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Abstract: Conventional recommendation methods such as collaborative filtering cannot be applied
when long-term user models are not available. In this paper, we propose two session-based recom-
mendation methods for anonymous browsing in a generic e-commerce framework. We represent the
data using a graph where items are connected to sessions and to each other based on the order of ap-
pearance or their co-occurrence. In the first approach, called Hierarchical Sequence Probability (HSP),
recommendations are produced using the probabilities of items’ appearances on certain structures in
the graph. Specifically, given a current item during a session, to create a list of recommended next
items, we first compute the probabilities of all possible sequential triplets ending in each candidate’s
next item, then of all candidate item pairs, and finally of the proposed item. In our second method,
called Recurrent Item Co-occurrence (RIC), we generate the recommendation list based on a weighted
score produced by a linear recurrent mechanism using the co-occurrence probabilities between the
current item and all items. We compared our approaches with three state-of-the-art Graph Neural
Network (GNN) models using four session-based datasets one of which contains data collected by us
from a leather apparel e-shop. In terms of recommendation effectiveness, our methods compete favor-
ably on a number of datasets while the time to generate the graph and produce the recommendations
is significantly lower.

Keywords: recommender systems; session-based recommendations; e-commerce; data and web
mining; item co-occurrence; graph data model

1. Introduction

Intelligent recommendations and their application in e-business systems are increas-
ingly attracting the interest of researchers and companies. Particularly, the use of the
recommendations systems in e-commerce aims at increasing conversion rate, profit and cus-
tomer engagement and satisfaction. Today, online sales are often made by non-registered
users, and therefore there is no historical user data recorded by the e-shop platforms. In
these cases, the only data that can be stored is information concerning the duration of a
session, the actions performed in each session’s step, the items (i.e., products) viewed, and
other activities of the online customers. This information will be recorded to later generate
recommendations in real time for other users visiting similar or related items. These are
session data [1] and can be collected while users navigate in the e-shop platform.

There is a variety of methods used in recommendation systems, such as association
rules [2], matrix factorization [3] or machine learning techniques [4], etc. Other methods
recently used in recommendation systems are based on graphs [5]. Graphs can efficiently
model user–item interactions within sessions enabling the easy generation of new session
data in near-real-time. The most frequent items that users visit are easily found using the
current complete graph where nodes represent items and edges represent the “next-item-
in-session” relationship between the nodes. Additionally, the combination of consecutive
item appearances during user navigation in the online store is easily identified through the
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graph structure. Implementing a standard co-occurrence method using graphs, a session-
based recommendation method, called Pair Popularity, based on item co-appearances
anywhere in the same session was presented in [6]. Having recorded the item x viewed
by the user at session step t, the method recommended a list of items for step t + 1 based
on the number of times the items co-appear with x in the training sessions. Session-based
recommendation with Graph Neural Networks such as SR-GNN [7], GCE-GNN [8] and
IC-GAR [9] have become very popular recently because of their very good performance
that often represents the state-of-the-art. However, there are also a number of drawbacks
regarding GNN approaches:

• Large computational complexity and large memory requirements during training.
Most GNN models require very large training times and large amounts of memory
even for medium-size datasets and even with special GPU acceleration hardware;

• Difficulty with cold-start recommendations. Most GNN models base their predictions
on previous items visited in the session, so it is difficult to recommend new items or
make recommendations without session data;

• Relatively reduced performance when the same item never appears repeatedly in con-
secutive session steps. This indicates that these models have difficulty in introducing
novelty and diversity in the recommendations.

The motivation behind this work is to address these problems by introducing improved
graph-based recommendation models which are simple, therefore computationally efficient.
Moreover, they should be able to exploit the cold-start probabilities of items when there
is no available co-occurrence with other items in the session and should be able to offer
novel and diverse recommendations. To that end, we propose two new session-based
recommendation methods—the Hierarchical Sequence Probability (HSP) and the Recurrent
Item Co-occurrence (RIC). The HSP method extends the Pair Popularity graph-based
approach to improve the results by using item sequences in user sessions to produce the
hierarchical recommendation list, while the Recurrent Item Co-occurrence recommendation
approach focuses on the co-occurrence of the products by giving weight to the count of
item appearances in the corresponding sessions.

The goal is to produce the optimal item recommendation list at time step t + 1 accord-
ing to the items observed by the user up until the current time step t. The contributions of
our work are:

• The proposition of two simple yet efficient session-based recommendation methods
based on the ”Next” relationship and the co-occurrence relationship between items in
the data representation graph;

• The comparison of the proposed methods with state-of-the-art Graph Neural Network
models using four different datasets. One of the two proposed methods outperforms
the GNN models in two cases while achieving close performance in the other two;

• The study of item sequences of the recent user browsing history vs. the simple item
co-occurrence. We show that the method using co-occurrence statistics can achieve
considerably better results than the one using the recent item sequences data;

• Attention to the efficiency aspect, showing that the proposed methods are significantly
less computationally expensive than the compared GNN approaches even though the
GNN models take advantage of a special GPU accelerator hardware to be trained.

The rest of the paper is organized as follows. In Section 2, we present an overview
of the existing research related to the session-based recommendation problem. The data
model analysis for the proposed recommendation methods and the algorithmic details
are presented in Section 3. Section 4 presents the datasets used in our experiments. In
Section 5, we describe the experimental procedure and discuss the results of the proposed
recommendation methods. Section 6 concludes the paper.
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2. Literature Review

There is a large number of recommendation methods used for different purposes
such as recommending friends, destinations, movies, products, etc [10]. These systems
use, in addition to previous user transactions, features such as location, demographic
profile, and user preferences to identify items that are similar to one another. The role of
recommendation systems (RS) has become increasingly crucial, especially in e-commerce,
due to the availability of a large group of items from which the user can choose. Users of
e-commerce sites are given tailored recommendations for products that they might find
interesting. After applying desired business criteria that can be applicable, RSs finally offer
a list of the top n recommended products for each targeted user action. If they do exist,
long-term user profiles are prominently used in RS techniques. Such long-term user models,
however, are usually unavailable in many applications for privacy-related reasons [11].

Session-based recommendation approaches (SBR) are recommendation techniques
that only consider the user’s in-session behavior and other session-specific information as
well as the sequential order of items in sessions [12]. They adjust their recommendations to
the user’s most recent actions, and their main objective is to predict and suggest the next
item(s) during every active user session [1].

A general method for developing recommendation systems is matrix factorization [13,14].
A user–item rating matrix must be factorized into two low-rank matrices, each of which re-
flects the latent factors of users or objects. In [3], the authors propose a matrix factorization
approach for session-based recommendations which is based on solving a least squares
optimization problem involving item–item similarities and session–item weights. The
method achieves results comparable to the state-of-the-art; however, its complexity in-
creases quickly with the size of the itemset. The item-based neighborhood approaches [15],
in which item similarities are determined by the co-occurrence within the same session,
could be a rational solution by taking into account the sequential order of the objects instead
of generating predictions relying on the most recent click. The sequential Markov chain
approaches are suggested to be used to predict users’ future actions based on their past
actions [16,17]. The weakness of Markov-chain-based models is that they independently
recombine the previous components. Such a significant assumption of independence affects
the prediction’s accuracy.

Recommendation systems using graphs have also been quite actively studied recently.
In fact, graph databases (GDBs) are one of the latest approaches in data modeling [5].
In a graph model, the data entities are represented as nodes and their relationships as
directed or undirected connections between the nodes; thus, any data relationship can be
represented on a corresponding graph [18]. The Neo4j [19] is a popular graph database
tool used for creating various recommendation systems for friends, movies and items,
as well as in e-commerce and loyalty-based retail businesses [20,21]. It uses the Cypher
declarative graph query language, which is similar to SQL allowing efficient creation,
reading, updating and querying of the graph data [22].

A session-based recommendation solution developed using the Neo4j graph database
is presented in [6]. In this paper, the authors demonstrate an efficient method for session-
based next-item recommendations. This recommendation system has been developed for
an e-commerce retail store. With the appropriate data modeling, by defining nodes and
relationships between the nodes and executing cypher queries, the system identifies the co-
occurring paired items anywhere in the same session. The frequency of co-occurring item
pairs determines the degree of similarity between these items. In practice, the next-item
recommendation method uses these similarities for building the model.

Deep Learning (DL) models based on Recurrent Neural Networks (RNN) have been
recently proposed for session-based recommendation solutions. The work in [23] pro-
poses the Recurrent Neural Network approach for session-based recommendations, called
GRU4REC, which employs multiple layers of the GRU model and uses only item sequences.
In [24], the authors propose a hierarchical Recurrent Neural Network based again on the
GRU model for session-based recommendations using user information. The work pre-
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sented in [25] extends the GRU4REC method by introducing data augmentation, and [26]
proposes NARM which is an integration of a stacked GRU encoder attention mechanism
to capture more representative item transition information of SBR. In [27], the authors
mix the sequential patterns and co-occurrence signals by combining together the recurrent
method and the neighborhood-based method to enhance the performance of the GRU4REC
recurrent model. One more DL recommendation method is based on mixture-channel
purpose routing networks (MCPRNs) [28]. To handle multi-purpose sessions, the authors
suggest a mixture-channel model. To model the dependencies between items within each
channel for a specified purpose, they create a purpose-specific recurrent network (PSRN), a
variation of the GRU RNN model. The authors of [29] introduce an RNN model named
Hierarchical Attentive Transaction Embedding (HATE), which exploits the attention mech-
anism to predict the next item by modeling dependencies in transactional data. The HATE
model consists of two parts, the Inter-transaction Context Embedding part for the item
representation, and the Intra-transaction Context Embedding part for the representation
of multiple chosen items in the current transaction, integrating these embeddings using
Intra-transaction attention.

Graph Neural Network (GNN) models implement recommendation systems of various
scenarios such as Social Recommendation, Sequential Recommendation, Session-based
Recommendation, Bundle Recommendation, Cross-Domain Recommendation or Multi-
behavior Recommendation [30]. Additionally, GNN models adopt machine learning and
deep learning techniques, such as Convolutional Networks, Attention Mechanism or
Embeddings representation to create recommendation systems in different domains [5].
Several next-item Graph Neural recommendation models have been proposed recently
for the case of e-commerce scenarios using session-based datasets. One of Graph Neural
Network’s next-item recommendation approaches, named the Heterogeneous Mixed Graph
Learning (HMGL) framework [31], was constructed to learn the complex local and global
dependencies for next-item recommendations. HMGL encodes both session information
and item attribute information into one unified graph modeling both local and global
dependencies to better prepare for the next-item recommendations. In SR-GNN (https://
github.com/CRIPAC-DIG/SR-GNN, accessed on 15 March 2022) [7], the session sequences
are modeled as graph-structured data. Each session is represented as the composition of
the global preference and the current interest of the session. An attention network is used
to learn item embeddings on the session graph, and then obtain a representative session
embedding which is calculated according to the relevance of each item to the last one.
The GCE-GNN (https://github.com/CCIIPLab/GCE-GNN, accessed on 10 May 2022) [8]
extends the previous approach by employing a session-aware attention mechanism to
recursively incorporate the neighbors’ embeddings of each node on the global graph. First,
the session sequences are converted into session graphs to construct a global graph. The
GCE-GNN learns two levels of item embeddings from the session graph by modeling
pairwise item-transitions within the current session and the global graph which is to learn
the global-level item embedding by modeling pairwise item-transitions over all sessions.
Another recent GNN model, called IC-GAR (https://github.com/Taj-Gwadabe/IC-GAR,
accessed on 10 October 2022) [9], models current session representations with session
co-occurrence patterns, using a modified variant of Graph Convolutional Network (GCN).
The Prediction Module of the IC-GAR separates global preference, local preference, and
session co-occurrence in order to estimate the probability scores of candidate items. The
global and local preferences model user interest in the current session, whereas the session
co-occurrence representation aggregates the higher-order transition patterns of all the items
in the training sessions. IC-GAR generates a single undirected graph for every training
session. The SR-GNN, CGE-GNN and IC-GAR are the most recent state-of-the-art GNN RS
models for SBR where one enhances the other with additional modules in order to more
accurately predict the next item. The summary of the reviewed recommendation methods
is presented in Table 1.

https://github.com/CRIPAC-DIG/SR-GNN
https://github.com/CRIPAC-DIG/SR-GNN
https://github.com/CCIIPLab/GCE-GNN
https://github.com/Taj-Gwadabe/IC-GAR
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In the present work, we focus on graph-based recommendation systems in the e-
commerce domain by proposing recommendation models that compete with recent state-
of-the-art GNN based recommendation models. We propose two different methods called
Hierarchical Sequence Probability (HSP) and Recurrent Item Co-occurrence (RIC) which
create the recommendation list using the item–item relationships: “next” and “in-same-
session”, respectively. Related to these two methods, the aim of this paper is to answer the
following research questions:

RQ1 Can HSP and RIC models achieve a state-of-the-art performance?
RQ2 How robust are these methods, i.e., how do they perform on different datasets?
RQ3 What is the effect of the item sequences and co-occurrences on the performance of

HSP and RIC?
RQ4 What computational resources are required to perform each experiment and how

time-consuming is it?

Table 1. Summary of reviewed methods.

Method Approach Citation

Probabilistic Matrix Factorization (PMF) Matrix Factorization [13]
SLIS, SLIT, SLIST Matrix Factorization, Linear item–item recommendation [3]
Matrix Factorization Item-based Collaborative filtering [15]
MDP-Based Recommender Model Markov models [16]
FPMC Markov chain, Matrix Factorization [17]
Recommendation of Influenced Products
Using Association Rule Mining Neo4j, Association rules [20]

Goods Recommendation Neo4j, Knowledge Graph database [21]
Pair Popularity Neo4j, Collaborative filtering [6]
GRU4REC RNN [23]
HRNN RNN [24]
M{1,2,3,4}(GRU Size) RNN, Data augmentation [25]
NARM GRU RNN, Attention mechanism [26]
WH (KNN, GRU) GRU RNN, k-NN [27]
PSRN GRU RNN, Mixture-channel Purpose Routing Networks (MCPRNs) [28]
HATE Attention mechanism, Item embeddings [29]
HMLG Gated Graph neural network, Path-based matrix factorization model [31]
SR-GNN Graph neural network, Attention mechanism, Item embeddings [7]

GCE-GNN Graph Neural Network, Session-aware attention mechanism,
Neighbors’ embeddings [8]

IC-GAR Graph neural network, Session co-occurrence patterns [9]

3. Recommendation Methods

In this section, we describe two session-based recommendation methods called Hier-
archical Sequence Probability (HSP) and Recurrent Item Co-occurrence (RIC), respectively.
For both methods, we use graphs to represent data. These graph methods can be applied in
e-shop platforms that allow anonymous access from non-registered users. The difference
between the two recommendation methods is that HSP exclusively uses the sequence of
items appearing in the session, while in the case of RIC, the recommendation list is based
primarily on the items’ co-occurrences extracted from session data. In detail, the two
methods are described below.

3.1. The Graph Models

In both proposed methods, the graphs consist of two types of nodes which represent
sessions and items. In the HSP graph, the connections between the nodes represented
relationships as follows:

• Item o appearing in session s is connected with s via the ItemInSession relationship;
• An item o1 appearing in session step t and an item o2 appearing in the same session in

step t + 1 are connected with the relationship Next.
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Thus, the graph data provide sequence information about items in sessions. Figure 1a
shows part of the data graph including the ItemInSession and the Next relationships between
the items and the sessions.

In the RIC method, similar to the HSP, the graph has two types of nodes, for the items
and sessions representations and also two types of following connections:

• The ItemInSession relationship as in the HSP method, and
• The InSameSession relation connects the items’ co-occurrences in the same session

independently to the sequence they appeared in. This is an undirected relationship.

In this case, the graph data model does not provide the sequence information about
items in sessions. Figure 1b shows part of the data graph including the ItemInSession and
the InSameSession relationships between the items and the sessions.

(a) (b)
Figure 1. Representation of items (light blue nodes), sessions (pink nodes) and the relationships
ItemInSession (blue edges), Next (red edges), InSameSession (green edges). (a) The HSP Graph Model,
(b) The RIC Graph Model.

3.2. Hierarchical Sequence Probability Method—HSP

The Hierarchical Sequence Probability approach is an item–item collaborative filtering
recommendation method where the list of recommended items arises from the items’
sequential appearances during session navigation. We consider t the current time instance
and itemt the item that appears to a user in time t during the session s. To recommend the
next item at time instance t during s, we introduce the concept of “item sequence probability”.
This term derives from the visiting frequency of the item by users during the sessions on
the e-shop platform. All the items have the single item probability, pair sequence probability
and triplet sequence probability as follows:

• P0(A)—single item probability, or cold-start probability is the number of appearances of
item A in all sessions divided by the total number of appearances of all items:

P0(A) =
number of appearances of A

number of appearances of all items
(1)

The single item probability is derived from the relationship ItemInSession of the graph;
• P1(A, B)—pair sequence probability, the number of appearances of the item pair (A,B) in

successive instances in all sessions, i.e., itemt−1 = A, itemt = B divided by the number
of appearances of item A

P1(A, B) =
number of appearances of consecutive pair A, B

number of appearances of item A

= P(itemt = B|itemt−1 = A) (2)

This function is created for all pairs of items using the Next relationship;
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• P2(A, B, C)—triplet sequence probability, the number of appearances of the item triplet
(A,B,C) in successive steps in all sessions, i.e., itemt−2 = A, itemt−1 = B, itemt = C
divided by the number of consecutive pairs A, B

P2(A, B, C) =
number of appearances of consecutive triplet A, B, C

number of appearances of consecutive pair A, B

= P(itemt = C|itemt−2 = A, itemt−1 = B) (3)

This function is created for all triplets of items connected by the Next relationship in a
chain A→ B→ C.

The probabilities P1 and P2 are closely related to the confidences of the association
rules (A ⇒ B) and (A, B ⇒ C) under the additional constraint that A, B, and C must be
consecutive items [32].

The Algorithm

The Hierarchical Sequence Probability (HSP) recommendation method is based on
item sequences observed through the users’ actions in the sessions. To recommend an item,
we look at its probability of appearance as well as the history of sequences of length 1 or 2
in which this item has participated during the training sessions. In the absence of a history
(i.e., in the first step of a session), items are recommended based on their probability. Thus,
the recommendation of the next item is based on the following cases:

1. The item recommendation list at step t = 1 (cold start case) contains the most fre-
quently visited items ordered according to decreasing single item probability value
P0. We call this the "0-history" prediction since no previous session steps are required;

2. For step t = 2, the item recommendation list is compiled using navigation history
of length 1. In particular, the recommendation list contains the items B that have a
nonzero pair-sequence-probability value P1(item1, B) with item1 appearing at step
t = 1. The list is ordered by decreasing the P1 value. Since item1 may be unpopular,
it is likely that there are very few items B with the non-zero P1(item1, B) value. For
this reason, the recommendation list is completed with "0-history" predictions, i.e.,
appending the most popular items according to P0, excluding those that are already
included in the list;

3. For steps t ≥ 3, the recommendation is compiled looking at the session history of
length 2. In particular, the recommendation list contains the items C that have a
nonzero triplet-sequence-probability value P2(itemt−2, itemt−1, C) ordered by decreas-
ing value. Again, due to scarcity reasons, the recommendation list is complemented
with predictions made using a history of length 1: we append the items B that have
a nonzero pair-sequence-probability value P1(itemt−1, B), ordered by decreasing P1
value, unless they are already included in the list. If that is still not sufficient, the list
is finally completed with "0-history" predictions, i.e., with all the items A ordered by
decreasing single item probability value P0(A), excluding those already in the list.

Figure 2 summarizes the flowchart of the proposed algorithm. In general, the recom-
mended items appear only once in the final list following the hierarchy “triplet sequence
probability” (2-length history), followed by “pair sequence probability” (1-length history), and
followed by “single item probability” (0-length history).
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Figure 2. The flowchart of the proposed Hierarchical Sequence Probability (HSP) algorithm. When-
ever appending an item in the recommendation list, we make sure it is not already included to avoid
duplicate recommendations.

3.3. Recurrent Item Co-Occurrence Algorithm

Whereas HSP is based primarily on the Next relationship to determine the list of
recommended items, our second proposed method is based primarily on the InSameSes-
sion relationship, which neglects the relative position of the items in the session. Let
I = {o1, . . . , oN} be the set of all the items. Given a current item x we define the confidence
weight γ(x|oi) of any other item oi as the ratio of all the InSameSession relations involving
both x and oi divided by the number of the ItemInSession relations involving x and any
session s:

γ(oi|x) =
count(InSameSession(x, oi))
count(ItemInSession(x, s))

. (4)

This is equivalent to the confidence value conf(x ⇒ oi) of the association rule
x ⇒ oi [32]:

conf(x ⇒ oi) = P(s 3 oi|s 3 x) =
P
(
(s 3 x) ∩ (s 3 oi)

)
P(s 3 x)

=
number of sessions containing both x and oi

number of sessions containing x
. (5)

A naive approach would be to build the recommendation list by simply sorting items
by decreasing confidence γ(oi|x). This approach, however, has two major drawbacks:

(a) it poorly treats the case where there is no co-occurrence of x and oi in any session. As
it happens, this is a very common situation where, obviously, γ(oi|x) = 0. Since all
such items are put in the same ranking position, they will be randomly sorted;

(b) it is a memoryless approach since the recommendation list is built based solely on x,
ignoring any other items viewed prior to x.

To alleviate these problems, we define a new confidence value ci for item oi which
is equal to γ(oi|x) if x and oi co-occur in at least one session; otherwise, ci is equal to the
cold-start probability P0(oi) defined in Equation (1):

ci =

{
γ(oi|x) if γ(oi|x) > 0
P0(oi) otherwise

(6)

With this approach, items with no history of co-occurrence with x are placed in
decreasing cold-start probability.

In order to introduce memory to the system, we further propose a simple, first order
recurrent model that generates the item weights which will be used to build the recom-
mendation list. Let x = itemt be the item viewed at step t in some session s and ci(t) be
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the confidence value of any item oi based on itemt as described in Equation (6). Then, the
weight wi(t) of this item at time t will be defined by the recurrent model:

wi(t) = αwi(t− 1) + (1− α)ci(t). (7)

The initial condition is again the cold-start probability wi(0) = P0(oi). The recommen-
dation list at any time step t is built using the top n items with the largest weights wi(t).
Since the weights are computed independently for different items, the process can be easily
parallelized using the vectors wt = [w1(t), . . . , wN(t)], ct = [c1(t), . . . , cN(t)], where now:
wt = αwt−1 + (1− α)ct.

The parameter 1− α (0 ≤ α ≤ 1) is the “forgetting factor,” which determines the
memory length of the system. For 1− α = 0 the system has infinite memory, the confidence
ci(t) based on itemt is ignored and wi(t) maintains a constant initial value through-out the
session. If 1− α = 1 the model becomes memoryless and wi(t) = ci(t). The parameter
α is set by the user and determines the effect that the previous items itemt−1, itemt−2, . . .
have on the current decision. Figure 3 depicts the schematic diagram of the proposed
recurrent system.

Figure 3. In the RIC method, the item weight vector wt at any time step t is generated by a first order
linear recurrent model. The input to the model is the current confidence vector ct.

Depending on how the sessions are recorded, it is possible to have repeated consecutive
entries of the same item, for example, the item sequence could be A, B, B, C. In some datasets
this is a frequent situation, whereas in other datasets this case never appears. We offer
two-flavors of the RIC algorithm:

(a) Plain RIC where the recommendation list is provided as described above. In this case,
the current item x = itemt is very likely to be in the top position since cx = γ(x|x) = 1;

(b) Current-item-Last (CiL) RIC, in which the current item is specifically moved to the
last position in the list of all items, practically making it disappear from the top-n
recommendation list.

4. The Datasets

We applied the experimentation on four session-based datasets: Leather (https://
github.com/delmarin35/Graph-Probability-Rec-Sys/tree/main/data, accessed on
19 November 2022), Yoochoose1/64 (http://2015.recsyschallenge.com/challege.html, ac-
cessed on 3 April 2022), Diginetica (http://cikm2016.cs.iupui.edu/cikm-cup, accessed on
3 April 2022), eElectronics (https://www.kaggle.com/datasets/mkechinov/ecommerce-
events-history-in-electronics-store, accessed on 18 June 2022).

Leather: The data of the Leather dataset obtained from the processing of web server
log records of an e-shop with leather apparel, jackets, furs and accessories. This is real data
that emerged from the log files that were recorded implicitly during the users’ navigation
actions in the e-shop platform for the time period of six months from March to August of
2021. The log data were preprocessed by identifying sessions, session length, user actions
in each session, and the items targeted by the actions. We consider as a session step every
user action during the session, for example, viewing an item or adding an item to the
basket. The dataset was processed to obtain only the sessions that contain at least two
behavior sequences, “view item” and “add to cart”, resulting in 102,024 records. The dataset

https://github.com/delmarin35/Graph-Probability-Rec-Sys/tree/main/data
https://github.com/delmarin35/Graph-Probability-Rec-Sys/tree/main/data
http://2015.recsyschallenge.com/challege.html
http://cikm2016.cs.iupui.edu/cikm-cup
https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-electronics-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-electronics-store
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was split into train (80%) and test (20%) sets. Thus, the number of records of the train and
test sets are 81,651 and 20,373 respectively. The total number of unique sessions is 19,236
which corresponds to 15,388 unique sessions of the train set and 3848 unique sessions of
the test set. In addition, the dataset contains 1448 unique items, of which 1429 appear in
the train set and 1296 in the test set. The same item never appears in two consecutive steps
in any session.

Yoochoose1/64: It is a public benchmark session-based dataset that has been com-
monly used to evaluate recommendation system performance. This dataset has
17,740 unique items, of which 17,371 appear in the train set and 6745 in the test set. In
addition, 369 items of the test set do not appear in the train set, while 10,995 train set items
do not exist in the test set. Moreover, 16.183% of the item pairs in the train sessions and
14.938% of the item pairs in the test sessions, respectively, contain the same item twice.

Diginetica: similarly to the Yoochoose1/64 dataset, the Diginetica dataset is often
used as a benchmark for testing recommendation systems’ performances. This dataset
contains 43,097 items. All the items appear in the train set, but only 21,129 appear in the
test set. The percentage of consecutive item pairs with a repeated item is less than in
Yoochoose1/64, being approximately 9% in both train and test sets.

eElectronics: this dataset contains user behavior data recorded for a period of 5 months
(October 2019–February 2020) from a large electronics online store. After removing the
sessions with only one item, and splitting the total number of 68,973 sessions into train
(80%) and test (20%) sets, 55,089 sessions were used for training and 13,884 sessions were
used for testing. Additionally, there are 33,130 unique items, 29,917 of which appear in the
train test and 14,482 appear in the test set. Furthermore, 3213 test set items are not in the
train set and 1848 train test items do not appear in the test set.

The description of statistical information of the datasets is presented in Table 2. All the
datasets have items that exist in the test set and do not exist in the train set or vice versa.
No item was removed from either the train or the test sets.

Table 2. Datasets statistics.

Dataset # Sessions in % Repeated Item Pairs in # ItemsTrain Set Test Set Train Set Test Set

Leather 15,388 3848 0.000 0.000 1448
Yoochoose1/64 116,167 15,324 16.183 14.938 17,740
Diginetica 186,670 15,963 9.199 9.143 43,097
eElectronics 55,089 13,884 0.000 0.000 33,130

5. The Experimentation Procedure and Results

In this section, we first describe the evaluation metric for performance evaluation. We
then intend to answer the research questions posed in Section 2.

5.1. Evaluation Metrics

The metrics that we used to evaluate the methods were the Mean Reciprocal Rank
(MRR)@K and the Recall@K. The MRR is an appropriate metric for measuring the perfor-
mance of recommendation algorithms on a session-based dataset as well as a good measure
of the effectiveness of next-item recommendation [33]. It evaluates the accuracy of the
recommended top-k list and is defined as:

MRR@k =
1
N ∑

x

1
rank(x)

,

where x is the next item to be predicted and rank(x) is the position of x in the recommen-
dation list, starting from position 1 for the first item. If x is not in the recommendation list,
we set rank(x) = ∞. The value of MRR is between 0 and 1 and the higher the value, the
more effective the quality of the recommendations. Assuming, as is often the case, that at
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least five recommended items appear on the user’s screen, an MRR ≥ 0.2 indicates that the
method is quite successful, since the next item chosen by the user is—on average—among
the top five recommended.

The Recall@k is defined as the percentage of the target items that were actually in-
cluded in the top-k recommendation list. Specifically, given a sequence of N top = k recom-
mendation lists Li with corresponding target items xi, the Recall@k is defined as [29]:

Rec@k =
1
N

N

∑
i=1

∣∣Li ∩ {xi}
∣∣,

where
∣∣Li ∩ {xi}

∣∣ denotes the cardinality of the intersection set between Li and {xi} which,
in this case, can either take the value 0, if the intersection is empty (i.e. xi 6∈ Li), or 1, if
xi ∈ Li.

In all experiments, we used the train sets to construct the data representation graphs or
to train the neural models. The evaluation of the algorithms was performed on the test sets.

5.2. The Experiments

The same session-based datasets were used for all the experimental implementa-
tions and recorded the results for MRR@k and Rec@k for the top items k = {10, 20, 30}.
More specifically,

• We compared our methods against three state-of-the-art GNN recommendation mod-
els, namely, SR-GNN [7], GCE-GNN [8], and IC-GAR [9]. We trained the models
using the code available from the respective GitHubs and recorded the time from
the moment the training starts to receiving the results. For each model, we used the
hyperparameters proposed in the corresponding Github codes. We executed the GNN
models in the Google colab environment with a Tesla T4 GPU accelerator (16 GB) and
Intel Xeon CPU @ 2.2 GHz;

• We also performed the same experiments using HSP and RIC and recorded the execu-
tion times from the moment we read the data until the generation of the results. The
HSP method has no hyper-parameter that requires adjustment. It is worth mentioning
that the HSP method extends the Pair Popularity approach and achieves better results.
For the RIC method, the values of the parameter α were set to 0.1, 0.3, 0.5, 0.7 and
0.9 during the experiments. Table 3 shows the optimal parameter value per dataset.
Our models were executed in Google colab in a CPU-only machine with an Intel Xeon
CPU @ 2.2 GHz;

• Additionally, we run the experiments for the Pair Popularity algorithm [6] in the same
scenarios of the top k recommendation items.

Table 3. Optimal values of the α parameter in the RIC method.

Dataset α

Leather 0.3
Yoochoose1/64 0.1

Diginetica 0.7
eElectronics 0.7

5.3. Results and Discussion

The experimentation results show that the effectiveness of a model is affected by the
dataset. Table 4 shows that the RIC-CiL recommendation method has a better MRR@k
performance for any k in the case of the Leather and Electronics datasets. In these datasets,
there is no session with repeated items in consecutive steps. The RIC-CiL variant achieves
these results by transferring the current item to the end of the recommendation list, thus
essentially excluding it from the top-k recommendations. This technique does not bring
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desired results in the Yoochoose1/64 and Diginetica datasets due to the existence of re-
peated consecutive items in the train and test sets. In these cases, the plain RIC variant
works better and, especially in the Diginetica case, outperforms SG-NN and IC-GAR with
respect to the MRR@k metric. HSP also has a very good MRR performance, outperforming
the GNN models on the Leather dataset (falling only behind RIC CiL).

On the other hand, the GCE-GNN and SR-GNN models achieve a better MRR perfor-
mance in the Diginetica dataset while all three GNN models have better MRR performance
on the Yoochoose1/64 dataset. In both of these datasets, repeated consecutive items appear
in many sessions. As shown in Table 2 the Yoochoose dataset has a very large percentage of
repeated item pairs (15–16%), even higher than the Diginetica dataset (∼9%). This indicates
that the GNN models have difficulty predicting the next item in a high ranking position in
the recommendation list unless the next item is identical to the current one. In other words,
they are not as efficient in identifying novelty. We stipulate that this phenomenon is due
to overfitting, considering that these models have a lot of parameters that allow them to
achieve very good fit on the training data but may not generalize as efficiently on the test
data. Here, it is worth noting that online store users may not appreciate getting recom-
mendations including the same item they are currently visiting. It seems more natural to
exclude the current item from the recommendation list. However, in our experiments, we
still use the Diginetica and Yoochoose1/64 datasets because they are common benchmarks
studied in many papers in the field.

Table 4. Comparison results of our methods against three state-of-the-art Graph Neural Network
recommendation models. The MRR@{10,20,30} and Recall@{10,20,30} are used as evaluation metrics.
The best performance for each dataset and corresponding metric is marked by bold-face numbers.

Dataset Method Rec@10 MRR@10 Rec@20 MRR@20 Rec@30 MRR@30

Leather

SR-GNN 0.5007 0.2723 0.6028 0.2793 0.6574 0.2814
GCE-GNN 0.5391 0.2686 0.6452 0.2760 0.6994 0.2781
IC-GAR 0.4744 0.2675 0.5654 0.2734 0.6171 0.2754
Pair Popularity 0.4776 0.2605 0.5678 0.2667 0.6206 0.2688
HSP 0.4878 0.2837 0.5632 0.2892 0.6028 0.2905
RIC CiL 0.5308 0.2986 0.6175 0.3046 0.6683 0.3066
RIC plain 0.5083 0.1984 0.6062 0.2053 0.6594 0.2074

Yoochoose1/64

SR-GNN 0.6013 0.2990 0.7059 0.3070 0.7546 0.3080
GCE-GNN 0.6113 0.2966 0.7117 0.3040 0.7660 0.3060
IC-GAR 0.5776 0.2947 0.6803 0.3018 0.7310 0.3039
Pair Popularity 0.4266 0.2108 0.5227 0.2176 0.5715 0.2196
HSP 0.5455 0.2766 0.6409 0.2833 0.6835 0.2850
RIC CiL 0.4365 0.2147 0.5366 0.2217 0.5865 0.2237
RIC plain 0.5693 0.2755 0.6791 0.2832 0.7307 0.2853

Diginetica

SR-GNN 0.3877 0.1697 0.5160 0.1788 0.5945 0.1819
GCE-GNN 0.4104 0.1812 0.5426 0.1900 0.6193 0.1932
IC-GAR 0.3581 0.1572 0.4838 0.1659 0.5631 0.1691
Pair Popularity 0.2664 0.1078 0.3685 0.1149 0.4271 0.1173
HSP 0.2742 0.1225 0.3414 0.1273 0.3692 0.1283
RIC CiL 0.3190 0.1406 0.4295 0.1483 0.4944 0.1509
RIC plain 0.3931 0.1777 0.5134 0.1860 0.5806 0.1868

eElectronics

SR-GNN 0.4041 0.1958 0.4957 0.2023 0.5453 0.2043
GCE-GNN 0.4553 0.2116 0.5555 0.2185 0.6037 0.2204
IC-GAR 0.3868 0.2004 0.4730 0.2057 0.5188 0.2075
Pair Popularity 0.3842 0.1872 0.4697 0.1931 0.5100 0.1948
HSP 0.3668 0.2068 0.4243 0.2109 0.4491 0.2119
RIC CiL 0.4525 0.2382 0.5421 0.2444 0.5892 0.2463
RIC plain 0.4390 0.1685 0.5356 0.1752 0.5854 0.1772



Appl. Sci. 2023, 13, 394 13 of 16

Additionally, our experiments show that the GCE-GNN model achieves the best
Recall@k for any k in all the datasets. In combination with the previous observations,
we conclude that the GCE-GNN model is the most efficient one in finding the next item
somewhere in the top-k list. However, it has still some difficulty in placing the next item in
a high ranking position unless it is the same item as the current one. This is more obvious
when studying the top 10 recommendations in the Leather and eElectronics datasets. In
this case, we note that, although Rec@10 is almost identical for GCE-GNN and RIC-CiL,
GCE-GNN has a significantly lower MRR@10 (between 2.5–3%)

Comparing HSP and RIC with each other, we find that HSP is inferior to RIC-CiL in the
case of the non-repeating datasets (Leather and eElectronics) and inferior or very close to the
performance of RIC-plain in the item-repeating datasets (Diginetica and Yoochoose1/64).
Especially in the case of Yoochoose1/64, the HSP and RIC-plain are almost equivalent in
terms of MRR performance although HSP is inferior in terms of the Rec@k metric. In the
case of the Diginetica dataset, the performance of HSP is inferior to both versions of RIC.
The difference between our two proposed methods is that, in HSP, we are basing it on the
Next relationship, taking into account the sequence of items, while in RIC, we are basing
it on the InSameSession taking into account the items’ co-occurrence. The performance
superiority of RIC against HSP indicates that focusing on item co-occurrence is more
beneficial than looking strictly at the recent item sequence.

Based on these findings, we can claim that the structure of a dataset affects the perfor-
mance of the recommendation models regardless of the way the recommendation model is
constructed, i.e., with or without the use of neural networks. Assuming that we do not
recommend the current item to the online user, the RIC-CiL variation achieves the best
MRR performance compared against state-of-the-art GNN models.

Regarding the execution time, the proposed HSP and RIC methods differ significantly
in the production of the recommendations list from the initial stage. In addition, simple
CPU execution is sufficient for the studied datasets to quickly implement the training
process or the calculations of the possible recommended items. The time it took for the
entire experimental process per recommendation method and dataset, from the beginning
to the appearance of the results, is shown in Table 5 and schematically illustrated in
Figure 4. Despite the fact that, for the training of the state-of-the-art GNN methods, a GPU
is necessary to complete the experiments in the time indicated in Table 5, for our HSP and
RIC methods, significantly less time was consumed without the use of a GPU.

Table 5. The approximate experimentation execution time in minutes.

Dataset SR-GNN 30
Epochs

GCE-GNN
20 Epochs

IC-GAR 10
Epochs HSP RIC

Leather 25 30 20 1 1
Yoochoose1/64 240 500 190 6 10
Diginetica 210 400 380 20 18
eElectronics 210 920 80 5 5

During the training process on the eElectronics dataset, we reduced the batch size to eight to avoid the out-of-
memory problem. For the other datasets, we kept the batch size to 100 as defined in the methods’ GitHub.

Based on the above findings, the proposed HSP and RIC methods are sufficiently
competent against more complex, state-of-the-art methods, and can be applied in real e-
commerce environments without requiring special equipment for their productive operation.
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Figure 4. The execution time in minutes for all methods and each dataset. Our proposed methods are
between 10× and 180× times faster than GNN models.

6. Conclusions

We have presented two graph-based methods for session-based recommendations
in a generic e-commerce environment without employing user history, i.e., suitable for
anonymous browsing. The methods are called Hierarchical Sequence Probability (HSP) and
Recurrent Item Co-occurrence (RIC). HSP is based on the statistics of the Next relationship
between items computing the probabilities of triplets, pairs and single items, which are then
used—in that order—to determine the position of each item in the recommendation list.
The RIC method is primarily based on the InSameSession relationship, which determines
the co-occurrence of pairs of items in the same session. We introduce memory to RIC
by incorporating a simple recurrent formula to determine the weight of each item which
is subsequently used to place the item in its proper position in the recommendation list.
Setting the value of the forgetting factor of this recurrent formula allows us to balance the
effect on our current decision of previously visited items in the session.

Both proposed methods have been compared to state-of-the-art Graph Neural Net-
work models. Our experiments, which involve four diverse datasets, show that RIC can
outperform the GNN models in two cases and achieve a performance quite close to that of
the winner model in the other two. The HSP approach is typically inferior to RIC, indicating
that the Next relationship is not so important compared to the InSameSession relationship
when building the recommendation list.

Additionally, both HSP and RIC methods are very fast compared to the GNN models.
This happens despite the fact that the execution time of the GNN models is reduced
thanks to the presence of a GPU accelerator, whereas the times recorded for our models are
measured on a simple CPU-based machine.

In future work, we plan to investigate the improvement of the RIC method by auto-
matically determining the optimal parameter α and also to determine whether the current
item should be first or last in the recommendation list. Another important aspect of the
algorithm which is worth investigating is the graph update as new data are collected in
such a way that the computational cost of updating the new confidence vectors, cold-start
probabilities and weight vectors is minimized.
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