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Let L be an ample line bundle on a projective
variety X over C.

How can we measure the positivity of
L?

@ The volume L" is one basic measure, where
n=dimJX.

@ But it is not enough.
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X =P' xP', L, = Ok, k), L, = O(1, k).
Then

@ Kx + L, is nef for k > 2 and very ample for
k>3,

@ but Kx + L, is not effective for any k > 0
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Definition (Demailly '92)
The Seshadri constant (X, L; p) for p € X is;
C.L
X,L; = inf —— >0
sLLip) = R
= max{t>0|u"L —tE is nef},
p:X - X.E=p"(p)

Remark (Seshadri criterion)

For a line bundle L,
L is ample & inf Gt >0
PIe = ¢ mult,(C)
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@ ¢(P",0(1);p) = 1 for Vp,
@ £(P' xP';0(a, b); p) = min{a, b} for a,b > 0," p,
@ For a smooth cubic surface S c P3,

1 ifpelne
3/2 otherwise.

&(s,0(1);p) = {
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Remark
(1) Forp e’ Z c X,

dimZ
s(X.Lip) < 7 L
mult,(Z)

In particular, &(X, L; p) < VL" holds.
(2) For a flat family (X;, L;, p;).er over smooth T and
OeT,

e(Xy, Ly; pr) = &(Xo, Lo; po)

holds for very general ¢ (lower semicontinuity).
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By the lower semicontinuities of Seshadri
constants, we can define the following;

Definition
The Seshadri constant (X, L; 1) of L at a very
general point is;

eX,L; 1) := &X,L;p)

for very general p € X.
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Seshadri constants relate to
@ jet separations of adjoint line bundles
(Demailly),
@ Ross-Thomas’ slope stabilities of polarized
varieties (Ross-Thomas),
@ Gromov width (Mcduff-Polterovich), and so
on.
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But it is very difficult to compute Seshadri
constants in general.
In higher dimensional cases, the following results
are known;
@ &X,L;1)>1/dimX holds
(Ein-Kichle-Lazarsfeld),
@ abelian varieties, (Nakamaye,Lazarsfeld,etc,.),

@ X : toric, p : torus invariant point (Di rocco).
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Introduction

In this talk, | will explain how to estimate Seshadri
constants from below. Our strategy is;

@ estimate (X, L; 1) for toric X,

@ find "good” toric degenerations and use lower
semicontinuities.

By this strategy, we obtain the following results;
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Theorem (Hypersurfaces)

X c P**! : a very general hypersurface of degree
d.Then it holds that

| Vd] < e(X,0(1); 1) < Vd.

Note that the upper bound comes from

e(X,0(1); 1) < Jo(1y.
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Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard
number 1 (note that there are 17 such families),

6/5 (6)cP(1,1,1,1,3)
4/3 (4)cP*

3/72 )N 3) c P

2 otherwise

3 2cP*

4 P3

eX,-Kx;1) =

holds, where X is a very general member in the
family.
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Definition (Toric variety)
MEZ”,MR :M®ZR
P c My: n-dim integral polytope

The polarized toric variety corrsponding to P is

(Xp, Lp) := (Proj (P Vir, O(1),

k>0

where Vip := P

uekPNM

Cx* c CIM

].
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Remark (Di rocco)
P C My : integral polytope of dimn

v < P :avertex, x, C Xp : the torus invariant point
Then &Xp, Lp; x,) = min{|7||v <7 < P,dim7 = 1}
holds.

Remark
For o < P and p € O, it holds that

S(XP7 LP7p) = min{g(XO', LO"p)7 8(XP’7 LP’ 5 xv’)}a

where 7 : Mg — My /(R(o0 — o)) and
P =n(P),v' = n(o).
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The following proposition is a key tool to estimate
Seshadri constants on toric varieties;

Proposition
m . Mg — My lattice projection with rank M = n,
rank M’ =r,

P C My: n-dim integral polytope.

Foru’ € n(P)N M@, setP(w') =n"'w)NP.

If dim P(u’) = n — r, it holds that

min{&(Xnp), Lrp); L)), EXparys Lrarys 1pary))
< &Xp,Lp;1p) < eXxp), Lrp); 1ncp))
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ker

|dea of proof.

We can construct a rational map ¢ : Xp --> Xpq
such that X, = the general fiber of ¢.

We study C.Lp/ mult;,(C) in case of

¢(C) = pt, or # pt separably. O
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(1) If rank M’ =1,
EXnpys Lapys Lap)) = deg Lypy = [(P)].
Thus we have e(Xp, Lp; 1p) < _%in]R |m(P),

where the right hand side is called the lattice width
of P.

In fact, eXp,Lp;1p) =1 iff min Im(P)| = 1.

T R—>

But in general, e(Xp, Lp; 1p) # ﬁmRWP)"
TMgp—

(2) It eXn(pys Lapys Lacp)) < €Xpary> Learys Lpar))s
then e(Xp, Lp; 1p) = &(Xup), Lapy; Lap))-
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(1) P =P, :=conv(0,ey,...,e,) CR",
nm: R" — R : n-th projection.
Since n(P) = [0, 1], P(0) = P,_;, it holds that

min{e(Xxpy, Lxp); Lxp)), €Xp0), Lroy; 1r©))}
= min{l’ 8(XP,1_1 ’ LP,,_l ; an—l)}
< &Xp,,Lp,;1p,) < &Xnp), Lrpy; 1up) = 1

Inductively, we have e(Xp,,Lp,; 1p, ) = 1.
Note that (Xp ,Lp,) = (P",O(1)).
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n: R? — R: 2-nd projection.
Then we have
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€2
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Note that Xp is the cubic surface in P? defined by
T; = T\ T»T5,



Toric case

Example

(2) P = conv(ey, ey, —e; — €3),
n: R? — R: 2-nd projection.
Then we have

min{2,3/2} = 3/2 < &(Xp, Lp; 1p) < 2.

R2
€2

€1

—€; — €2

Note that Xp is the cubic surface in P? defined by
Tg =T,1T,T3, and S(Xp, Lp; lp) = 3/2 holds.
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The following is a simple generalization of (2), and
will be used to estimate Seshadri constants on
hypersurfaces later;

Example

(8) P =conv(ey,...,e, — > ae;) C R" for
0 < a; € Q. Then it holds that

. ai+--+a,+1
g(Xp,Lp;1p) > min .
I<isn@jp +---+a, + 1

In (2) a; = a; = 1, hence

D [artrar+1 ar+a min 32 3
min , = —,2¢==.
a + 1 1 2 2
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Next, we investigate non-toric cases.
As stated in Introduction, toric degenerations play
an important role;

Proposition
(X;, Ly)er: flat family of polarized varieties
over smooth T > 0.

Assume that (X, Lo)™" = (Xp, Lp) for some
P c M.

Then

eXi, Ly 1) > e(Xp, Lp; 1p)

holds for very generalt € T.
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By using above proposition, we obtain the
following computations;

Theorem (Hypersurfaces)

X = X" c P"*': very general hypersurface of
degree d. Then it holds that

8(X9 0(1)9 1) 2 min{cn/cn+1’ Cn—l/cna 0009 01/02}
for any increasing seq. 1 =c,y1 <¢, <...<c;=d

of integers.
In particular, we have

| Vd] < &(X,0(1); 1) < Vd.
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Sketch of proof.
X degenerates to

Non-toric case

XO ‘= (T(c)l — Tlcl—Cz . T;n—CnJrlTCnﬂ) C Pn+l_

We can show (X, O(1))""
P = conv(ey,...
Thus we have

e(X,0(1);1)

vV v

n+1

(Xp, Lp) for

&(Xp, Lp; 1p)

min{cn/cn+1a Cn—l/cna .-

» €ny — Z?:l(ci - ci+1)ei) C R

.,c1/cal
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Sketch of proof.

X degenerates to

XO = (Tg — Tlcl—Cz . T;n_cn+1TZi+ll) C Pn+1_
We can show (X, O(1))"" = (Xp, Lp) for

P =conv(ey,...,e,,— 2 (ci — cir1)e;) C R™.
Thus we have

eX,0(1); 1) > &(Xp,Lp;1p)

>
> min{c,/Cu+1,Cn-1/Cn,...,C1/C2}.

The last part follows if we take
Cp=C,Cp1=C...,cp =C"1 forc:l_\"/aj. O
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Example
(1) When n = 2,

&(X2,0(1); 1) > min{[ Vd 1,d/T Vd 1} = d/[ Vd T
follows from 1 < [Vd 1 < d.

Thus we have

e(X2,0(1); 1) > max{| Vd J,d/ Vd ).

For example, &(X7,0(1); 1) > max{2,7/3} = 7/3.
(2) s(ng,O(l); 1) > min{3, 8/3,22/8} = 8/3 from
1 <3<8<22.

(3) e(X%,,0(1); 1) = ¢ holds for any ¢,n € N.
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In the above theorem, we do not know whether the
lower bound equals to &(X, O(1); 1) or not.

But at least in Fano case, we can obtain equalities
as follows;

Theorem (Fano complete intersections)
dy > ... = di,n: positive integers s.t. };d; = n + k.
X c Pk : very general c.i. of degrees di, . . ., d.
Then it holds that (X, O(1);1) = d;/(d; — 1).
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We prove only k = 1 case, thus we show
eX,0(1);1)=(n+1)/nsinced; =n+ 1.
(>) part follows from1 <2 <...<n+ 1.
(<) part ; Let X := (F =0) c P**! and

p=1[1:0:...:0]forahomogeneous polynomial
F=TiF\+ T} '"Fy+ -+ Fyy, degF; = .
Set C = Fir=--=F,_1=TyF,+ F,.1 =0).

Then we have p € C C X and

degC = (n— D!(n+ 1), mult,(C) = (n - 1)!n.

Thus

e(X,0(1);1) < C.O(1)/ mult,(C) = (n+ 1)/n. O
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Theorem (Fano 3-folds with Picard number 1)

Non-toric case

For each family of smooth Fano 3-folds with Picard

number 1,

eX,-Kx;1) =

6/5

4/3

3/2
2
3
4

(6)cP(,1,1,1,3)
4) c p*

2)NQ3) cP
otherwise

(2) c P*

P3

holds, where X is a very general member in the

family.




Non-toric case

liten, Lewis, and Przyjalkowski showed that such X
degenerates to a toric variety. We use it to show >.
< is proved by finding a suitable curve Cc X. O
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To apply this method, we have to find toric
degenerations.

For exmaple, any schubert variety and spherical
variety admit a flat degeneration to a polarized
toric variety (Caldero, Alexeev-Brion, ect.).

Question

Which polarized variety degenerates to a polarized
variety whose normalization is toric?

Anderson gave an interesting partial answer;
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Non-toric case .
Example

(X, L): polarized var. Y,: a flag of subvarieties of X.
We can define the Okounkov body

A(L) = Ay, (L) C R".

Anderson showed that (X, L) admits a flat
degeneration to a not necessarily normal polarized
toric variety whose normalizations is (Xa(), Law))
under some finitely generatedness condition.

Thus eX,L;1) > E(XA(L),LA(L); lA(L)) holds in this
case.

| proved that e(X,L; 1) > 8(XA(L), LA(L); lA(L)) holds
without the finitely generatedness condition if we
define e(Xa, La; 1) for any closed convex set

A c R" suitably.
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Multi-po|

Seshadri constants can be defined for multi-point
cases;

Definition (multi-point Seshadri constant)
For m = (mla L] mr) € (R>O)r5

_ : C.L
eX,L;m) = inf
¢ >,im;mult, (C)

= max{t>0|u"L~t ) mE; is nef)
i

for very general py,...,p, € X.

Remark
(X, L; tm) = t'e(X, L;m) holds for any ¢ > 0.
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Proposition
(X:, Ly)er: flat family of polarized schemes
over smooth T > 0.
Assume that general fibers are red. and irred.
and X, = | J;_, Y; : reduced.
Then

eX, Ler,...,e) 21

holds for very generalt € T,
where E = 8(Yi,L0|yi; 1)
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Theorem

X = X; c P! : a very general hypersurface of
degree d.Then

L{‘d/zm? | < &(X,0(1);m) < ,"‘d/zm;?
i=1 i=1

holds for any m = (my,...,m,) € (N'\ 0)".

Note that the above theorem is false for m € (R.g)"
in general.
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Sketch of proof.
Letd;,...,d, e N\ Osuchthat > d; =d.

Since X, degenerates to | J;_, X;,, we have
eX4,0(1);€1,...,8) = 1forg; := e(Xy,0(1); 1).
We take d; such that d; > (cm;)",

where ¢ = | {/d/ Y1, m! .

Then g; = &(Xy, O(1); 1) > | Vd; | > cm,.
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