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Abstract: This paper reports on our recent research in speech recognition by surface electromyography (EMG), which

is the technology of recording the electric activation potentials of the human articulatory muscles by surface

electrodes in order to recognize speech. This method can be used to create Silent Speech Interfaces, since

the EMG signal is available even when no audible signal is transmitted or captured. Several past studies have

shown that EMG signals may vary greatly between different recording sessions, even of one and the same

speaker. This paper shows that session-independent training methods may be used to obtain robust EMG-

based speech recognizers which cope well with unseen recording sessions as well as with speaking mode

variations. Our best session-independent recognition system, trained on 280 utterances of 7 different sessions,

achieves an average 21.93% Word Error Rate (WER) on a testing vocabulary of 108 words. The overall

best session-adaptive recognition system, based on a session-independent system and adapted towards the test

session with 40 adaptation sentences, achieves an average WER of 15.66%, which is a relative improvement

of 21% compared to the baseline average WER of 19.96% of a session-dependent recognition system trained

only on a single session of 40 sentences.

1 INTRODUCTION

Automatic Speech Recognition (ASR) has now

reached a level of precision and robustness which

allows its use in a variety of practical applications.

Notwithstanding, speech recognition suffers of sev-

eral drawbacks which arise from the fact that ordi-

nary speech is required to be clearly audible and can-

not easily be masked: on the one hand, recognition

performance degrades significantly in the presence of

noise. On the other hand, confidential and private

communication in public places is difficult if not im-

possible. Even when privacy is not an issue, audi-

ble speech communication in public places frequently

disturbs bystanders.

Both of these challenges may be alleviated by

Silent Speech Interfaces (SSI). A Silent Speech In-

terface is a system enabling speech communication to

take place without the necessity of emitting an audi-

ble acoustic signal, or when an acoustic signal is un-

available (Denby et al., 2010). Our approach to cap-

ture silent speech relies on surface ElectroMyoGra-

phy (EMG), which is the process of recording elec-

trical muscle activity using surface electrodes. Since

speech is produced by the activity of the human artic-

ulatory muscles, the EMG signal measured in a per-

son’s face may be used to retrace the corresponding

speech, even when this speech is produced silently,

i. e. articulated without any vocal effort. Application

areas for EMG-based Silent Speech Interfaces include

robust, confidential, non-disturbing speech recogni-

tion for human-machine interfaces and transmission

of articulatory parameters for example by a mobile

telephone for silent human-human communication.

Previous EMG-based speech recognition systems

were usually limited to very small tasks and vocab-

ularies. A main reason for this limitation was that

those systems were usually session-dependent, i. e.

they used training and test data from only one speaker

and only one recording session. Here, the term

recording session means that during the recording,

the EMG electrodes were not removed or reattached.



This paper presents our first session-independent and

session-adaptive systems: We show that a system

trained on multiple recording sessions of one and the

same speaker yields a reasonable performance, and

that a session-independent system recognizes test data

from unseen sessions more robustly than a similarly

large recognizer trained on data from just one ses-

sion. We additionally prove that the increased robust-

ness of a session-independent system also helps to

cope with the difference between normal and silently

articulated speech. Finally, we investigate how the

system copes with increasing recognition vocabulary

sizes and present results on an EMG-based speech

recognition system with a vocabulary of more than

2000 words, which to the best of our knowledge is

the largest vocabulary which has ever been used for

recognizing speech based on EMG signals.

The remainder of this paper is organized as fol-

lows: In section 2, we give an overview of previous

related works. Section 3 presents our data corpus,

and section 4 describes the setup of our EMG-based

speech recognizer. In section 5, we present our exper-

iments and results, and section 6 concludes the paper

and outlines possible future work.

2 RELATED WORK

The use of EMG for speech recognition dates back to

the mid 1980s, however competitive performance was

first reported by (Chan et al., 2001), who achieved an

average word accuracy of 93% on a 10-word vocab-

ulary of English digits. Good performance could be

achieved even when words were spoken silently (Jor-

gensen et al., 2003), suggesting this technology could

be used for Silent Speech Interfaces.

Jou et al. (Jou et al., 2007) successfully demon-

strated that phonemes can be used as modeling units

for EMG-based speech recognition, thus allowing

recognition of continuous speech. Phoneme models

can be improved by using a clustering scheme on pho-

netic features, which represent properties of a given

phoneme, such as the place or the manner of articula-

tion (Schultz and Wand, 2010); this modeling scheme

has also been also employed for this study.

There exist some studies on speaker adaptation

for EMG-based speech recognition tasks (Maier-Hein

et al., 2005; Wand and Schultz, 2009). Generally

speaking, these experiments show that when data of

different speakers is combined, the recognition per-

formance degrades severely. This is the underlying

reason why we propose session-independent EMG-

based speech recognition systems as a goal which is

both tractable and practically relevant.

3 DATA CORPUS

Our corpus is based on a subset of the EMG-UKA cor-

pus (Janke et al., 2010a) of EMG signals of speech.

This subset consists of 32 recording sessions of those

two speakers who had recorded a large number of ses-

sions. Each of these 32 sessions consists of 40 train-

ing utterances and 10 test utterances, as described be-

low. We call these sessions small sessions. Addition-

ally, each speaker recorded a large session with 500

training utterances.

Figure 1: Overview of electrode positioning and captured
facial muscles (muscle chart adapted from (Schünke et al.,
2006)).

For EMG recording, we used a computer-

controlled 6-channel EMG data acquisition system

(Varioport, Becker-Meditec, Germany). All EMG

signals were sampled at 600 Hz and filtered with an

analog high-pass filter with a cut-off frequency at

60 Hz. We adopted the electrode positioning from

(Maier-Hein et al., 2005) which yielded optimal re-

sults, using five channels and captures signals from

the levator angulis oris (channels 2 and 3), the zygo-

maticus major (channels 2 and 3), the platysma (chan-

nel 4), the anterior belly of the digastric (channel 1)

and the tongue (channels 1 and 6). In the audible

and whispered parts, we parallely recorded the audio

signal with a standard close-talking microphone con-

nected to a USB soundcard.

The recording protocol for each “small” session

of the EMG-UKA corpus was as follows: In a quiet

room, the speaker read a series of 50 English sen-

tences. These sentences were recorded either only

once, in normal (audible) speaking style, or three

times: first audibly, then in whispered speech, and

at last silently mouthed. As an abbreviation, we call

the EMG signals from these parts audible EMG, whis-

pered EMG, and silent EMG, respectively.

In each part we recorded one batch of 10 BASE

sentences which were identical for all speakers and all

sessions, and one batch of 40 SPEC sentences, which

varied across sessions. The sentence sets were identi-



Speaker 1 2

Total # of Sessions 24 1 8 1

Sessions with a
Silent EMG part

11 0 2 0

Audible EMG
Training Sentences
per Session

40 500 40 500

Audible EMG Test
Sentences per
Session

10 10 10 10

Silent EMG Test
Sentences per
Session (where
present)

10 - 10 -

Average Duration
of Audible
Training Data per
Session

149s 1641s 146s 1625s

Average Duration
of Audible Test
Data per Session

42s 40s 40s 38s

Average Duration
of Silent Test Data
per Session (where
present)

45s - 45s -

Table 1: Statistics of the data corpus.

cal for all parts of a session, so that the database cov-

ers all three speaking modes with parallel utterances.

The total of 50 BASE and SPEC utterances in each

part were recorded in random order.

The two additional “large” sessions followed the

same protocol, with the only difference that the set of

SPEC sentences was enlarged to 500 sentences. The

two large sessions only contain audible EMG record-

ings. In all cases, the SPEC sentences (or a subset of

them) were used as training respectively adaptation

data, and the BASE sentences were used as test data.

Note that we did not use the whispered EMG record-

ings for this study, and that from the silent EMG parts,

we only used the test set. The final corpus which we

used for this study is summarized in table 1.

4 THE EMG-BASED SPEECH

RECOGNIZER

In this section we give a brief overview of our EMG-

based speech recognizer.

The feature extraction is based on time-domain

features (Jou et al., 2006). Here, for any given fea-

ture f, f̄ is its frame-based time-domain mean, Pf is

its frame-based power, and zf is its frame-based zero-

crossing rate. S(f,n) is the stacking of adjacent frames

of feature f in the size of 2n+1 (−n to n) frames.

For an EMG signal with normalized mean x[n], the

nine-point double-averaged signal w[k] is defined as

w[n] =
1

9

4

∑
k=−4

v[n+ k], where v[n] =
1

9

4

∑
k=−4

x[n+ k].

The rectified high-frequency signal is r[n] = |x[n]−
w[n]|. The final feature TD15 is defined as follows

(Schultz and Wand, 2010):

TD15 = S(f2,15),where f2 = [w̄,Pw,Pr,zr, r̄].

Frame size and frame shift are set to 27 ms respec-

tive 10 ms. In all cases, we apply LDA on the TD15

feature to reduce it to 32 dimensions.

The recognizer is based on three-state left-to-right

fully continuous Hidden-Markov-Models. All exper-

iments used bundled phonetic features (BDPFs) for

training and decoding, see (Schultz and Wand, 2010)

for a detailed description of this scheme.

For decoding, we used the trained acoustic model

together with a trigram Broadcast News language

model giving a perplexity on the test set of 24.24.

The decoding vocabulary was restricted to the words

appearing in the test set, which resulted in a test vo-

cabulary of 108 words, with the exception of the fi-

nal experiment, where we extended the decoding vo-

cabulary to 2102 words (the entire vocabulary of the

full EMG-UKA corpus). We applied lattice rescoring

to obtain the best weighting of language model and

acoustic model parameters.

5 EXPERIMENTS

This section is structured as follows: First, we show

how a session-independent system performs in com-

parison to large session-dependent systems. Second,

we prove that these encouraging results can be im-

proved even further by means of MLLR adaptation.

Third, we present recognition results on silent EMG,

showing that a session-independent system may cope

with the difference between audible and silent EMG.

Fourth, we outfit our best systems with an extended

vocabulary and show that even then, EMG-based

speech recognition is still possible.

5.1 Session-Independent EMG-based

Speech Recognition

We compared the following three kinds of systems:

• A session-dependent (SD) system is trained and

tested on data from one single session, during

which the recording electrodes were not removed.



• A multi-session (MS) system uses training data

from multiple sessions. The session on which

such a system is tested is always part of the train-

ing sessions. Note that as described in section 3,

the training data set and the test data set are dis-

joint.

• A session-independent (SI) system uses training

data from one or more sessions. No data from the

session on which the system is tested may form

part of the training corpus.

The multi-session system may be considered an inter-

mediate step towards a session-independent system.

We expect that when the amount of training data is

the same, a multi-session system should perform bet-

ter than a session-independent system, and this is in-

deed the case.

For our first experiment, we subdivided the 32

“small” sessions of the data corpus into blocks of 2, 4,

or 8 sessions. Each session forms part of exactly one

block of each size. On each block of n sessions, we

trained n session-independent systems, each of which

was characterized by testing on the test data of one

particular session, and training on the training data of

the remaining n− 1 sessions. Thus e. g. from the 24

sessions of speaker 1, we obtain 24 SI systems which

were trained on 1 session (different from the test ses-

sion), 24 SI systems which were trained on 3 sessions,

and 24 SI systems which were trained on 7 sessions.

Consequently, we have got SI systems trained on 40,

120, and 280 training sentences.

In order to obtain comparable results, we trained

multi-session systems in the same way, using the

same amount of training sentences. This means that

from a block of e. g. 8 sessions, we left out one ses-

sion (either the first one or the last one) and trained

a multi-session system on the remaining 7 sessions.

This system is then tested on the test data of one of

the sessions included in the training set. Finally, we

obtain as many MS systems as SI systems.

For comparison, we used the two “large” sessions

of our corpus to train and test session-dependent sys-

tems with 40, 120, or 280 training sentences.

Figure 2 shows the Word Error Rates (WERs)

of the systems described above, averaged over all

sessions of both speakers. It can be seen that a

small session-independent system with 40 training

sentences performs quite badly, with 66.93% WER

versus 28.43% WER for the session-dependent sys-

tem of the same size. However when the number

of training sessions increases, the performance of the

session-independent system also increases and ap-

proaches the performance of the session-dependent

system. The average word error rate of our largest SI

systems with 280 training sentences is 21.94%, com-

Figure 2: Average system performances (Word Error Rates)
for session-dependent, session-independent, and multi-
session systems.

pared to a WER of 11.28% for the speaker-dependent

system of the same size. The multi-session systems

unsurprisingly perform best, with a WER of 10.45%

for 280 training sentences.

A session-independent (SI) system is a system

where the sets of training sessions and test sessions

are disjoint. However, by definition such an SI sys-

tem can be trained on data from many sessions, or just

on data from one large session. From similar obser-

vations in acoustic speech recognition, it can be hy-

pothesized that when multiple sessions are used, the

system “sees” more different data “shapes” and there-

fore becomes more robust than a system trained on

only one session.

Figure 3: Average performance of single-session and multi-
session systems when tested on data from unseen sessions.

Figure 3 shows that this is indeed the case: We

trained session-dependent recognizers on the two

“large” sessions, using 40, 120, or 280 training sen-

tences, and tested these recognizers on the test sets of

the “small” sessions of the respective speakers. We

compared these results to the performance of the SI

systems trained on data from several “small” sessions.

On 40 training sentences, the recognizers have quite

similar performance, with a word error rate of 66.93%

respectively 72.91%. On 280 training sentences, how-

ever, the average WER of the single-session SI rec-



ognizer is 51.04%, whereas the average WER of the

multi-session SI recognizer drops to 21.93%! Even

though there is some variation between different ses-

sions, the result shows that a recognizer trained on

multiple sessions is much better than a similarly-sized

recognizer trained on one session. Moreover, the

performance difference increases with the number of

training sessions, supporting our claim that increas-

ing the number of training sessions indeed increases

the robustness of the recognizer.

5.2 Session-adaptive Recognition

In this section we investigate whether the session-

independent systems may be improved by using lim-

ited amounts of training data from the sessions on

which the respective systems are to be tested. The

classical method is to adapt the trained models of the

SI system towards the training data from the test ses-

sion. Due to its ability to deal with varying amounts of

adaptation data, we used Maximum Likelihood Linear

Regression (Leggetter and Woodland, 1995), a stan-

dard method in acoustic speech recognition.

Figure 4: Average performance of session-adaptive systems
with various numbers of adaptation sentences. The perfor-
mance of a speaker-dependent system with 40 training sen-
tences is given as a baseline.

Figure 4 shows the results of our experiments in

session adaptation. We started with our largest SI sys-

tem, trained on 280 utterances, and used 10, 20, 30,

or 40 training utterances to adapt the system towards

the data of the respective test session. The testing was

performed on the full test set of the respective sess-

sion.

For 10 adaptation sentences, the performance of

the system actually degrades, probably due to under-

training artifacts. However for 30 or 40 sentences,

MLLR adaptation has a beneficial effect, yielding bet-

ter systems than the original SD system trained on 40

sentences of training data. The best session-adaptive

system gives a WER of 15.66%, which is significantly

better than the 19.96% WER of the SD system.

5.3 Robust Recognition of Silent Speech

The next experiment answers the question whether

the increased robustness of a session-independent rec-

ognizer may also help in recognizing speech with dif-

ferent speaking modes. With speaking mode, we refer

to audible and silent speech, as described in section 3.

The variation between these two speaking modes has

been shown to have a very large impact in EMG-based

speech recognition (Janke et al., 2010a; Janke et al.,

2010b).

For this experiment, we used the multi-session and

session-independent systems with 40, 120, and 280

training sentences which are described above. We

took the acoustic models from these systems, which

had been trained on audible EMG, and applied them

to the available silent EMG test sets. This implies that

these experiments were limited to the 13 sessions for

which silent EMG data is available (see section 3).

According to (Janke et al., 2010a), we call this setup

Cross-Modal Testing.

Figure 5: Average performance of different systems on
silent EMG. The performance of a speaker-dependent sys-
tem with 40 training sentences is given as a baseline.

The recognition results are presented in figure 5

and show a very encouraging picture: While our base-

line cross-modal recognition performance on SD sys-

tems is at 36.21% WER, the multi-session systems

perform significantly better, with the best system with

280 training sentences yielding 19.04% WER. Fur-

thermore, even the session-independent system with

280 training sentences performs better than the SD

system, yielding a WER of 28.45% on silent EMG.

5.4 Performance on Large Vocabularies

As a final experiment, we extended our recognition

vocabulary to 2102 words, which is the whole set of

words which occurs in the complete EMG-UKA cor-

pus. We used the best speaker-dependent and speaker-

independent systems with 280 training sentences and



tested these models on the same test set as before, but

with a testing vocabulary of 2102 words.

Figure 6: Average performance of systems on extended test-
ing vocabulary.

Figure 6 shows the results of this experiment.

Clearly, there is a decay in system performance when

the vocabulary is increased. This decay appears to

be similar for both the SD and the SI systems. The

session-dependent system still performs best, with a

WER of 33% on the large vocabulary. The session-

independent system yields a WER of 50.48%.

6 CONCLUSION

In this paper we presented an EMG-based

speech recognition system which works session-

independently: It uses training data from multiple

EMG recording sessions, between which the EMG

electrodes were removed and reattached. We demon-

strated that session-independent EMG-based speech

recognition yields a suitable performance, and that

in particular, when testing is performed on unseen

sessions, the session-independent system performs

significantly better than a similarly large session-

dependent system, which shows that the session-

independent training approach indeed increases the

robustness of the system. We also showed that adapt-

ing a session-independent system towards a specific

test session further improves the system performance.

This technology allows us to create larger EMG-

based speech recognition systems than the ones pre-

viously investigated. We have shown that our current

best system can deal with vocabulary sizes ranging

up to 2.100 words, which brings EMG-based speech

recognition within a performance range which makes

spontaneous conversation possible.

Further steps in the field of EMG-based speech

processing may include a systematic study of the

discrepancies between different recording sessions,

which could not only improve the systems presented

in this paper, but also give further insight in what

causes these discrepancies. Second, transiting to true

speaker-independent systems is another major goal

for the future. In order to achieve it, however, fur-

ther studies on the behavior of the EMG signals of

the articulatory muscles are needed.
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