Seshadri constants via toric degenerations

Atsushi Ito

University of Tokyo

Chulalongkorn University, December 23, 2011

- 3 Non-toric case
- Multi-point case

How can we measure the positivity of *L*?

How can we measure the positivity of *L*?

• The volume *Lⁿ* is one basic measure, where $n = \dim X$.

How can we measure the positivity of *L*?

- The volume *Lⁿ* is one basic measure, where $n = \dim X$.
- But it is not enough.

Introc			5
IIIIIIUUU	auc	uu	

Example

$$X = \mathbb{P}^1 \times \mathbb{P}^1, L_1 = O(k, k), L_2 = O(1, k^2).$$

Example

$$X = \mathbb{P}^1 \times \mathbb{P}^1, L_1 = O(k, k), L_2 = O(1, k^2).$$

Then

•
$$K_X + L_1$$
 is nef for $k \ge 2$

Example

$$X = \mathbb{P}^1 \times \mathbb{P}^1, L_1 = O(k, k), L_2 = O(1, k^2).$$

Then

• $K_X + L_1$ is nef for $k \ge 2$ and very ample for $k \ge 3$,

Example

$$X = \mathbb{P}^1 \times \mathbb{P}^1, L_1 = O(k, k), L_2 = O(1, k^2).$$

Then

- *K_X* + *L*₁ is nef for *k* ≥ 2 and very ample for *k* ≥ 3,
- but $K_X + L_2$ is not effective for any k > 0

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

$$\varepsilon(X,L;p) := \inf_{C} \frac{C.L}{\operatorname{mult}_{p}(C)} > 0$$

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

$$\varepsilon(X,L;p) := \inf_{C} \frac{C.L}{\operatorname{mult}_{p}(C)} > 0$$

= max{ $t \ge 0 \mid \mu^{*}L - tE \text{ is nef },$
 $\mu : \widetilde{X} \to X, E = \mu^{-1}(p)$

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

$$\varepsilon(X,L;p) := \inf_{C} \frac{C.L}{\operatorname{mult}_{p}(C)} > 0$$

= max{ $t \ge 0 | \mu^{*}L - tE \text{ is nef },$
 $\mu : \widetilde{X} \to X, E = \mu^{-1}(p)$

Remark (Seshadri criterion)

For a line bundle *L*,

Definition (Demailly '92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

$$\varepsilon(X,L;p) := \inf_{C} \frac{C.L}{\operatorname{mult}_{p}(C)} > 0$$

= max{ $t \ge 0 | \mu^{*}L - tE \text{ is nef },$
 $\mu : \widetilde{X} \to X, E = \mu^{-1}(p)$

Remark (Seshadri criterion)

For a line bundle *L*, *L* is ample $\Leftrightarrow \inf_{p,C} \frac{C.L}{\operatorname{mult}_p(C)} > 0$

Introdu	iction	Toric case	Non-toric case	Multi-po
	Example			
	• $\varepsilon(\mathbb{P}^n, \mathbf{C})$	O(1); p) = 1 for	or $\forall p$,	

Introduction	Toric case	Non-toric case	Multi-po case
Exa	mple		
•	$\varepsilon(\mathbb{P}^n, O(1); p) = 1$ for $\forall p$),	
•	$\varepsilon(\mathbb{P}^1 \times \mathbb{P}^1; O(a, b); p) =$	$\min\{a, b\}$ for a	$b > 0, \forall p,$

Introc	Inction
1111100	lucion

Example

•
$$\varepsilon(\mathbb{P}^n, O(1); p) = 1$$
 for $\forall p$,

- $\varepsilon(\mathbb{P}^1 \times \mathbb{P}^1; O(a, b); p) = \min\{a, b\}$ for $a, b > 0, \forall p$,
- For a smooth cubic surface $S \subset \mathbb{P}^3$,

$$\varepsilon(S, O(1); p) = \begin{cases} 1 & \text{if } p \in \text{line} \\ 3/2 & \text{otherwise.} \end{cases}$$

Remark

I DO	rod	IIIOT	20
1111	luu	uci	UII

Remark

(1) For $p \in^{\forall} Z \subset X$,

Multi-po

case

Introduction

Introc	Inction
	lucion

Remark

(1) For
$$p \in^{\forall} Z \subset X$$
,

$$\varepsilon(X,L;p) \leq \sqrt[\dim Z]{\frac{Z.L^{\dim Z}}{\operatorname{mult}_p(Z)}}.$$

In particular, $\varepsilon(X, L; p) \leq \sqrt[n]{L^n}$ holds.

Introdu	uction	Toric case	Non-toric case	Multi-po case	
	Remark				
	(1) For $p \in \forall$	$Z \subset X$,			
		$\varepsilon(X,L;p) \leq$	$\sqrt[\dim Z]{\frac{Z.L^{\dim Z}}{\operatorname{mult}_p(Z)}}.$		
	In particular (2) For a flat $0 \in T$,	$\varepsilon, \varepsilon(X, L; p) \leq t$ family (X_t, L)	$\sqrt[n]{L^n}$ holds. $(L_t, p_t)_{t \in T}$ over smoo	th T and	

Introduction
Introduction

Remark

(1) For
$$p \in^{\forall} Z \subset X$$
,

$$\varepsilon(X,L;p) \leq \sqrt[\dim Z]{\frac{Z.L^{\dim Z}}{\operatorname{mult}_p(Z)}}.$$

In particular, $\varepsilon(X, L; p) \leq \sqrt[n]{L^n}$ holds. (2) For a flat family $(X_t, L_t, p_t)_{t \in T}$ over smooth *T* and $0 \in T$,

$$\varepsilon(X_t, L_t; p_t) \ge \varepsilon(X_0, L_0; p_0)$$

holds for very general t (lower semicontinuity).

By the lower semicontinuities of Seshadri constants, we can define the following;

By the lower semicontinuities of Seshadri constants, we can define the following;

Definition

The Seshadri constant $\varepsilon(X, L; 1)$ of *L* at a very general point is;

By the lower semicontinuities of Seshadri constants, we can define the following;

Definition

The Seshadri constant $\varepsilon(X, L; 1)$ of *L* at a very general point is;

$$\varepsilon(X,L;1) := \varepsilon(X,L;p)$$

for very general $p \in X$.

jet separations of adjoint line bundles (Demailly),

- jet separations of adjoint line bundles (Demailly),
- Ross-Thomas' slope stabilities of polarized varieties (Ross-Thomas),

- jet separations of adjoint line bundles (Demailly),
- Ross-Thomas' slope stabilities of polarized varieties (Ross-Thomas),
- Gromov width (Mcduff-Polterovich), and so on.

But it is very difficult to compute Seshadri constants in general.

• $\varepsilon(X, L; 1) \ge 1/\dim X$ holds (Ein-Küchle-Lazarsfeld),

- $\varepsilon(X, L; 1) \ge 1/\dim X$ holds (Ein-Küchle-Lazarsfeld),
- abelian varieties, (Nakamaye,Lazarsfeld,etc,.),

- $\varepsilon(X, L; 1) \ge 1/\dim X$ holds (Ein-Küchle-Lazarsfeld),
- abelian varieties, (Nakamaye,Lazarsfeld,etc,.),
- X: toric, p: torus invariant point (Di rocco).
In this talk, I will explain how to estimate Seshadri constants from below.

• estimate $\varepsilon(X, L; 1)$ for toric X,

- estimate $\varepsilon(X, L; 1)$ for toric *X*,
- find "good" toric degenerations and use lower semicontinuities.

- estimate $\varepsilon(X, L; 1)$ for toric *X*,
- find "good" toric degenerations and use lower semicontinuities.

By this strategy, we obtain the following results;

introca.		
	Theorem (Hypersurfaces)	
	$X \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree	1
	d.	L

Introduction

Multi-po

Introdu	iction	Toric case	Non-toric case	Multi-po	case
	Theorem (Hy	persurfaces)			
	$X \subset \mathbb{P}^{n+1}$: a v d . Then it hold	very general h Is that	ypersurface of de	egree	

$$\lfloor \sqrt[n]{d} \rfloor \leq \varepsilon(X, O(1); 1) \leq \sqrt[n]{d}.$$

Intro	duic		5
	uuu	2 LI C	

Theorem (Hypersurfaces)

 $X \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree d. Then it holds that

$$\lfloor \sqrt[n]{d} \rfloor \leq \varepsilon(X, O(1); 1) \leq \sqrt[n]{d}.$$

Remark

Note that the upper bound comes from $\varepsilon(X, O(1); 1) \leq \sqrt[n]{O(1)^n}$.

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1 (note that there are 17 such families),

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1 (note that there are 17 such families),

$$\varepsilon(X, -K_X; 1) = \begin{cases} 6/5 & (6) \subset \mathbb{P}(1, 1, 1, 1, 3) \\ 4/3 & (4) \subset \mathbb{P}^4 \\ 3/2 & (2) \cap (3) \subset \mathbb{P}^5 \\ 2 & otherwise \\ 3 & (2) \subset \mathbb{P}^4 \\ 4 & \mathbb{P}^3 \end{cases}$$

holds, where X is a very general member in the family.

	r		d		$^{\uparrow}$	0	n
		יש	u	u	ωı	υ.	

$M \cong \mathbb{Z}^n, M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$

 $M \cong \mathbb{Z}^n, M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope

 $M \cong \mathbb{Z}^n, M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope The polarized toric variety corresponding to *P* is

 $M \cong \mathbb{Z}^n, M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope The polarized toric variety corresponding to *P* is

$$(X_P, L_P) := (\operatorname{Proj} \bigoplus_{k \ge 0} V_{kP}, O(1)),$$

where $V_{kP} := \bigoplus_{u \in kP \cap M} \mathbb{C}x^u \subset \mathbb{C}[M].$

	÷		_				
n		n	п		C	n	n
		0	9	9		0	

Remark (Di rocco)

 $P \subset M_{\mathbb{R}}$: integral polytope of dim n

Introduction	Toric case	Non-toric case	Multi-po case
Remark	(Di rocco)		
$P \subset M_{\mathbb{R}}$ $v \prec P:$: integral polyto a vertex,	pe of dim <i>n</i>	

			Ы			n
		יש	ы		U	

Remark (Di rocco)

 $P \subset M_{\mathbb{R}}$: integral polytope of dim *n* $v \prec P$: a vertex, $x_v \subset X_P$: the torus invariant point

Remark (Di rocco)

 $P \subset M_{\mathbb{R}}$: integral polytope of dim *n* v < P: a vertex, $x_v \subset X_P$: the torus invariant point Then $\varepsilon(X_P, L_P; x_v) = \min\{|\tau| | v < \tau < P, \dim \tau = 1\}$ holds.

Remark (Di rocco)

 $P \subset M_{\mathbb{R}}$: integral polytope of dim *n* v < P: a vertex, $x_v \subset X_P$: the torus invariant point Then $\varepsilon(X_P, L_P; x_v) = \min\{|\tau| | v < \tau < P, \dim \tau = 1\}$ holds.

Remark

For $\sigma \prec P$ and $p \in O_{\sigma}$,

Remark (Di rocco)

 $P \subset M_{\mathbb{R}}$: integral polytope of dim *n* v < P: a vertex, $x_v \subset X_P$: the torus invariant point Then $\varepsilon(X_P, L_P; x_v) = \min\{|\tau| | v < \tau < P, \dim \tau = 1\}$ holds.

Remark

For $\sigma \prec P$ and $p \in O_{\sigma}$, it holds that

$$\varepsilon(X_P, L_P; p) = \min\{\varepsilon(X_{\sigma}, L_{\sigma}; p), \varepsilon(X_{P'}, L_{P'}; x_{v'})\},\$$

where
$$\pi : M_{\mathbb{R}} \to M_{\mathbb{R}}/(\mathbb{R}(\sigma - \sigma))$$
 and $P' = \pi(P), v' = \pi(\sigma).$

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Multi-po

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

 $\pi: M_{\mathbb{R}} \to M'_{\mathbb{R}}$: lattice projection with rank M = n, rank M' = r,

Multi-po

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

 $\pi: M_{\mathbb{R}} \to M'_{\mathbb{R}}$: lattice projection with rank M = n, rank M' = r, $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope. The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

 $\pi: M_{\mathbb{R}} \to M'_{\mathbb{R}}$: lattice projection with rank M = n, rank M' = r, $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope. For $u' \in \pi(P) \cap M'_{\mathbb{O}}$, set $P(u') = \pi^{-1}(u') \cap P$.

Multi-po

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

 $\pi: M_{\mathbb{R}} \to M'_{\mathbb{R}}$: lattice projection with rank M = n, rank M' = r, $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope. For $u' \in \pi(P) \cap M'_{\mathbb{Q}}$, set $P(u') = \pi^{-1}(u') \cap P$. If dim P(u') = n - r, it holds that

The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

 $\pi: M_{\mathbb{R}} \to M'_{\mathbb{R}}$: lattice projection with rank M = n, rank M' = r, $P \subset M_{\mathbb{R}}$: *n*-dim integral polytope. For $u' \in \pi(P) \cap M'_{\mathbb{Q}}$, set $P(u') = \pi^{-1}(u') \cap P$. If dim P(u') = n - r, it holds that

$$\min\{\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(u')}, L_{P(u')}; 1_{P(u')})\}$$

$$\leq \varepsilon(X_P, L_P; 1_P) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)})$$

We can construct a rational map $\varphi : X_P \dashrightarrow X_{P(u')}$ such that $X_{\pi(P)} \coloneqq$ the general fiber of φ .

We can construct a rational map $\varphi : X_P \dashrightarrow X_{P(u')}$ such that $X_{\pi(P)} \coloneqq$ the general fiber of φ . We study $C.L_P / \operatorname{mult}_{1_P}(C)$ in case of $\varphi(C) = \operatorname{pt}$, or \neq pt separably.

Introduction	Toric case	Non-toric case	Multi-po case
Remark			
(1) If ran	$\operatorname{hk} M' = 1,$		
. ,			

Clion	Toric case	Non-toric case	Multi-po case	
Remark				
(1) If rank M'	= 1,			
$\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1)$	$l_{\pi(P)}) = \deg$	$L_{\pi(P)}$		
	Remark (1) If rank $M' = \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1)$	Remark (1) If rank $M' = 1$, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg$	Remark (1) If rank $M' = 1$, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)}$	Remark (1) If rank $M' = 1$, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)}$

Introduction	Tonc case	Non-toric case	iviuiti-po case
Remark			
(1) If ran	$\mathbf{k}M'=1,$		
$\varepsilon(X_{\pi(P)}, I)$	$\mathcal{L}_{\pi(P)}; 1_{\pi(P)}) = \deg$	$g L_{\pi(P)} = \pi(P) .$	

Remark (1) If rank $M' = 1$, $\varepsilon(X \oplus L \oplus 1) = \deg L \oplus = \pi(P) $	o case
Thus we have $\varepsilon(X_P, L_P; 1_P) \le \lim_{\pi:M_{\mathbb{R}} \to \mathbb{R}} \pi(P) ,$	

Introduction	Toric case	Non-toric case	
Remark			
(1) If ran	$\mathbf{k}M'=1,$		

 $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|.$ Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi: M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|,$ where the right hand side is called the lattice width of *P*.

Multi-

case

iniroqueiion			_			
	In	n		- 1	വ	1

Remark

(1) If rank M' = 1, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$. Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|$, where the right hand side is called the lattice width of *P*.

In fact, $\varepsilon(X_P, L_P; 1_P) = 1$ iff
In	ŧ٣	0	d.	inti	0	n
	ur	יט	uu	ມບແ	U	ш

(1) If rank M' = 1, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$. Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|$, where the right hand side is called the lattice width of P.

In fact, $\varepsilon(X_P, L_P; 1_P) = 1$ iff $\min_{\pi: M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| = 1$.

iniroqueiion			_			
	In	n		- 1	വ	1

(1) If rank M' = 1, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$. Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|$, where the right hand side is called the lattice width of *P*.

In fact,
$$\varepsilon(X_P, L_P; 1_P) = 1$$
 iff $\min_{\pi: \mathcal{M}_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| = 1$.
But in general, $\varepsilon(X_P, L_P; 1_P) \neq \min_{\pi: \mathcal{M}_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|$.

iniroqueiion			_			
	In	n		- 1	വ	1

(1) If rank M' = 1, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$. Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|$, where the right hand side is called the lattice width of *P*.

In fact, $\varepsilon(X_P, L_P; 1_P) = 1$ iff $\min_{\pi:M_{\mathbb{R}}\to\mathbb{R}} |\pi(P)| = 1$. But in general, $\varepsilon(X_P, L_P; 1_P) \neq \min_{\pi:M_{\mathbb{R}}\to\mathbb{R}} |\pi(P)|$. (2) If $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) \leq \varepsilon(X_{P(u')}, L_{P(u')}; 1_{P(u')})$,

īΠ	TĽ	en.	21		C 11		P 1
		U	u	u	ωu	U	

(1) If rank M' = 1, $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$. Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)|$, where the right hand side is called the lattice width of *P*.

In fact, $\varepsilon(X_P, L_P; 1_P) = 1$ iff $\min_{\pi:M_{\mathbb{R}}\to\mathbb{R}} |\pi(P)| = 1$. But in general, $\varepsilon(X_P, L_P; 1_P) \neq \min_{\pi:M_{\mathbb{R}}\to\mathbb{R}} |\pi(P)|$. (2) If $\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) \leq \varepsilon(X_{P(u')}, L_{P(u')}; 1_{P(u')})$, then $\varepsilon(X_P, L_P; 1_P) = \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)})$.

Example

millouuc	Tone case	Non-tone case	Multi-po case
	Example		
	(1) $P = P_n := \operatorname{conv}(0, e_1, \dots)$	$(\ldots, e_n) \subset \mathbb{R}^n,$	1

_

Introduction	Tone case	Non-tone case	Wulli-po case
Exampl	е		
(1) $P = \pi : \mathbb{R}^n -$	$P_n := \operatorname{conv}(0, e_1, e_2)$ $\rightarrow \mathbb{R} : n$ -th project	$(\ldots, e_n) \subset \mathbb{R}^n,$	

Introduction	Toric case	Non-toric case	Multi-po c	ase
Examp (1) $P = \pi : \mathbb{R}^n$ Since x	ble $P_n := \operatorname{conv}(0, e_1)$ $\rightarrow \mathbb{R} : n \text{-th projec}$ $\pi(P) = [0, 1], P(0)$	$(\dots, e_n) \subset \mathbb{R}^n,$ (tion.) = P_{n-1} , it holds the first state of the second state of the state of the second state of the state o	hat	

Introduc	ction Toric case Non-toric case Multi-pr	cas
		Γ
	Example	1
	(1) $P = P_n := \operatorname{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n$,	1
	$\pi: \mathbb{R}^n \to \mathbb{R}$: <i>n</i> -th projection.	L
	Since $\pi(P) = [0, 1], P(0) = P_{n-1}$, it holds that	L
	$\min\{\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(0)}, L_{P(0)}; 1_{P(0)})\}$	
	$= \min\{1, \varepsilon(X_{P_{n-1}}, L_{P_{n-1}}; 1_{P_{n-1}})\}$	L
	$\leq \varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = 1$	L

Introduc	tion Toric case Non-toric case Mult	-po cas
	Example	
	(1) $P = P_n := \operatorname{conv}(0, e_1, \dots, e_n) \subset \mathbb{R}^n$,	1
	$\pi: \mathbb{R}^n \to \mathbb{R}: n$ -th projection.	
	Since $\pi(P) = [0, 1], P(0) = P_{n-1}$, it holds that	
	$\min\{\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(0)}, L_{P(0)}; 1_{P(0)})\}$	
	$= \min\{1, \varepsilon(X_{P_{n-1}}, L_{P_{n-1}}; 1_{P_{n-1}})\}$	
	$\leq \varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = 1$	1
	Inductively, we have $\varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) = 1$.	

Introduct	ion Toric case Non-toric case	Multi-po ca	as
	Example		
2	(1) $P = P_n := \operatorname{conv}(0, e_1, \dots, e_n) \subset \mathbb{R}^n$, $\pi : \mathbb{R}^n \to \mathbb{R} : n$ -th projection.		
Ì	Since $\pi(P) = [0, 1], P(0) = P_{n-1}$, it notes that $\min[o(Y - I - i1), o(Y - I - i1)]$		
	$= \min\{\mathcal{E}(X_{\pi(P)}, L_{\pi(P)}, 1_{\pi(P)}), \mathcal{E}(X_{P(0)}, L_{P(0)}, 1_{P(0)})\} \\= \min\{1, \mathcal{E}(X_{P_{n-1}}, L_{P_{n-1}}; 1_{P_{n-1}})\}$		
	$\leq \varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)})$	= 1	
	Inductively, we have $\varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) = 1$.		

Note that $(X_{P_n}, L_{P_n}) = (\mathbb{P}^n, O(1)).$

Example

(2)
$$P = \operatorname{conv}(e_1, e_2, -e_1 - e_2),$$

$$\pi: \mathbb{R}^2 \to \mathbb{R}$$
: 2-nd projection.

Then we have

 $\min\{2, 3/2\} = 3/2 \le \varepsilon(X_P, L_P; 1_P) \le 2.$

Note that X_P is the cubic surface in \mathbb{P}^3 defined by $T_0^3 = T_1T_2T_3$,

Example

(2)
$$P = \operatorname{conv}(e_1, e_2, -e_1 - e_2),$$

$$\pi: \mathbb{R}^2 \to \mathbb{R}$$
: 2-nd projection.

Then we have

 $\min\{2, 3/2\} = 3/2 \le \varepsilon(X_P, L_P; 1_P) \le 2.$

Note that X_P is the cubic surface in \mathbb{P}^3 defined by $T_0^3 = T_1T_2T_3$, and $\varepsilon(X_P, L_P; 1_P) = 3/2$ holds.

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Multi-po

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3)
$$P = \operatorname{conv}(e_1, \ldots, e_n, -\sum_{i=1}^n a_i e_i) \subset \mathbb{R}^n$$
 for $0 \le a_i \in \mathbb{Q}$.

Multi-po

case

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) $P = \operatorname{conv}(e_1, \ldots, e_n, -\sum_{i=1}^n a_i e_i) \subset \mathbb{R}^n$ for $0 \le a_i \in \mathbb{Q}$. Then it holds that

$$\varepsilon(X_P, L_P; 1_P) \ge \min_{1 \le i \le n} \frac{a_i + \dots + a_n + 1}{a_{i+1} + \dots + a_n + 1}$$

Multi-po

case

The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) $P = \operatorname{conv}(e_1, \ldots, e_n, -\sum_{i=1}^n a_i e_i) \subset \mathbb{R}^n$ for $0 \le a_i \in \mathbb{Q}$. Then it holds that

$$\varepsilon(X_P, L_P; 1_P) \ge \min_{1 \le i \le n} \frac{a_i + \dots + a_n + 1}{a_{i+1} + \dots + a_n + 1}$$

In (2)
$$a_1 = a_2 = 1$$
, hence
 $\min\left\{\frac{a_1 + a_2 + 1}{a_2 + 1}, \frac{a_2 + a_1}{1}\right\} = \min\left\{\frac{3}{2}, 2\right\} = \frac{3}{2}$

Next, we investigate non-toric cases.

Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Proposition

 $(X_t, L_t)_{t \in T}$: flat family of polarized varieties over smooth $T \ni 0$.

Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Proposition

 $(X_t, L_t)_{t \in T}$: flat family of polarized varieties over smooth $T \ni 0$. Assume that $(X_0, L_0)^{nor} \cong (X_P, L_P)$ for some $P \subset M_{\mathbb{R}}$.

Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Proposition

 $(X_t, L_t)_{t \in T}$: flat family of polarized varieties over smooth $T \ni 0$. Assume that $(X_0, L_0)^{nor} \cong (X_P, L_P)$ for some $P \subset M_{\mathbb{R}}$. Then

$$\varepsilon(X_t, L_t; 1) \ge \varepsilon(X_P, L_P; 1_P)$$

holds for very general $t \in T$.

By using above proposition, we obtain the following computations;

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

 $X = X_d^n \subset \mathbb{P}^{n+1}$: very general hypersurface of degree d.

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

 $X = X_d^n \subset \mathbb{P}^{n+1}$: very general hypersurface of degree *d*. Then it holds that

 $\varepsilon(X, O(1); 1) \ge \min\{c_n/c_{n+1}, c_{n-1}/c_n, \dots, c_1/c_2\}$

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

 $X = X_d^n \subset \mathbb{P}^{n+1}$: very general hypersurface of degree *d*. Then it holds that

 $\varepsilon(X, O(1); 1) \ge \min\{c_n/c_{n+1}, c_{n-1}/c_n, \dots, c_1/c_2\}$

for any increasing seq. $1 = c_{n+1} \le c_n \le \ldots \le c_1 = d$ of integers.

By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

 $X = X_d^n \subset \mathbb{P}^{n+1}$: very general hypersurface of degree *d*. Then it holds that

$$\varepsilon(X, O(1); 1) \ge \min\{c_n/c_{n+1}, c_{n-1}/c_n, \dots, c_1/c_2\}$$

for any increasing seq. $1 = c_{n+1} \le c_n \le \ldots \le c_1 = d$ of integers. In particular, we have

$$\lfloor \sqrt[n]{d} \rfloor \leq \varepsilon(X, O(1); 1) \leq \sqrt[n]{d}.$$

In	ŧ٣	~	2		oti	0	n
	ur	υ	u	u	ωu	υ	ш

X degenerates to

$$X_0 := (T_0^d = T_1^{c_1 - c_2} \cdots T_n^{c_n - c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}$$

X degenerates to $X_0 := (T_0^d = T_1^{c_1 - c_2} \cdots T_n^{c_n - c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}.$ We can show $(X_0, O(1))^{nor} = (X_P, L_P)$ for $P = \operatorname{conv}(e_1, \dots, e_n, -\sum_{i=1}^n (c_i - c_{i+1})e_i) \subset \mathbb{R}^n.$

X degenerates to $X_0 := (T_0^d = T_1^{c_1 - c_2} \cdots T_n^{c_n - c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}.$ We can show $(X_0, O(1))^{nor} = (X_P, L_P)$ for $P = \operatorname{conv}(e_1, \dots, e_n, -\sum_{i=1}^n (c_i - c_{i+1})e_i) \subset \mathbb{R}^n.$ Thus we have

 $\varepsilon(X, O(1); 1) \geq \varepsilon(X_P, L_P; 1_P)$

X degenerates to $X_0 := (T_0^d = T_1^{c_1-c_2} \cdots T_n^{c_n-c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}.$ We can show $(X_0, O(1))^{nor} = (X_P, L_P)$ for $P = \operatorname{conv}(e_1, \dots, e_n, -\sum_{i=1}^n (c_i - c_{i+1})e_i) \subset \mathbb{R}^n.$ Thus we have

$$\varepsilon(X, \mathcal{O}(1); 1) \geq \varepsilon(X_P, L_P; 1_P)$$

$$\geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \dots, c_1/c_2\}.$$

Sketch of proof.

X degenerates to $X_0 := (T_0^d = T_1^{c_1 - c_2} \cdots T_n^{c_n - c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}.$ We can show $(X_0, O(1))^{nor} = (X_P, L_P)$ for $P = \text{conv}(e_1, \dots, e_n, -\sum_{i=1}^n (c_i - c_{i+1})e_i) \subset \mathbb{R}^n.$ Thus we have

$$\varepsilon(X, \mathcal{O}(1); 1) \geq \varepsilon(X_P, L_P; 1_P)$$

$$\geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \dots, c_1/c_2\}.$$

The last part follows if we take $c_n = c, c_{n-1} = c^2, \dots, c_2 = c^{n-1}$ for $c = \lfloor \sqrt[n]{d} \rfloor$.

Example

Example

(1) When n = 2, $\varepsilon(X_d^2, O(1); 1) \ge \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\} = d/\lceil \sqrt{d} \rceil$ follows from $1 \le \lceil \sqrt{d} \rceil \le d$.
Example

(1) When
$$n = 2$$
,
 $\varepsilon(X_d^2, O(1); 1) \ge \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\} = d/\lceil \sqrt{d} \rceil$
follows from $1 \le \lceil \sqrt{d} \rceil \le d$.
Thus we have
 $\varepsilon(X_d^2, O(1); 1) \ge \max\{\lfloor \sqrt{d} \rfloor, d/\lceil \sqrt{d} \rceil\}.$

Example

(1) When n = 2, $\varepsilon(X_d^2, O(1); 1) \ge \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\} = d/\lceil \sqrt{d} \rceil$ follows from $1 \le \lceil \sqrt{d} \rceil \le d$. Thus we have $\varepsilon(X_d^2, O(1); 1) \ge \max\{\lfloor \sqrt{d} \rfloor, d/\lceil \sqrt{d} \rceil\}$. For example, $\varepsilon(X_7^2, O(1); 1) \ge \max\{2, 7/3\} = 7/3$.

Example

(1) When n = 2, $\varepsilon(X_d^2, O(1); 1) \ge \min\{\lceil \sqrt{d} \rceil, d / \lceil \sqrt{d} \rceil\} = d / \lceil \sqrt{d} \rceil$ follows from $1 \leq \lceil \sqrt{d} \rceil \leq d$. Thus we have $\varepsilon(X_d^2, \mathcal{O}(1); 1) \ge \max\{\lfloor \sqrt{d} \rfloor, d/\lceil \sqrt{d} \rceil\}.$ For example, $\varepsilon(X_7^2, O(1); 1) \ge \max\{2, 7/3\} = 7/3$. (2) $\varepsilon(X_{22}^3, O(1); 1) \ge \min\{3, 8/3, 22/8\} = 8/3$ from 1 < 3 < 8 < 22.

Example

(1) When n = 2, $\varepsilon(X_d^2, O(1); 1) \ge \min\{\lceil \sqrt{d} \rceil, d / \lceil \sqrt{d} \rceil\} = d / \lceil \sqrt{d} \rceil$ follows from $1 < \lceil \sqrt{d} \rceil < d$. Thus we have $\varepsilon(X_d^2, \mathcal{O}(1); 1) \ge \max\{\lfloor \sqrt{d} \rfloor, d/\lceil \sqrt{d} \rceil\}.$ For example, $\varepsilon(X_7^2, O(1); 1) \ge \max\{2, 7/3\} = 7/3$. (2) $\varepsilon(X_{22}^3, O(1); 1) \ge \min\{3, 8/3, 22/8\} = 8/3$ from 1 < 3 < 8 < 22. (3) $\varepsilon(X_{c^n}^n, O(1); 1) = c$ holds for any $c, n \in \mathbb{N}$.

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1); 1)$ or not.

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1); 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

 $d_1 \geq \ldots \geq d_k$, *n*: positive integers s.t. $\sum_j d_j = n + k$.

Introduction	Ioric case	Non-toric case	Multi-po	cas
In the	above theorem, we	do not know wh	ether the	
lower	bound equals to $\varepsilon(X)$	O(1); 1) or not.		
But at	t least in Fano case,	we can obtain e	qualities	

as follows;

Theorem (Fano complete intersections)

 $d_1 \ge \ldots \ge d_k, n$: positive integers s.t. $\sum_j d_j = n + k$. $X \subset \mathbb{P}^{n+k}$: very general c.i. of degrees d_1, \ldots, d_k .

In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1); 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

Theorem (Fano complete intersections)

 $d_1 \ge \ldots \ge d_k, n$: positive integers s.t. $\sum_j d_j = n + k$. $X \subset \mathbb{P}^{n+k}$: very general c.i. of degrees d_1, \ldots, d_k . Then it holds that $\varepsilon(X, O(1); 1) = d_1/(d_1 - 1)$.

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$. (\geq) part follows from $1 \leq 2 \leq ... \leq n + 1$.

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$. (\geq) part follows from $1 \leq 2 \leq ... \leq n + 1$. (\leq) part ;

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$. (\ge) part follows from $1 \le 2 \le ... \le n + 1$. (\le) part ; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and p = [1:0:...:0] for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}$, deg $F_i = i$.

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$. (\geq) part follows from $1 \leq 2 \leq ... \leq n + 1$. (\leq) part ; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and p = [1:0:...:0] for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}$, deg $F_i = i$. Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$.

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$. (\ge) part follows from $1 \le 2 \le ... \le n + 1$. (\le) part ; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and p = [1:0:...:0] for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}$, deg $F_i = i$. Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$. Then we have $p \in C \subset X$

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$. (\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$. (\leq) part ; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and $p = [1:0:\ldots:0]$ for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \dots + F_{n+1}, \deg F_i = i.$ Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$. Then we have $p \in C \subset X$ and $\deg C = (n-1)!(n+1),$

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n \text{ since } d_1 = n + 1.$ (\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$. (\leq) part : Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and $p = [1:0:\ldots:0]$ for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \dots + F_{n+1}, \deg F_i = i.$ Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$. Then we have $p \in C \subset X$ and $\deg C = (n-1)!(n+1), \operatorname{mult}_n(C) = (n-1)!n.$

Proof.

We prove only k = 1 case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n \text{ since } d_1 = n + 1.$ (\geq) part follows from $1 \leq 2 \leq \ldots \leq n+1$. (\leq) part ; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and $p = [1:0:\ldots:0]$ for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \dots + F_{n+1}, \deg F_i = i.$ Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$. Then we have $p \in C \subset X$ and $\deg C = (n-1)!(n+1), \operatorname{mult}_n(C) = (n-1)!n.$ Thus $\varepsilon(X, O(1); 1) \le C.O(1) / \operatorname{mult}_{p}(C) = (n+1)/n.$

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1,

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1,

$$\varepsilon(X, -K_X; 1) = \begin{cases} 6/5 & (6) \subset \mathbb{P}(1, 1, 1, 1, 3) \\ 4/3 & (4) \subset \mathbb{P}^4 \\ 3/2 & (2) \cap (3) \subset \mathbb{P}^5 \\ 2 & otherwise \\ 3 & (2) \subset \mathbb{P}^4 \\ 4 & \mathbb{P}^3 \end{cases}$$

holds, where X is a very general member in the family.

Proof.

Ilten, Lewis, and Przyjalkowski showed that such *X* degenerates to a toric variety. We use it to show \geq . \leq is proved by finding a suitable curve $C \subset X$. \Box

To apply this method, we have to find toric degenerations.

To apply this method, we have to find toric degenerations.

For exmaple, any schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, ect.).

To apply this method, we have to find toric degenerations.

For exmaple, any schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, ect.).

Question

Which polarized variety degenerates to a polarized variety whose normalization is toric?

To apply this method, we have to find toric degenerations.

For exmaple, any schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, ect.).

Question

Which polarized variety degenerates to a polarized variety whose normalization is toric?

Anderson gave an interesting partial answer;

Example

(X, L): polarized var.

Example

(X, L): polarized var. Y_{\bullet} : a flag of subvarieties of X.

Example

(*X*, *L*): polarized var. *Y*_•: a flag of subvarieties of *X*. We can define the Okounkov body $\Delta(L) = \Delta_{Y_*}(L) \subset \mathbb{R}^n$.

Example

(X, L): polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body

$$\Delta(L) = \Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^n.$$

And erson showed that (X, L) admits a flat

degeneration to a not necessarily normal polarized toric variety

Example

(X, L): polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body

 $\Delta(L) = \Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^n.$

Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $(X_{\Delta(L)}, L_{\Delta(L)})$ under some finitely generatedness condition.

Example

(X, L): polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body

$$\Delta(L) = \Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^n.$$

Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $(X_{\Delta(L)}, L_{\Delta(L)})$ under some finitely generatedness condition. Thus $\varepsilon(X, L; 1) \ge \varepsilon(X_{\Delta(L)}, L_{\Delta(L)}; 1_{\Delta(L)})$ holds in this case.

Example

(X, L): polarized var. Y_{\bullet} : a flag of subvarieties of X. We can define the Okounkov body

$$\Delta(L) = \Delta_{Y_{\bullet}}(L) \subset \mathbb{R}^n.$$

Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $(X_{\Delta(L)}, L_{\Delta(L)})$ under some finitely generatedness condition. Thus $\varepsilon(X, L; 1) \ge \varepsilon(X_{\Delta(L)}, L_{\Delta(L)}; 1_{\Delta(L)})$ holds in this case.

I proved that $\varepsilon(X, L; 1) \ge \varepsilon(X_{\Delta(L)}, L_{\Delta(L)}; 1_{\Delta(L)})$ holds without the finitely generatedness condition if we define $\varepsilon(X_{\Delta}, L_{\Delta}; 1_{\Delta})$ for any closed convex set $\Delta \subset \mathbb{R}^n$ suitably.

Multi-point case

Seshadri constants can be defined for multi-point cases;

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r$,

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r$,

$$\varepsilon(X, L; \overline{m}) := \inf_{C} \frac{C.L}{\sum_{i} m_{i} \operatorname{mult}_{p_{i}}(C)}$$

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r$,

$$\varepsilon(X, L; \overline{m}) := \inf_{C} \frac{C.L}{\sum_{i} m_{i} \operatorname{mult}_{p_{i}}(C)}$$

= max{ $t \ge 0 | \mu^{*}L - t \sum_{i} m_{i}E_{i} \text{ is nef }}$

for very general $p_1, \ldots, p_r \in X$.
Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r$,

$$\varepsilon(X, L; \overline{m}) := \inf_{C} \frac{C.L}{\sum_{i} m_{i} \operatorname{mult}_{p_{i}}(C)}$$

= max{ $t \ge 0 | \mu^{*}L - t \sum_{i} m_{i}E_{i} \text{ is nef }}$

for very general $p_1, \ldots, p_r \in X$.

Remark

 $\varepsilon(X, L; t\overline{m}) = t^{-1}\varepsilon(X, L; \overline{m})$ holds for any t > 0.

	٦n
muouucii	211

Proposition

$(X_t, L_t)_{t \in T}$: flat family of polarized schemes over smooth $T \ni 0$.

Proposition

$(X_t, L_t)_{t \in T}$: flat family of polarized schemes over smooth $T \ni 0$. Assume that general fibers are red. and irred.

Proposition

 $(X_t, L_t)_{t \in T}$: flat family of polarized schemes over smooth $T \ni 0$. Assume that general fibers are red. and irred.

and $X_0 = \bigcup_{i=1}^r Y_i$: reduced.

Proposition

 $(X_t, L_t)_{t \in T}$: flat family of polarized schemes over smooth $T \ni 0$. Assume that general fibers are red. and irred. and $X_0 = \bigcup_{i=1}^r Y_i$: reduced. Then

$$\varepsilon(X_t, L_t; \varepsilon_1, \ldots, \varepsilon_r) \geq 1$$

holds for very general $t \in T$, where $\varepsilon_i = \varepsilon(Y_i, L_0|_{Y_i}; 1)$.

Introdu		Toric case	Non-toric case	Multi-po case
	Theorem			1
	$X = X_d \subset \mathbb{P}^{n+d}$ degree d .	⁺¹ : a very gener	al hypersurface of	

Theorem

 $X = X_d \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree *d*. Then

$$\lfloor \sqrt[n]{d/\sum_{i=1}^r m_i^n} \rfloor \leq \varepsilon(X, O(1); \overline{m}) \leq \sqrt[n]{d/\sum_{i=1}^r m_i^n}$$

holds for any $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{N} \setminus 0)^r$.

Theorem

 $X = X_d \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree d. Then

$$\lfloor \sqrt[n]{d/\sum_{i=1}^r m_i^n} \ \rfloor \le \varepsilon(X, O(1); \overline{m}) \le \sqrt[n]{d/\sum_{i=1}^r m_i^n}$$

holds for any $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{N} \setminus 0)^r$.

Remark

Note that the above theorem is false for $\overline{m} \in (\mathbb{R}_{>0})^r$ in general.

Introduction	Toric case	Non-toric case	Multi-po case
Sketch o	f proof.		
Let d_1, \ldots	$d_r \in \mathbb{N} \setminus 0$ su	ch that $\sum d_i = d$.	1

Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus 0$ such that $\sum d_i = d$. Since X_d degenerates to $\bigcup_{i=1}^r X_{d_i}$, we have $\varepsilon(X_d, O(1); \varepsilon_1, \ldots, \varepsilon_r) \ge 1$ for $\varepsilon_i := \varepsilon(X_{d_i}, O(1); 1)$.

Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus 0$ such that $\sum d_i = d$. Since X_d degenerates to $\bigcup_{i=1}^r X_{d_i}$, we have $\varepsilon(X_d, O(1); \varepsilon_1, \ldots, \varepsilon_r) \ge 1$ for $\varepsilon_i := \varepsilon(X_{d_i}, O(1); 1)$. We take d_i such that $d_i \ge (cm_i)^n$, where $c = \lfloor \sqrt[n]{d/\sum_{i=1}^r m_i^n} \rfloor$.

Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus 0$ such that $\sum d_i = d$. Since X_d degenerates to $\bigcup_{i=1}^r X_{d_i}$, we have $\varepsilon(X_d, O(1); \varepsilon_1, \ldots, \varepsilon_r) \ge 1$ for $\varepsilon_i := \varepsilon(X_{d_i}, O(1); 1)$. We take d_i such that $d_i \ge (cm_i)^n$, where $c = \lfloor \sqrt[n]{d/\sum_{i=1}^r m_i^n} \rfloor$. Then $\varepsilon_i = \varepsilon(X_{d_i}, O(1); 1) \ge \lfloor \sqrt[n]{d_i} \rfloor \ge cm_i$.