
Session-based Recommendations with Recurrent Neural Networks

Session-based recommendation
Permanent cold start: where personalized recommendations fail
• User identification: Many sites (e.g. classifieds, video services) don’t require

users to log in. Although some form of identification is possible, it is not reliable.
• Intent/theme: Sessions usually have a goal or a specific theme. Different

sessions of the same user center around different concepts. The entire user
history may not help much in identifying the user’s current needs.

• Never/rarely returning users: High percentage of the users of webshops come
from search engines in search for some products and rarely return.

Workaround in practice
• Item-to-item recommendations: Recommend similar or frequently co-occurring

items.
We explore item-to-session recommendations. By modeling the whole session,

more accurate recommendations can be provided. We propose an RNN-based

approach to model the session and provide session-based recommendations.

domonkos.tikk@gravityrd.com
@domonkostikk

balazs.hidasi@gravityrd.com
@balazshidasi

Balázs Hidasi

Adapting GRU to the RecSys task

Experiments

Findings (Architecture, training & parameters)

• Single layer GRU performs best
• Pre/postprocessing FF layers are not needed
• Adagrad works better than RMSProp
• TOP1 loss is better overall than other losses
• Pointwise losses (e.g. cross-entropy) are unstable
• Feeding the network earlier events of the session (i.e. reminding it) does

not improve preformance
• LSTM & RNN are inferior to GRU
• The number of hidden units has the highest impact on performance

Alexandros Karatzoglou Linas Baltrunas Domonkos Tikk

alexk@tid.es
@alexk_z

lbaltrunas@netflix.com
@linasTw

Gated Recurrent Unit
Hidden state is the mix of the previous
hidden state and the current hidden state
candidate (controlled by the update gate): ℎ𝑡 = 1 − 𝑧𝑡 ℎ𝑡−1 + 𝑧𝑡ℎ 𝑡

The reset gate controls the contribution
of the previous hidden state to the hidden
state candidate: ℎ 𝑡 = tanh 𝑊𝑥𝑡 + 𝑈 𝑟𝑡 ∘ ℎ𝑡−1

Reset gate: 𝑟𝑡 = 𝜎 𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1
Update gate: 𝑧𝑡 = 𝜎 𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1

+19.91% +19.82%
+15.55% +14.06%

+24.82% +22.54%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
RSC15 - Recall@20

P
o

p

S
e

s
s

io
n

 p
o

p

It
e

m
-k

N
N

B
P

R
-M

F

G
R

U
4

R
e

c
(1

0
0

, u
n

it
s

 c
.-

e
n

tr
o

p
y

)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, B
P

R
)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, T
O

P
1)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, c

.-
e

n
tr

o
p

y
)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, B

P
R

)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, T

O
P

1)

+18.65% +17.54%
+12.58%

+5.16%

+20.47%

+31.49%

0

0.1

0.2

0.3
RSC15 - MRR@20

P
o

p

S
e

s
s

io
n

 p
o

p

It
e

m
-k

N
N

B
P

R
-M

F

G
R

U
4

R
e

c
(1

0
0

, u
n

it
s

 c
.-

e
n

tr
o

p
y

)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, B
P

R
)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, T
O

P
1)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, c

.-
e

n
t.

)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, B

P
R

)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, T

O
P

1)

+15.69%
+8.92% +11.50%

N/A

+14.58%
+20.27%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VIDEO - Recall@20

P
o

p

S
e

s
s

io
n

 p
o

p

It
e

m
-k

N
N

B
P

R
-M

F

G
R

U
4

R
e

c
(1

0
0

, u
n

it
s

 c
.-

e
n

tr
o

p
y

)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, B
P

R
)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, T
O

P
1)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, B

P
R

)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, T

O
P

1)

+10.04%

-3.56%
+3.84%

N/A

-7.23%

+15.08%

0

0.1

0.2

0.3

0.4

VIDEO - MRR@20

P
o

p

S
e

s
s

io
n

 p
o

p

It
e

m
-k

N
N

B
P

R
-M

F

G
R

U
4

R
e

c
(1

0
0

, u
n

it
s

 c
.-

e
n

tr
o

p
y

)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, B
P

R
)

G
R

U
4

R
e

c
(1

0
0

 u
n

it
s

, T
O

P
1)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, B

P
R

)

G
R

U
4

R
e

c
(1

0
0

0
 u

n
it

s
, T

O
P

1)

Data Description Items Train Test

Sessions Events Sessions Events

RSC15 RecSys Challenge 2015.
Clickstream data of a
webshop.

37,483 7,966,257 31,637,239 15,324 71,222

VIDEO Watch events collected
from a video service
platform.

327,929 2,954,816 13,180,128 48,746 178,637

Feedforward layers

Embedding layers

…

Output: scores on all items

Architecture
• Input: item of the actual event
• Output: likelihood for every

item for being the next one in
the event stream

GRU layer

GRU layer

GRU layer

Input: actual item, 1-of-N coding

(optional)

(optional)

ℎ ℎ 𝑥𝑡 ℎ𝑡

𝑧

Session-parallel mini-batches
Motivation:

• High variance in the length of the sessions (from 2 to 100s of events)
• The goal is to capture how sessions evolve

Approach:

• Have an ordering of all sessions (e.g. random order or order by time)
• Take the first events of the first X sessions (X – mini-batch size) to

form the first input mini-batch.
• The desired output is formed from the second events of the first X

sessions.
• The second mini-batch (input) is formed from the second events, etc.
• If a session ends, put the next available session in its place and reset

the corresponding hidden state.

Sampling the output
Motivation:

• The number of items is generally high: 100,000s or even a few millions.
• Training scales with the product of the number of events, hidden units

and outputs (𝑂 𝑁𝐸𝐻𝑁𝐼). The latter equals to the number of items.
• Models need to be trained frequently to keep up with the changes in

the item catalog and user behavior.
Approach:

• For an input, the desired output is a one-hot vector over all items.
• Always compute the score for the coordinate corresponding to the

desired item. Sample the others.
• Popularity based sampling: it is more likely that the lack of an event on

a more popular item means negative feedback.
• Use the items of the other examples of the mini-batch as the negative

examples for each event in the mini-batch. This is a form of popularity
based sampling with several practical benefits.

Ranking loss
Motivation:

• The ultimate goal of recommenders is to rank the items.
• Pointwise and pairwise rankings have been applied with great success

(listwise ranking is not scalable enough in practice).
• Pairwise ranking (A is preferred over B) often performs better.

Approach:

• BPR: Adapt Bayesian Personalized Ranking for multiple negative
samples.

• 𝐿 = − 1𝑁𝑆 log 𝜎 𝑟 𝑠,𝑖 − 𝑟 𝑠,𝑗𝑁𝑆𝑗=1

• TOP1: This ranking loss was devised by us for this task. It is the
approximation of the relative rank of the desired item. Regularization is
added for the sake of stability.

• 𝐿 = 1𝑁𝑆 𝜎 𝑟 𝑠,𝑖 − 𝑟 𝑠,𝑗𝑁𝑆𝑗=1 + 𝜎 𝑟 𝑠,𝑗2

𝑖1,1 𝑖1,2 𝑖1,3 𝑖1,4 𝑖2,1 𝑖2,2 𝑖2,3 𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6 𝑖4,1 𝑖4,2 𝑖5,1 𝑖5,2 𝑖5,3

Session1

Session2

Session3

Session4

Session5

…

𝑖1,1 𝑖1,2 𝑖1,3 𝑖2,1 𝑖2,2 𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5

𝑖4,1

𝑖5,1 𝑖5,2

𝑖1,2 𝑖1,3 𝑖1,4 𝑖2,2 𝑖2,3 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6

𝑖4,2

𝑖5,2 𝑖5,3

Input
(item of the
actual event)

Desired output
(next item in the
 event stream)

…

…

…

…

…

…

𝑖1 𝑖5 𝑖8

Mini-batch
(desired items)

𝑦 11 𝑦 21 𝑦 31 𝑦 41 𝑦 51 𝑦 61 𝑦 71 𝑦 81

𝑦 13 𝑦 23 𝑦 33 𝑦 43 𝑦 53 𝑦 63 𝑦 73 𝑦 83

𝑦 12 𝑦 22 𝑦 32 𝑦 42 𝑦 52 𝑦 62 𝑦 72 𝑦 82

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

Network output (scores) Desired output scores

Positive
item

Sampled
negative items

Inactive outputs
(not computed)

Read the paper: http://arxiv.org/abs/1511.06939
Try the algorithm: https://github.com/hidasib/GRU4Rec

M
in

i-
b

a
tc

h
1

M
in

i-
b

a
tc

h
3

M
in

i-
b

a
tc

h
2

http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://github.com/hidasib/GRU4Rec
https://github.com/hidasib/GRU4Rec

