

(1) $P=P_{n}:=\operatorname{conv}\left(0, e_{1}, \ldots, e_{n}\right) \subset \mathbb{R}^{n}$,
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}: n$-th projection.
Since $\pi(P)=[0,1], P(0)=P_{n-1}$, it holds that
$\min \left\{\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right), \varepsilon\left(X_{P(0)}, L_{P(0)} ; 1_{P(0)}\right)\right\}$

$$
\begin{aligned}
& =\min \left\{1, \varepsilon\left(X_{P_{n-1}}, L_{P_{n-1}} ; 1_{P_{n-1}}\right)\right\} \\
& \leq \varepsilon\left(X_{P_{n}}, L_{P_{n}} ; 1_{P_{n}}\right) \leq \varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=1
\end{aligned}
$$

Inductively, we have $\varepsilon\left(X_{P_{n}}, L_{P_{n}} ; 1_{P_{n}}\right)=1$.

Example

(1) $P=P_{n}:=\operatorname{conv}\left(0, e_{1}, \ldots, e_{n}\right) \subset \mathbb{R}^{n}$,
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}: n$-th projection.
Since $\pi(P)=[0,1], P(0)=P_{n-1}$, it holds that
$\min \left\{\varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right), \varepsilon\left(X_{P(0)}, L_{P(0)} ; 1_{P(0)}\right)\right\}$

$$
\begin{aligned}
& =\min \left\{1, \varepsilon\left(X_{P_{n-1}}, L_{P_{n-1}} ; 1_{P_{n-1}}\right)\right\} \\
& \leq \varepsilon\left(X_{P_{n}}, L_{P_{n}} ; 1_{P_{n}}\right) \leq \varepsilon\left(X_{\pi(P)}, L_{\pi(P)} ; 1_{\pi(P)}\right)=1
\end{aligned}
$$

Inductively, we have $\varepsilon\left(X_{P_{n}}, L_{P_{n}} ; 1_{P_{n}}\right)=1$.
Note that $\left(X_{P_{n}}, L_{P_{n}}\right)=\left(\mathbb{P}^{n}, O(1)\right)$.

Example

(2) $P=\operatorname{conv}\left(e_{1}, e_{2},-e_{1}-e_{2}\right)$,
$\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$: 2-nd projection.
Then we have $\min \{2,3 / 2\}=3 / 2 \leq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq 2$.

Note that X_{P} is the cubic surface in \mathbb{P}^{3} defined by $T_{0}^{3}=T_{1} T_{2} T_{3}$,

Example

(2) $P=\operatorname{conv}\left(e_{1}, e_{2},-e_{1}-e_{2}\right)$,
$\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$: 2-nd projection.
Then we have $\min \{2,3 / 2\}=3 / 2 \leq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \leq 2$.

Note that X_{P} is the cubic surface in \mathbb{P}^{3} defined by $T_{0}^{3}=T_{1} T_{2} T_{3}$, and $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=3 / 2$ holds.

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) $P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n} a_{i} e_{i}\right) \subset \mathbb{R}^{n}$ for $0 \leq a_{i} \in \mathbb{Q}$.

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) $P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n} a_{i} e_{i}\right) \subset \mathbb{R}^{n}$ for $0 \leq a_{i} \in \mathbb{Q}$. Then it holds that

$$
\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \geq \min _{1 \leq i \leq n} \frac{a_{i}+\cdots+a_{n}+1}{a_{i+1}+\cdots+a_{n}+1} .
$$

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) $P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n} a_{i} e_{i}\right) \subset \mathbb{R}^{n}$ for $0 \leq a_{i} \in \mathbb{Q}$. Then it holds that

$$
\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \geq \min _{1 \leq i \leq n} \frac{a_{i}+\cdots+a_{n}+1}{a_{i+1}+\cdots+a_{n}+1} .
$$

$\ln (2) a_{1}=a_{2}=1$, hence
$\min \left\{\frac{a_{1}+a_{2}+1}{a_{2}+1}, \frac{a_{2}+a_{1}}{1}\right\}=\min \left\{\frac{3}{2}, 2\right\}=\frac{3}{2}$.

Introduction

Toric case

3 Non-toric case

Multi-point case

Next, we investigate non-toric cases.

Next, we investigate non-toric cases.
As stated in Introduction, toric degenerations play an important role;

Next, we investigate non-toric cases.
As stated in Introduction, toric degenerations play an important role;

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized varieties over smooth T э 0 .

Next, we investigate non-toric cases.
As stated in Introduction, toric degenerations play an important role;

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized varieties over smooth T э 0 .
Assume that $\left(X_{0}, L_{0}\right)^{\text {nor }} \cong\left(X_{P}, L_{P}\right)$ for some $P \subset M_{\mathbb{R}}$.

Next, we investigate non-toric cases.
As stated in Introduction, toric degenerations play an important role;

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized varieties over smooth T э 0 .
Assume that $\left(X_{0}, L_{0}\right)^{\text {nor }} \cong\left(X_{P}, L_{P}\right)$ for some $P \subset M_{\mathbb{R}}$.
Then

$$
\varepsilon\left(X_{t}, L_{t} ; 1\right) \geq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)
$$

holds for very general $t \in T$.

By using above proposition, we obtain the following computations;

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)
$X=X_{d}^{n} \subset \mathbb{P}^{n+1}$: very general hypersurface of degree d.

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)
$X=X_{d}^{n} \subset \mathbb{P}^{n+1}$: very general hypersurface of degree d. Then it holds that

$$
\varepsilon(X, O(1) ; 1) \geq \min \left\{c_{n} / c_{n+1}, c_{n-1} / c_{n}, \ldots, c_{1} / c_{2}\right\}
$$

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

$X=X_{d}^{n} \subset \mathbb{P}^{n+1}$: very general hypersurface of degree d. Then it holds that

$$
\varepsilon(X, O(1) ; 1) \geq \min \left\{c_{n} / c_{n+1}, c_{n-1} / c_{n}, \ldots, c_{1} / c_{2}\right\}
$$

for any increasing seq. $1=c_{n+1} \leq c_{n} \leq \ldots \leq c_{1}=d$ of integers.

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

$X=X_{d}^{n} \subset \mathbb{P}^{n+1}$: very general hypersurface of degree d. Then it holds that

$$
\varepsilon(X, O(1) ; 1) \geq \min \left\{c_{n} / c_{n+1}, c_{n-1} / c_{n}, \ldots, c_{1} / c_{2}\right\}
$$

for any increasing seq. $1=c_{n+1} \leq c_{n} \leq \ldots \leq c_{1}=d$ of integers.
In particular, we have

$$
\lfloor\sqrt[n]{d}\rfloor \leq \varepsilon(X, O(1) ; 1) \leq \sqrt[n]{d}
$$

Sketch of proof.

Sketch of proof.

X degenerates to

$X_{0}:=\left(T_{0}^{d}=T_{1}^{c_{1}-c_{2}} \cdots T_{n}^{c_{n}-c_{n+1}} T_{n+1}^{c_{n+1}}\right) \subset \mathbb{P}^{n+1}$.

Sketch of proof.

X degenerates to
$X_{0}:=\left(T_{0}^{d}=T_{1}^{c_{1}-c_{2}} \cdots T_{n}^{c_{n}-c_{n+1}} T_{n+1}^{c_{n+1}}\right) \subset \mathbb{P}^{n+1}$.
We can show $\left(X_{0}, O(1)\right)^{n o r}=\left(X_{P}, L_{P}\right)$ for
$P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n}\left(c_{i}-c_{i+1}\right) e_{i}\right) \subset \mathbb{R}^{n}$.

Sketch of proof.

X degenerates to
$X_{0}:=\left(T_{0}^{d}=T_{1}^{c_{1}-c_{2}} \cdots T_{n}^{c_{n}-c_{n+1}} T_{n+1}^{c_{n+1}}\right) \subset \mathbb{P}^{n+1}$.
We can show $\left(X_{0}, O(1)\right)^{n o r}=\left(X_{P}, L_{P}\right)$ for
$P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n}\left(c_{i}-c_{i+1}\right) e_{i}\right) \subset \mathbb{R}^{n}$.
Thus we have

$$
\varepsilon(X, O(1) ; 1) \geq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)
$$

Sketch of proof.

X degenerates to
$X_{0}:=\left(T_{0}^{d}=T_{1}^{c_{1}-c_{2}} \cdots T_{n}^{c_{n}-c_{n+1}} T_{n+1}^{c_{n+1}}\right) \subset \mathbb{P}^{n+1}$.
We can show $\left(X_{0}, O(1)\right)^{n o r}=\left(X_{P}, L_{P}\right)$ for
$P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n}\left(c_{i}-c_{i+1}\right) e_{i}\right) \subset \mathbb{R}^{n}$.
Thus we have

$$
\begin{aligned}
\varepsilon(X, O(1) ; 1) & \geq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \\
& \geq \min \left\{c_{n} / c_{n+1}, c_{n-1} / c_{n}, \ldots, c_{1} / c_{2}\right\} .
\end{aligned}
$$

Sketch of proof.

X degenerates to
$X_{0}:=\left(T_{0}^{d}=T_{1}^{c_{1}-c_{2}} \cdots T_{n}^{c_{n}-c_{n+1}} T_{n+1}^{c_{n+1}}\right) \subset \mathbb{P}^{n+1}$.
We can show $\left(X_{0}, O(1)\right)^{n o r}=\left(X_{P}, L_{P}\right)$ for
$P=\operatorname{conv}\left(e_{1}, \ldots, e_{n},-\sum_{i=1}^{n}\left(c_{i}-c_{i+1}\right) e_{i}\right) \subset \mathbb{R}^{n}$.
Thus we have

$$
\begin{aligned}
\varepsilon(X, O(1) ; 1) & \geq \varepsilon\left(X_{P}, L_{P} ; 1_{P}\right) \\
& \geq \min \left\{c_{n} / c_{n+1}, c_{n-1} / c_{n}, \ldots, c_{1} / c_{2}\right\}
\end{aligned}
$$

The last part follows if we take
$c_{n}=c, c_{n-1}=c^{2}, \ldots, c_{2}=c^{n-1}$ for $c=\lfloor\sqrt[n]{d}\rfloor$.

Example

Example

(1) When $n=2$,
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \min \{\lceil\sqrt{d}\rceil, d /\lceil\sqrt{d}\rceil\}=d /\lceil\sqrt{d}\rceil$ follows from $1 \leq\lceil\sqrt{d}\rceil \leq d$.

Example

(1) When $n=2$,
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \min \{\lceil\sqrt{d}\rceil, d /\lceil\sqrt{d}\rceil\}=d /\lceil\sqrt{d}\rceil$ follows from $1 \leq\lceil\sqrt{d}\rceil \leq d$.
Thus we have
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \max \{\lfloor\sqrt{d}\rfloor, d /\lceil\sqrt{d}\rceil\}$.

Example

(1) When $n=2$,
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \min \{\lceil\sqrt{d}\rceil, d /\lceil\sqrt{d}\rceil\}=d /\lceil\sqrt{d}\rceil$ follows from $1 \leq\lceil\sqrt{d}\rceil \leq d$.
Thus we have
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \max \{\lfloor\sqrt{d}\rfloor, d /\lceil\sqrt{d}\rceil\}$.
For example, $\varepsilon\left(X_{7}^{2}, O(1) ; 1\right) \geq \max \{2,7 / 3\}=7 / 3$.

Example

(1) When $n=2$,
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \min \{\lceil\sqrt{d}\rceil, d /\lceil\sqrt{d}\rceil\}=d /\lceil\sqrt{d}\rceil$ follows from $1 \leq\lceil\sqrt{d}\rceil \leq d$.
Thus we have
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \max \{\lfloor\sqrt{d}\rfloor, d /\lceil\sqrt{d}\rceil\}$.
For example, $\varepsilon\left(X_{7}^{2}, O(1) ; 1\right) \geq \max \{2,7 / 3\}=7 / 3$.
(2) $\varepsilon\left(X_{22}^{3}, O(1) ; 1\right) \geq \min \{3,8 / 3,22 / 8\}=8 / 3$ from $1 \leq 3 \leq 8 \leq 22$.

Example

(1) When $n=2$,
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \min \{\lceil\sqrt{d}\rceil, d /\lceil\sqrt{d}\rceil\}=d /\lceil\sqrt{d}\rceil$ follows from $1 \leq\lceil\sqrt{d}\rceil \leq d$.
Thus we have
$\varepsilon\left(X_{d}^{2}, O(1) ; 1\right) \geq \max \{\lfloor\sqrt{d}\rfloor, d /\lceil\sqrt{d}\rceil\}$.
For example, $\varepsilon\left(X_{7}^{2}, O(1) ; 1\right) \geq \max \{2,7 / 3\}=7 / 3$.
(2) $\varepsilon\left(X_{22}^{3}, O(1) ; 1\right) \geq \min \{3,8 / 3,22 / 8\}=8 / 3$ from
$1 \leq 3 \leq 8 \leq 22$.
(3) $\varepsilon\left(X_{c^{n}}^{n}, O(1) ; 1\right)=c$ holds for any $c, n \in \mathbb{N}$.

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1) ; 1)$ or not.

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1) ; 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1) ; 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

Theorem (Fano complete intersections)
$d_{1} \geq \ldots \geq d_{k}, n$: positive integers s.t. $\sum_{j} d_{j}=n+k$.

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1) ; 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

Theorem (Fano complete intersections)
$d_{1} \geq \ldots \geq d_{k}, n$: positive integers s.t. $\sum_{j} d_{j}=n+k$.
$X \subset \mathbb{P}^{n+k}:$ very general c.i. of degrees d_{1}, \ldots, d_{k}.

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1) ; 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

Theorem (Fano complete intersections)
$d_{1} \geq \ldots \geq d_{k}, n$: positive integers s.t. $\sum_{j} d_{j}=n+k$.
$X \subset \mathbb{P}^{n+k}:$ very general c.i. of degrees d_{1}, \ldots, d_{k}.
Then it holds that $\varepsilon(X, O(1) ; 1)=d_{1} /\left(d_{1}-1\right)$.

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$. (\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$. (\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$. (\leq) part ;

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.
(\leq) part ; Let $X:=(F=0) \subset \mathbb{P}^{n+1}$ and
$p=[1: 0: \ldots: 0]$ for a homogeneous polynomial
$F=T_{0}^{n} F_{1}+T_{0}^{n-1} F_{2}+\cdots+F_{n+1}, \operatorname{deg} F_{i}=i$.

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.
(\leq) part ; Let $X:=(F=0) \subset \mathbb{P}^{n+1}$ and
$p=[1: 0: \ldots: 0]$ for a homogeneous polynomial
$F=T_{0}^{n} F_{1}+T_{0}^{n-1} F_{2}+\cdots+F_{n+1}, \operatorname{deg} F_{i}=i$.
Set $C=\left(F_{1}=\cdots=F_{n-1}=T_{0} F_{n}+F_{n+1}=0\right)$.

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.
(\leq) part ; Let $X:=(F=0) \subset \mathbb{P}^{n+1}$ and
$p=[1: 0: \ldots: 0]$ for a homogeneous polynomial
$F=T_{0}^{n} F_{1}+T_{0}^{n-1} F_{2}+\cdots+F_{n+1}, \operatorname{deg} F_{i}=i$.
Set $C=\left(F_{1}=\cdots=F_{n-1}=T_{0} F_{n}+F_{n+1}=0\right)$.
Then we have $p \in C \subset X$

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.
(\leq) part ; Let $X:=(F=0) \subset \mathbb{P}^{n+1}$ and
$p=[1: 0: \ldots: 0]$ for a homogeneous polynomial
$F=T_{0}^{n} F_{1}+T_{0}^{n-1} F_{2}+\cdots+F_{n+1}, \operatorname{deg} F_{i}=i$.
Set $C=\left(F_{1}=\cdots=F_{n-1}=T_{0} F_{n}+F_{n+1}=0\right)$.
Then we have $p \in C \subset X$ and $\operatorname{deg} C=(n-1)!(n+1)$,

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.
(\leq) part ; Let $X:=(F=0) \subset \mathbb{P}^{n+1}$ and
$p=[1: 0: \ldots: 0]$ for a homogeneous polynomial
$F=T_{0}^{n} F_{1}+T_{0}^{n-1} F_{2}+\cdots+F_{n+1}, \operatorname{deg} F_{i}=i$.
Set $C=\left(F_{1}=\cdots=F_{n-1}=T_{0} F_{n}+F_{n+1}=0\right)$.
Then we have $p \in C \subset X$ and $\operatorname{deg} C=(n-1)!(n+1), \operatorname{mult}_{p}(C)=(n-1)!n$.

Proof.

We prove only $k=1$ case, thus we show $\varepsilon(X, O(1) ; 1)=(n+1) / n$ since $d_{1}=n+1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$.
(\leq) part ; Let $X:=(F=0) \subset \mathbb{P}^{n+1}$ and
$p=[1: 0: \ldots: 0]$ for a homogeneous polynomial
$F=T_{0}^{n} F_{1}+T_{0}^{n-1} F_{2}+\cdots+F_{n+1}, \operatorname{deg} F_{i}=i$.
Set $C=\left(F_{1}=\cdots=F_{n-1}=T_{0} F_{n}+F_{n+1}=0\right)$.
Then we have $p \in C \subset X$ and $\operatorname{deg} C=(n-1)!(n+1), \operatorname{mult}_{p}(C)=(n-1)!n$.
Thus

$$
\varepsilon(X, O(1) ; 1) \leq C . O(1) / \operatorname{mult}_{p}(C)=(n+1) / n .
$$

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1,

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1,

$$
\varepsilon\left(X,-K_{X} ; 1\right)=\left\{\begin{array}{cl}
6 / 5 & (6) \subset \mathbb{P}_{(1,1,1,1,3)} \\
4 / 3 & (4) \subset \mathbb{P}^{4} \\
3 / 2 & (2) \cap(3) \subset \mathbb{P}^{5} \\
2 & \text { otherwise } \\
3 & (2) \subset \mathbb{P}^{4} \\
4 & \mathbb{P}^{3}
\end{array}\right.
$$

holds, where X is a very general member in the family.

Proof.
Ilten, Lewis, and Przyjalkowski showed that such X degenerates to a toric variety. We use it to show \geq. \leq is proved by finding a suitable curve $C \subset X$.

To apply this method, we have to find toric degenerations.

To apply this method, we have to find toric degenerations.
For exmaple, any schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, ect.).

To apply this method, we have to find toric degenerations.
For exmaple, any schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, ect.).

Question

Which polarized variety degenerates to a polarized variety whose normalization is toric?

To apply this method, we have to find toric degenerations.
For exmaple, any schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, ect.).

Question

Which polarized variety degenerates to a polarized variety whose normalization is toric?

Anderson gave an interesting partial answer;

Example

(X, L) : polarized var.

Example

(X, L) : polarized var. Y_{\bullet} : a flag of subvarieties of X.

Example

(X, L) : polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body $\Delta(L)=\Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^{n}$.

Example

(X, L) : polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body
$\Delta(L)=\Delta_{Y}(L) \subset \mathbb{R}^{n}$.
Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety

Example

(X, L) : polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body
$\Delta(L)=\Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^{n}$.
Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $\left(X_{\Delta(L)}, L_{\Delta(L)}\right)$ under some finitely generatedness condition.

Example

(X, L) : polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body
$\Delta(L)=\Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^{n}$.
Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $\left(X_{\Delta(L)}, L_{\Delta(L)}\right)$ under some finitely generatedness condition. Thus $\varepsilon(X, L ; 1) \geq \varepsilon\left(X_{\Delta(L)}, L_{\Delta(L)} ; 1_{\Delta(L)}\right)$ holds in this case.

Example

(X, L) : polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body
$\Delta(L)=\Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^{n}$.
Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $\left(X_{\Delta(L)}, L_{\Delta(L)}\right)$ under some finitely generatedness condition.
Thus $\varepsilon(X, L ; 1) \geq \varepsilon\left(X_{\Delta(L)}, L_{\Delta(L)} ; 1_{\Delta(L)}\right)$ holds in this case.
I proved that $\varepsilon(X, L ; 1) \geq \varepsilon\left(X_{\Delta(L)}, L_{\Delta(L)} ; 1_{\Delta(L)}\right)$ holds without the finitely generatedness condition if we define $\varepsilon\left(X_{\Delta}, L_{\Delta} ; 1_{\Delta}\right)$ for any closed convex set $\Delta \subset \mathbb{R}^{n}$ suitably.

Toric case

Non-toric case

Seshadri constants can be defined for multi-point cases;

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\bar{m}=\left(m_{1}, \ldots, m_{r}\right) \in\left(\mathbb{R}_{>0}\right)^{r}$,

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\bar{m}=\left(m_{1}, \ldots, m_{r}\right) \in\left(\mathbb{R}_{>0}\right)^{r}$,

$$
\varepsilon(X, L ; \bar{m}):=\inf _{C} \frac{C . L}{\sum_{i} m_{i} \operatorname{mult}_{p_{i}}(C)}
$$

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\bar{m}=\left(m_{1}, \ldots, m_{r}\right) \in\left(\mathbb{R}_{>0}\right)^{r}$,

$$
\begin{aligned}
\varepsilon(X, L ; \bar{m}) & :=\inf _{C} \frac{C . L}{\sum_{i} m_{i} \operatorname{mult}_{p_{i}}(C)} \\
& =\max \left\{t \geq 0 \mid \mu^{*} L-t \sum_{i} m_{i} E_{i} \text { is nef }\right\}
\end{aligned}
$$

for very general $p_{1}, \ldots, p_{r} \in X$.

Seshadri constants can be defined for multi-point

 cases;
Definition (multi-point Seshadri constant)

For $\bar{m}=\left(m_{1}, \ldots, m_{r}\right) \in\left(\mathbb{R}_{>0}\right)^{r}$,

$$
\begin{aligned}
\varepsilon(X, L ; \bar{m}) & :=\inf _{C} \frac{C . L}{\sum_{i} m_{i} \operatorname{mult}_{p_{i}}(C)} \\
& =\max \left\{t \geq 0 \mid \mu^{*} L-t \sum_{i} m_{i} E_{i} \text { is nef }\right\}
\end{aligned}
$$

for very general $p_{1}, \ldots, p_{r} \in X$.
Remark
$\varepsilon(X, L ; t \bar{m})=t^{-1} \varepsilon(X, L ; \bar{m})$ holds for any $t>0$.

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized schemes over smooth T э 0 .

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized schemes over smooth T э 0 . Assume that general fibers are red. and irred.

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized schemes over smooth T э 0 . Assume that general fibers are red. and irred. and $X_{0}=\bigcup_{i=1}^{r} Y_{i}:$ reduced.

Proposition

$\left(X_{t}, L_{t}\right)_{t \in T}$: flat family of polarized schemes over smooth T э 0 .
Assume that general fibers are red. and irred. and $X_{0}=\bigcup_{i=1}^{r} Y_{i}:$ reduced.
Then

$$
\varepsilon\left(X_{t}, L_{t} ; \varepsilon_{1}, \ldots, \varepsilon_{r}\right) \geq 1
$$

holds for very general $t \in T$,
where $\varepsilon_{i}=\varepsilon\left(Y_{i},\left.L_{0}\right|_{Y_{i}} ; 1\right)$.

Theorem

$X=X_{d} \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree d.

Theorem

$X=X_{d} \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree d.Then

$$
\left\lfloor\sqrt[n]{d / \sum_{i=1}^{r} m_{i}^{n}}\right\rfloor \leq \varepsilon(X, O(1) ; \bar{m}) \leq \sqrt[n]{d / \sum_{i=1}^{r} m_{i}^{n}}
$$

holds for any $\bar{m}=\left(m_{1}, \ldots, m_{r}\right) \in(\mathbb{N} \backslash 0)^{r}$.

Theorem

$X=X_{d} \subset \mathbb{P}^{n+1}:$ a very general hypersurface of degree d.Then

$$
\left\lfloor\sqrt[n]{d / \sum_{i=1}^{r} m_{i}^{n}}\right\rfloor \leq \varepsilon(X, O(1) ; \bar{m}) \leq \sqrt[n]{d / \sum_{i=1}^{r} m_{i}^{n}}
$$

holds for any $\bar{m}=\left(m_{1}, \ldots, m_{r}\right) \in(\mathbb{N} \backslash 0)^{r}$.

Remark

Note that the above theorem is false for $\bar{m} \in\left(\mathbb{R}_{>0}\right)^{r}$ in general.

Sketch of proof.

Let $d_{1}, \ldots, d_{r} \in \mathbb{N} \backslash 0$ such that $\sum d_{i}=d$.

Sketch of proof.

Let $d_{1}, \ldots, d_{r} \in \mathbb{N} \backslash 0$ such that $\sum d_{i}=d$.
Since X_{d} degenerates to $\bigcup_{i=1}^{r} X_{d_{i}}$, we have $\varepsilon\left(X_{d}, O(1) ; \varepsilon_{1}, \ldots, \varepsilon_{r}\right) \geq 1$ for $\varepsilon_{i}:=\varepsilon\left(X_{d_{i}}, O(1) ; 1\right)$.

Sketch of proof.

Let $d_{1}, \ldots, d_{r} \in \mathbb{N} \backslash 0$ such that $\sum d_{i}=d$.
Since X_{d} degenerates to $\bigcup_{i=1}^{r} X_{d_{i}}$, we have $\varepsilon\left(X_{d}, O(1) ; \varepsilon_{1}, \ldots, \varepsilon_{r}\right) \geq 1$ for $\varepsilon_{i}:=\varepsilon\left(X_{d_{i}}, O(1) ; 1\right)$.
We take d_{i} such that $d_{i} \geq\left(c m_{i}\right)^{n}$,
where $c=\left\lfloor\sqrt[n]{d / \sum_{i=1}^{r} m_{i}^{n}}\right\rfloor$.

Sketch of proof.

Let $d_{1}, \ldots, d_{r} \in \mathbb{N} \backslash 0$ such that $\sum d_{i}=d$.
Since X_{d} degenerates to $\bigcup_{i=1}^{r} X_{d_{i}}$, we have $\varepsilon\left(X_{d}, O(1) ; \varepsilon_{1}, \ldots, \varepsilon_{r}\right) \geq 1$ for $\varepsilon_{i}:=\varepsilon\left(X_{d_{i}}, O(1) ; 1\right)$. We take d_{i} such that $d_{i} \geq\left(c m_{i}\right)^{n}$,
where $c=\left\lfloor\sqrt[n]{d / \sum_{i=1}^{r} m_{i}^{n}}\right\rfloor$.
Then $\varepsilon_{i}=\varepsilon\left(X_{d_{i}}, O(1) ; 1\right) \geq\left\lfloor\sqrt[n]{d_{i}}\right\rfloor \geq c m_{i}$.

