
DOI: 10.1007/s00145-006-0233-z

J. Cryptology (2006) 19: 241–340

© 2006 International Association for
Cryptologic Research

Session-Key Generation Using
Human Passwords Only∗

Oded Goldreich
Department of Computer Science,

Weizmann Institute of Science,
Rehovot, Israel

oded@wisdom.weizmann.ac.il

Yehuda Lindell
Department of Computer Science,

Bar-Ilan University,
Ramat Gan 52900, Israel

lindell@cs.biu.ac.il

Communicated by Mihir Bellare

Received 12 April 2002 and revised 9 August 2005
Online publication 24 May 2006

Abstract. We present session-key generation protocols in a model where the legit-
imate parties share only a human-memorizable password, and there is no additional
set-up assumption in the network. Our protocol is proven secure under the assumption
that enhanced trapdoor permutations exist. The security guarantee holds with respect to
probabilistic polynomial-time adversaries that control the communication channel (be-
tween the parties), and may omit, insert, and modify messages at their choice. Loosely
speaking, the effect of such an adversary that attacks an execution of our protocol is
comparable with an attack in which an adversary is only allowed to make a constant
number of queries of the form “is w the password of Party A.” We stress that the result
holds also in case the passwords are selected at random from a small dictionary so that
it is feasible (for the adversary) to scan the entire directory. We note that prior to our
result, it was not known whether or not such protocols were attainable without the use
of random oracles or additional set-up assumptions.

Key words. Session-key generation (authenticated key exchange), Mutual authenti-
cation protocols, Human-memorizable passwords, Secure two-party computation, Non-
malleable commitments, Zero-knowledge proofs, Pseudorandom generators and func-
tions, Message authentication schemes.

∗ An extended abstract of this work appeared in Crypto 2001. Oded Goldreich was supported by the
MINERVA Foundation, Germany. This work was carried out while Yehuda Lindell was at the Weizmann
Institute of Science.

241

242 O. Goldreich and Y. Lindell

1. Introduction

This work deals with the oldest and probably most important problem of cryptography:
enabling private and reliable communication among parties that use a public commu-
nication channel. Loosely speaking, privacy means that nobody besides the legitimate
communicators may learn the data communicated, and reliability (or integrity) means
that nobody may modify the contents of the data communicated (without the receiver
detecting this fact). Needless to say, a vast amount of research has been invested in this
problem. Our contribution refers to a difficult and yet natural setting of two parameters
of the problem: the adversaries and the initial set-up.

We consider only probabilistic polynomial-time adversaries. Still, even within this
framework, an important distinction refers to the type of adversaries one wishes to protect
against: passive adversaries only eavesdrop the channel, whereas active adversaries may
also omit, insert, and modify messages sent over the channel. Clearly, reliability is a
problem only with respect to active adversaries (and holds by definition with respect to
passive adversaries). We focus on active adversaries.

The second parameter mentioned above is the initial set-up assumptions. Some as-
sumption of this form must exist or else there is no difference between the legitimate
communicators, called Alice and Bob, and the adversary (which may otherwise initiate
a conversation with Alice pretending to be Bob). We list some popular initial set-up
assumptions and briefly discuss what is known about them.

Public-key infrastructure. Here one assumes that each party has generated a secret-
key and deposited a corresponding public-key with some trusted server(s). The
latter server(s) may be accessed at any time by any user.

It is easy to establish private and reliable communication in this model (by a
straightforward use of the public-key schemes, see [20] and [49]). (However, even
in this case, one may want to establish “session-keys” as discussed below; for
example, see [46], [7], [3], [50], and [19]).)

Shared (high-quality) secret-keys. By high-quality keys we mean strings coming
from distributions of high entropy (e.g., uniformly chosen 128-bit long strings,
uniformly chosen 1024-bit primes, etc). Furthermore, these keys are selected by
a suitable program, and cannot be memorized by humans.

In case a pair of parties shares such a key, they can conduct private and reliable
communication (either directly (see [13], [53], and [27]) or by first establishing a
session-key (see [6] and [7])).

Shared (low-quality) secret passwords. In contrast to high-quality keys, passwords
are strings that may be easily selected, memorized, and typed-in by humans. An
illustrating (and simplified) example is the case in which the password is selected
uniformly from a relatively small dictionary; that is, the password is uniformly
distributed in D ⊂ {0, 1}n , where |D| = poly(n).

Note that using such a password in the role of a cryptographic key (in schemes
as mentioned above) will yield a totally insecure scheme. A more significant
observation is that the adversary may try to guess the password, and initiate a
conversation with Alice pretending to be Bob and using the guessed password.

Session-Key Generation Using Human Passwords Only 243

So nothing can prevent the adversary from successfully impersonating Bob with
probability 1/|D|. However, can we limit the adversary’s success to about this
much?

The latter question is the focus of this paper.

Session-keys. The problem of establishing private and reliable communication is com-
monly reduced to the problem of generating a secure session-key (a.k.a “authenticated
key exchange”). Loosely speaking, one seeks a protocol by which Alice and Bob may
agree on a key (to be used throughout the rest of the current communication session) so
that this key will remain unknown to the adversary.1 Of course, the adversary may pre-
vent such agreement (by simply blocking all communication), but this will be detected
by either Alice or Bob.

1.1. What Security May Be Achieved Based on Passwords

Let us momentarily consider the related (although seemingly easier) task of mutual
authentication. Here Alice and Bob merely want to establish that they are talking to one
another. Repeating an observation made above, we note that if the adversary initiates
t ≤ |D| instances of the mutual authentication protocol, guessing a different password
in each of them, then with probability t/|D| it will succeed in impersonating Alice to
Bob (and furthermore find the password). The question posed above is rephrased here
as follows:

Can one construct a password-based scheme in which the success probability
of any probabilistic polynomial-time impersonation attack is bounded by
O(t/|D|)+µ(n), where t is the number of sessions initiated by the adversary,
and µ(n) is a negligible function in the security parameter n?

We resolve the above question in the affirmative. That is, assuming the existence of
trapdoor one-way permutations, we prove that schemes as above do exist (for any D
and specifically for |D| = poly(n)). Our proof is constructive. We actually provide a
protocol of comparable security for the more demanding goal of authenticated session-
key generation.

Password-based authenticated session-key generation. Our definition for the task of
authenticated session-key generation is based on the simulation paradigm. That is, we
require that a secure protocol emulates an ideal execution of a session-key generation
protocol (see [2], [43], and [16]). In such an ideal execution, a trusted party hands
identical, uniformly distributed session-keys to the honest parties. The only power given
to the adversary in this ideal model is to prevent the trusted party from handing keys to
one of the parties. (We stress that, in this ideal model, the adversary learns nothing of
the parties’ joint password or output session-key.)

Next, we consider a real execution of a protocol (where there is no trusted party and the
adversary has full control over the communication channel between the honest parties).

1 We stress that many famous key-exchange protocols, such as the one of Diffie and Hellman [20], refer to
a passive adversary. In contrast, this paper refers to active adversaries.

244 O. Goldreich and Y. Lindell

In general, a protocol is said to be secure if real-model adversaries can be emulated in
the ideal model such that the output distributions are computationally indistinguishable.
Since in a password-only setting the adversary can always succeed with probability
1/|D|, it is impossible to achieve computational indistinguishability between the real
model and above-described ideal model (where the adversary has zero probability of
success). Therefore, in the context of a password-only setting, an authenticated session-
key generation protocol is said to be secure if the above-mentioned ideal-model emulation
results in an output distribution that can be distinguished from a real execution by (a gap
of) at most O(1/|D|) + µ(n). (We note that in previous definitions, the probability of
adversarial success was made strictly 1/|D| rather than O(1/|D|); we do not know how
to achieve this stricter requirement.)

Main Result (informally stated). Assuming the existence of 1–1 one-way functions
and collections of enhanced trapdoor one-way permutations,2 there exists a secure au-
thenticated session-key generation protocol in the password-only setting.

We stress that the above (informal) definition implies the intuitive properties of au-
thenticated session-key generation (e.g., security of the generated session-key and of
the initial password). In particular, the output session-key can be distinguished from a
random key by (a gap of) at most O(1/|D|) + µ(n). This implies that when using the
session-key as a key to a message authentication code (MAC),for example, the probabil-
ity that any polynomial-time adversary can generate a valid MAC-tag to a message not
sent by the legitimate party is small (i.e., O(1/|D|)+µ(n)). We stress that the session-
key can be used for polynomially many MACs and the probability that the adversary
will forge even one message still remains bounded by O(1/|D|)+µ(n). Likewise, when
using the session-key for private-key encryption, the probability that the adversary learns
anything about the encrypted messages is small. That is, for every partial-information
function, the adversary can guess the value of the function applied to the messages with
an O(1/|D|)+µ(n) advantage over the a priori probability. This success probability is
exactly the same (ignoringµ(n) and constant factors) as for the naive adversary who just
attempts to guess the password and succeeds with probability 1/|D|. See Section 2.3.3
for more discussion.

In addition to the above-described security of the session-key, the definition guarantees
that the distinguishing gap between the parties’ joint password and a uniformly distributed
element in D is at most O(1/|D|) + µ(n). (As we have mentioned, the fact that the
adversary can distinguish with gap O(1/|D|) is an inherent limitation of password-based
security.) The parties are also guaranteed that, except with probability O(1/|D|)+µ(n),
they either end up with the same session-key or detect that their communication has been
tampered with. Our definition also implies additional desirable properties of session-
key protocols such as forward secrecy and security in the case of session-key loss (or
known-key attacks). Furthermore, our protocol provides improved (i.e., negligible gap)

2 See Appendix C.1 of [26] for the definition of enhanced trapdoor permutations. We note that the “enhanced
property” is used in all known constructions of general protocols for secure two-party computation. We also
note that our assumption regarding 1–1 one-way functions relates to a single function with an infinite domain,
and so is not implied by collections of permutations; see [29].

Session-Key Generation Using Human Passwords Only 245

security in case the adversary only eavesdrops the communication (during the protocol
execution).

We mention that a suitable level of indistinguishability (of the real and ideal executions)
holds when t sessions (referring to the same password) are conducted sequentially: in
this case the distinguishing gap is O(t/|D|)+µ(n) rather than O(1/|D|)+µ(n) (which
again is optimal). This holds also when any (polynomial) number of other sessions with
respect to independently distributed passwords are conducted concurrently to the above
t sessions.

Caveat. Our protocol is proven secure only when assuming that the same pair of
parties (using the same password) does not conduct several concurrent executions of the
protocol. We stress that concurrent sessions of other pairs of parties (or of the same pair
using a different password) are allowed. See further discussion in Sections 1.4 and 2.5.

1.2. Comparison with Other Work

The design of secure mutual authentication and key-exchange protocols is a major effort
of the applied cryptography community. In particular, much effort has been directed
towards the design of password-based schemes that should withstand active attacks.3

An important restricted case of the mutual authentication problem is the asymmetric
case in which a human user authenticates himself to a server in order to access some
service. The design of secure authentication mechanisms based only on passwords is
widely recognized as a central problem of computer practice and as such has received
much attention.

The first protocol suggested for password-based session-key generation was by Bello-
vin and Merritt [9]. This work was very influential and became the basis for much future
work in this area [10], [51], [36], [41], [47], [52]. However, these protocols have not
been proven secure and their conjectured security is based on mere heuristic arguments.
Despite the strong need for secure password-based protocols, the problem was not treated
rigorously until quite recently. For a survey of works and techniques related to password
authentication, see [42] and [38] (a brief survey can be found in [34]).

A first rigorous treatment of the password-based authentication problem was provided
by Halevi and Krawczyk [34]. They actually considered an asymmetric hybrid model
in which one party (the server) may hold a high-quality key and the other party (the
human) may only hold a password. The human is also assumed to have secure access
to a corresponding public-key of the server (either by reliable access to a reliable server
or by keeping a “digest” of that public-key, which they call a public-password).4 The

3 A specific focus of this research has been on preventing off-line dictionary attacks. In such an off-line
attack, the adversary records its view from past protocol executions and then scans the dictionary for a password
consistent with this view. If checking consistency in this way is possible and the dictionary is small, then the
adversary can derive the correct password. Clearly, a secure session-key generation protocol (as informally
defined above) withstands any off-line dictionary attack.

4 The public-password is not memorizable by humans, and the human is supposed to carry a record of it. The
good point is that this record need not be kept secret (but rather merely needs to be kept reliably). Furthermore,
in the Halevi–Krawczyk protocol, the human is never asked to type the public-password; he/she is only asked
to compare this password with a string sent by the server during the protocol.

246 O. Goldreich and Y. Lindell

Halevi–Krawczyk model capitalizes on the asymmetry of the authentication setting, and
is inapplicable to settings in which communication has to be established between two
humans (rather than a human and a server). Furthermore, requiring the human to keep the
unmemorizable public-password (although not secretly) is undesirable. Finally, we stress
that the Halevi–Krawczyk model is a hybrid of the “shared-key model” and the “shared-
password model” (and so their results do not apply to the “shared-password model”).
Thus, it is of both theoretical and practical interest to answer the original question as
posed above (i.e., without the public-password relaxation): Is it possible to implement a
secure authentication mechanism (and key-exchange) based only on passwords?

Positive answers to the original problem have been provided in the random oracle
model. In this model all parties are assumed to have oracle access to a totally random
(universal) function [5]. Secure (password-based) authenticated key-exchange schemes
in the random oracle model were presented in [4] and [15]. The common interpretation
of such results is that security is “likely” to hold even if the random oracle is replaced
by a (“reasonable”) concrete function known explicitly to all parties.5 We warn that
this interpretation is not supported by any sound reasoning. Furthermore, as pointed out
in [18], there exist protocols that are secure in the random oracle model but become
insecure if the random function is replaced by any specific function (or even a function
uniformly selected from any family of functions).

To summarize, this paper is the first to present session-key generation (as well as mutual
authentication) protocols based only on passwords (i.e., in the shared-password model),
using only standard cryptographic assumptions (e.g., the existence of trapdoor one-way
permutations, which in turn follows from the intractability assumption regarding integer
factorization). We stress that prior to this work it was not clear whether such protocols
exist at all (i.e., outside of the random oracle model).

Independent related work. Independently of our work, Katz et al. [37] presented a
protocol for the task of session-key generation based on passwords. Their protocol is
incomparable with ours: it uses a stronger set-up assumption and a stronger intractabil-
ity assumption, but yields a seemingly practical protocol that is secure in a stronger
concurrent sense. Specifically:

• Most importantly, Katz et al. [37] use a stronger set-up assumption than us. In addi-
tion to joint passwords, they require that all parties have access to a common refer-
ence string, chosen by some trusted third party. Although this is a stronger assump-
tion than that of our password-only model, it is still significantly weaker than other
models that have been studied (like, for example, the Halevi–Krawczyk model).6

5 An alternative interpretation is to view the random oracle model literally. That is, assume that such oracle
access is available to all parties via some trusted third party. However, in such a case we are no longer in the
“trust nobody” model in which the question was posed.

6 We remark that the set-up assumption of a common reference string is practical in some settings, but very
restrictive in others. For example, a company that wishes to implement secure login for its employees would
be trusted to choose the reference string correctly. Furthermore, within such a closed setting, this string could
be securely distributed to all employees. However, in a general setting, such trust is highly undesirable. This
is especially true since in the protocol of [37], if an adversarial party chooses the reference string, it can learn
all the parties’ passwords by merely eavesdropping on the communication.

Session-Key Generation Using Human Passwords Only 247

• Their protocol is proven secure under a specific assumption. Specifically, they use
the Decisional Diffie–Hellman assumption, which seems stronger than more stan-
dard assumptions such as the intractability of factoring and of extracting discrete
logarithms. In contrast, we use a general complexity assumption (i.e., the existence
of enhanced trapdoor permutations).

• Their protocol is highly efficient and could even be used in a practical setting. In
contrast, our protocol is unsuitable for practical use, although it may eventually
lead to practical consequences.

• Their protocol is secure in an unrestricted concurrent setting, whereas our protocol
is shown to be secure only when concurrent executions are not allowed to use the
same password (see Section 2.5).

Key-exchange protocols. In the above description of prior work, we have focused only
on papers dealing with the issue of password-based authentication and key exchange.
We note that there has been much work on this problem in the setting where the parties
share high entropy keys, both with respect to determining appropriate definitions and
constructing secure protocols. See Chapter 12 of [42] for a survey of some of these
works.

Necessary conditions for mutual authentication. Halevi and Krawczyk [34] proved that
mutual authentication in the shared-password model implies (unauthenticated) secret-
key exchange, which in turn implies one-way functions. Subsequently, Boyarsky [14]
pointed out that, in the shared-password model, mutual authentication implies oblivious
transfer.7 One implication of the above is that finding a solution to this problem that relies
on only “black-box” use of one-way functions is hard; in particular, it would constitute
a proof that P
= NP [35].

1.3. Techniques

One central idea underlying our protocol is due to Naor and Pinkas [45]. They suggested
the following protocol for the case of passive adversaries, using a secure protocol for
polynomial evaluation.8 In order to generate a session-key, party A first chooses a random
linear polynomial Q(·) over a large field (which contains the dictionary of passwords).
Next, A and B execute a secure polynomial evaluation in which B obtains Q(w), where
w is their joint password. The session-key is then set to equal Q(w).

In [14] it was suggested making the above protocol secure against active adversaries
by using non-malleable commitments. This suggestion was re-iterated to us by Naor,
and in fact our work grew out of his suggestion. In order to obtain a protocol secure
against active adversaries, we augment the above-mentioned protocol of [45] by several
additional mechanisms. Indeed, we use non-malleable commitments [22], but in addition

7 Oblivious transfer is known to imply (unauthenticated) secret-key exchange [39]. On the other hand,
Gertner et al. [24] have shown that secret-key exchange does not imply oblivious transfer under black-box
reductions.

8 In the polynomial evaluation functionality, party A has a polynomial Q(·) over some finite field and Party
B has an element x of the field. The evaluation is such that A learns nothing, and B learns Q(x); i.e., the
functionality is defined by (Q, x) �→ (λ, Q(x)).

248 O. Goldreich and Y. Lindell

we also use a specific zero-knowledge proof [48], ordinary commitment schemes [11], a
specific pseudorandom generator (of [13], [53], and [12]), and a message authentication
scheme (MAC). The analysis of the resulting protocol is very complicated, even when
the adversary initiates a single session. As explained below, we believe that these com-
plications are unavoidable given the current state-of-art regarding concurrent execution
of protocols.

Although not explicit in the problem statement, the problem we deal with actually
concerns concurrent executions of a protocol. Even in case the adversary attacks a sin-
gle session among two legitimate parties, its ability to modify messages means that it
may actually conduct two concurrent executions of the protocol (one with each party).9

Concurrent executions of some protocols were analyzed in the past, but these were
relatively simple protocols. Although the high-level structure of our protocol can be
simply stated in terms of a small number of modules, the currently known implemen-
tations of some of these modules are quite complex. Furthermore, these implementa-
tions are NOT known to be secure when two copies are executed concurrently. Thus,
at the current state of affairs, the analysis cannot proceed by applying some com-
position theorems to (two-party) protocols satisfying some concurrent-security prop-
erties (because suitable concurrently secure protocols and composition theorems are
currently unknown). Instead, we have to analyze our protocol directly. We do so by
reducing the analysis of (two concurrent executions of) our protocol to the analysis
of non-concurrent executions of related protocols. Specifically, we show how a suc-
cessful adversary in the concurrent setting contradicts the security requirements in the
non-concurrent setting. Such “reductions” are performed several times, each time es-
tablishing some property of the original protocol. Typically, the property refers to one
of the two concurrent executions, and it is shown to hold even if the adversary is given
some secrets of the legitimate party in the second execution. This is shown by giving
these secrets to the adversary, enabling it to emulate effectively the second execution
internally. Thus, only the first execution remains and the relevant property is proven
(in this standard non-concurrent setting). We stress that this procedure is not applied
“generically,” but is rather applied to the specific protocol we analyze while taking
advantage of its specific structure (where some of this structure was designed to fa-
cilitate our proof). Thus, our analysis is ad hoc in nature, but still we believe that it
can eventually lead to a methodology of analyzing concurrent executions of (two-party)
protocols.

1.4. Discussion

We view our work as a theoretical study of the very possibility of achieving private and
reliable communication among parties that share only a secret (low-quality) password
and communicate over a channel that is controlled by an active adversary. Our main result
is a demonstration of the feasibility of this task. That is, we demonstrate the feasibility of

9 Specifically, the adversary may execute the protocol with Alice while claiming to be Bob, concurrently
to executing the protocol with Bob while claiming to be Alice, where these two executions refer to the same
joint Alice–Bob password.

Session-Key Generation Using Human Passwords Only 249

performing session-key generation based only on (low-quality) passwords. Doing so, this
work is merely the first (rigorous) step in a research project directed towards providing
a good solution to this practical problem. We discuss two aspects of this project that
require further study.

Concurrent executions for the same pair of parties. Our protocol is proven secure only
when the same pair of parties (using the same password) does not conduct several con-
current executions of the protocol. Thus, actual use of our protocol requires a mechanism
for ensuring that the same pair of parties execute the protocol strictly sequentially. A
simple timing mechanism enforcing the above (and using local clocks only) is as follows.
Let � be greater than the period of time that suffices for completing an execution of
the protocol under “ordinary” circumstances. Then, if an execution takes longer than
� units of time, the execution is timed-out (with the parties aborting). Furthermore,
parties wait for at least � units of time between consecutive protocol executions. It is
easy to see that this enforces strict sequentiality of executions. Indeed, it is desirable
not to employ such a timing mechanism, and to prove that security holds also when
many executions are conducted concurrently using the same password. Nevertheless,
there are settings where such a mechanism can be used. See Section 2.5 for further
details.

We stress that the above limitation relates only to the same pair parties using the same
password. There is no limitation on the concurrency of executions involving different
pairs of parties (or the same pair of parties and different passwords).

We note that the protocols of [4], [15], and [37] do not suffer from this limitation.
However, as we have mentioned, the protocols of [4] and [15] are only proven secure in
the random oracle model (and thus the proofs of security are heuristic), and the protocol
of [37] assumes additional set-up in the form of a common reference string.

Efficiency. It is indeed desirable to have more efficient protocols than the one presented
here. Some of our techniques may be useful towards this goal.

1.5. Organization

In Section 2 we present the formal setting and state our results. Our protocol for password-
based session-key generation is presented in Section 3. In Section 4 we present proof
sketches of the main claims used in the analysis of our protocol, and derive our main
result based on these claims. The full proofs of these claims are given in Sections 5–8.
We note that, except in one case, the proof sketches (presented in Section 4) are rather
detailed, and demonstrate our main techniques. Thus, we believe that a reading of the
paper until the end of Section 4 suffices for obtaining a good understanding of the results
presented and the proof techniques involved. The exceptional case, mentioned above, is
the proof of Lemma 4.6, which is given in Section 6.1 and is far more complex than the
corresponding proof sketch. Thus, we also recommend reading Section 6.1.

In the Appendix we recall the definitions of secure two-party computation as well as
the various cryptographic tools used in our protocol.

250 O. Goldreich and Y. Lindell

2. Formal Setting

In this section we present notation and definitions that are specific to our setting, culmi-
nating in a definition of Authenticated Session-Key Generation. Given these, we state
our main result.

2.1. Basic Notations

• Typically, C denotes the channel (i.e., a probabilistic polynomial-time adversary)
through which parties A and B communicate. We adopt the notation of Bellare
and Rogaway [6] and model the communication by giving C oracle access to A
and B. We stress that, as in [6], these oracles have memory and model parties who
participate in a session-key generation protocol. Unlike in [6], when A and B share
a single password, C has oracle access to only a single copy of each party.
We denote by C A(x),B(y)(σ), an execution of C (with auxiliary input σ) when it
communicates with A and B, holding respective inputs x and y. Channel C’s output
from this execution is denoted by output(C A(x),B(y)(σ)).

• The password dictionary is denoted by D ⊆ {0, 1}n , and is fixed throughout the
entire discussion. We assume that this dictionary can be sampled in probabilistic
polynomial-time. We denote ε = 1/|D|.

• We denote by Un a random variable that is uniformly distributed over the set of
strings of length n.

• For a set S, we denote x ∈R S when x is chosen uniformly from S.
• We use “ppt” as shorthand for probabilistic polynomial time.
• An unspecified negligible function is denoted byµ(n). That is, for every polynomial

p(·) and for all sufficiently large n’s, µ(n) < 1/p(n). For functions f and g (from
the integers to the reals), we denote f ≈ g if | f (n)− g(n)| < µ(n).

• Finally, we denote computational indistinguishability by
c≡.

A security parameter n is often implicit in our notations and discussions. Thus, for
example, by the notation D for the dictionary, our intention is really Dn (where Dn ⊆
{0, 1}n). Recall that we make no assumptions regarding the size of Dn , and in particular
it may be polynomial in n.

Uniform or non-uniform model of computation. Some of the definitions in the Appendix
are presented in the non-uniform model of computation. Furthermore, a number of our
proofs appear to be in the non-uniform complexity model, but can actually be carried
out in the uniform model. Thus, a straightforward reading of our proofs makes our main
result hold assuming the existence of enhanced trapdoor permutations that cannot be
inverted by polynomial-size circuits. However, realizing that the analogous uniform-
complexity definitions and proofs hold, it follows that our main result can be achieved
under the analogous uniform assumption.

2.2. (1 − ε)-Indistinguishability and Pseudorandomness

Extending the standard definition of computational indistinguishability [32], [53], we
define the concept of (1 − ε)-indistinguishability. Loosely speaking, two ensembles are

Session-Key Generation Using Human Passwords Only 251

(1 − ε)-indistinguishable if for every ppt machine, the probability of distinguishing
between them (via a single sample) is at most negligibly greater than ε.

Definition 2.1 ((1 − ε)-Indistinguishability). Let ε: N → [0, 1] be a function, and let
{Xn}n∈N and {Yn}n∈N be probability ensembles, so that for any n the distribution Xn (resp.,
Yn) ranges over strings of length polynomial in n. We say that the ensembles are (1− ε)-
indistinguishable, denoted {Xn}n∈N

ε≡ {Yn}n∈N, if for every probabilistic polynomial-time
distinguisher D, and all auxiliary information z ∈ {0, 1}poly(n),∣∣Pr[D(Xn, 1n, z) = 1] − Pr[D(Yn, 1n, z) = 1]

∣∣ < ε(n)+ µ(n).

Definition 2.1 refers to ensembles that are indexed by the natural numbers. In this
work we also refer to ensembles that are indexed by a set of strings S. In this case we
require that for every D and z as above, and for every w ∈ S,

| Pr[D(Xw,w, z) = 1] − Pr[D(Yw,w, z) = 1]| < ε(|w|)+ µ(|w|).

The standard notion of computational indistinguishability coincides with 1-indistinguish-
ability. Note that (1 − ε)-indistinguishability is not preserved under multiple samples
(even for efficiently constructible ensembles); however (for efficiently constructible en-
sembles), (1−ε)-indistinguishability implies (1−mε)-indistinguishability of sequences
of m samples.

Definition 2.2 ((1 − ε)-Pseudorandomness). We say that {Xn}n∈N is (1 − ε)-pseudo-
random if it is (1 − ε)-indistinguishable from {Un}n∈N.

Similarly, extending the definition of pseudorandom functions [27], we define (1−ε)-
pseudorandom functions as follows.

Definition 2.3 ((1 − ε)-Pseudorandom Function Ensembles). Let F = {Fn}n∈N be a
function ensemble where for every n, the random variable Fn assumes values in the
set of functions mapping n-bit long strings to n-bit long strings. Let H = {Hn}n∈N be
the uniform function ensemble in which Hn is uniformly distributed over the set of all
functions mapping n-bit long strings to n-bit long strings. Then a function ensemble
F = {Fn}n∈N is called (1 − ε)-pseudorandom if for every probabilistic polynomial-time
oracle machine D, and all auxiliary information z ∈ {0, 1}poly(n),

| Pr[DFn (1n, z) = 1] − Pr[DHn (1n, z) = 1]| < ε(n)+ µ(n).

2.3. Authenticated Session-Key Generation: Definition and Discussion

The main definition is presented in Section 2.3.2 and augmented in Section 2.3.4. In
Section 2.3.3 we show that the main definition implies all natural security concerns
discussed in the literature (with one notable exception that is addressed by the augmented
definition). Finally, in Section 2.3.5 we relate our definitions to the framework of general
secure multi-party computation.

252 O. Goldreich and Y. Lindell

2.3.1. Motivation for the Definition

Our definition for password-based authenticated session-key generation is based on the
“simulation paradigm” (see [32], [33], [2], [43], and [16]). This paradigm has been
used before in the context of session-key generation in the high-entropy case (e.g., [3]
and [50]), and also in the context of password-based authentication [15] (the difference
between our definition and that of [15] is described in Section 2.3.3). According to this
paradigm, we require a secure protocol that is run in the real model to emulate an ideal
execution of a session-key generation functionality (where emulation usually means that
the output distributions in both cases are computationally indistinguishable). In such an
ideal execution, communication is via a trusted party who receives the parties inputs
and (honestly) returns to each party its output, as designated by the functionality. Thus,
defining the ideal model is essentially the same as defining the desired functionality of
the problem at hand. We now described this functionality.

The problem of password-based authenticated session-key generation can be cast as a
three-party functionality involving honest parties A and B, and an adversary C .10 Parties
A and B should input their joint password and receive identical, uniformly distributed
session-keys. On the other hand, the adversary C should have no output (and specifically
should not obtain information on the password or output session-key). Furthermore, C
should have no power to influence the outcome of the protocol maliciously (and thus, for
example, cannot affect the choice of the key or cause the parties to receive different keys).
However, recall that in a real execution, C controls the communication line between the
(honest) parties. Thus, it can block all communication between A and B, and cause any
protocol to fail. This (unavoidable) adversarial capability is modeled in the (modified)
functionality by letting C input a single bit b indicating whether or not the execution
is to be successful. Specifically, if b = 1 (i.e., success) then both A and B receive the
above-described session-key. On the other hand, if b = 0 then A receives a session-key,
whereas B receives a special abort symbol ⊥ instead.11 We stress that C is given no ability
to influence the outcome beyond determining this single bit (i.e., b). In conclusion, the
problem of password-based session-key generation is cast as the following three-party
functionality:

(wA, wB, b) �→
{
(Un,Un, λ) if b = 1 and wA = wB,

(Un,⊥, λ) otherwise,

wherewA andwB are A and B’s respective passwords. This functionality forms the basis
for our definition of security.

An important observation in the context of password-based security is that, in a real
execution, an adversary can always attempt impersonation by simply guessing the secret

10 We stress that unlike in most works regarding secure multi-party computation, the scenario includes
three parties, but a protocol is constructed for only two of them. Furthermore, the identity of the adversary
(among the three) is fixed beforehand. What makes the problem non-trivial is the fact that the honest parties
communicate only via a communication line controlled by the adversary.

11 This lack of symmetry in the definition is inherent as it is not possible to guarantee that A and B both
terminate with the same “success/failure bit”. For the sake of simplicity, we (arbitrarily) choose to have A
always receive a uniformly distributed session-key and to have B always output ⊥ when b = 0.

Session-Key Generation Using Human Passwords Only 253

password and participating in the protocol, claiming to be one of the parties. If the
adversary’s guess is correct, then impersonation always succeeds (and, for example, the
adversary knows the generated session-key). Furthermore, by executing the protocol
with one of the parties, the adversary can verify whether or not its guess is correct, and
thus can learn information about the password (e.g., it can rule out an incorrect guess
from the list of possible passwords). Since the dictionary may be small, this information
learned by the adversary in a protocol execution may not be negligible at all. Thus, we
cannot hope to obtain a protocol that emulates an ideal-model execution (in which C
learns nothing) up to computational indistinguishability. Rather, the inherent limitation
of password-based security is accounted for by (only) requiring that a real execution can
be simulated in the ideal model such that the output distributions (in the ideal and real
models) are (1 − O(ε))-indistinguishable (rather than 1-indistinguishable), where (as
defined above) ε = 1/|D|.12

We note that the above limitation applies only to active adversaries who control the
communication channel. Therefore, in the case of a passive (eavesdropping) adversary,
we demand that the ideal- and real-model distributions be computationally indistinguish-
able (and not just (1 − O(ε))-indistinguishable).

2.3.2. The Actual Definition

Following the simulation paradigm, we now define the ideal and real models (mentioned
above), and present the actual definition of security.

The ideal model. Let Â and B̂ be honest parties and let Ĉ be any ppt ideal-model
adversary (with arbitrary auxiliary input σ). An ideal-model execution proceeds in the
following phases:

Initialization. A password w ∈R D is uniformly chosen from the dictionary and given
to both Â and B̂.

Sending inputs to trusted party. Â and B̂ both send the trusted party the password they
have received in the initialization stage. The adversary Ĉ sends either 1 (denoting
a successful protocol execution) or 0 (denoting a failed protocol execution).

The trusted party answers all parties. In the case Ĉ sends 1, the trusted party chooses a
uniformly distributed string k ∈R {0, 1}n and sends k to both Â and B̂. In the case
Ĉ sends 0, the trusted party sends k ∈R {0, 1}n to Â and ⊥ to B̂. In both cases Ĉ
receives no output.13

12 Another way of dealing with this limitation of password-based security is to allow the ideal-model
adversary a constant number of password guesses to the trusted party (such that if the adversary correctly
guesses the password then it obtains full control over the honest parties’ outputs; otherwise it learns nothing
other than the fact that its guess was wrong). (We stress that this ideal-model adversary is stronger than the
one considered in our formulation, which restricts the ideal-model adversary to decide obliviously whether
to enable the execution or abort it.) Security is guaranteed by requiring that a real protocol execution can be
simulated in this ideal model so that the output in the ideal model is computationally indistinguishable from
that in a real execution. This is the approach taken by [15]; however, we do not know whether or not our
protocol satisfies such a definition. See Section 2.3.3 for more discussion.

13 Since Â and B̂ are always honest, we need not deal with the case that they hand the trusted party different
passwords. In fact, we can modify the definition so that there is no initialization stage or password received

254 O. Goldreich and Y. Lindell

The ideal distribution is defined as follows:

IDEALĈ(D, σ)
def= (w, output(Â), output(B̂), output(Ĉ(σ))),

where w ∈R D is the input given to Â and B̂ in the initialization phase. Thus,

IDEALĈ(D, σ) =
{
(w,Un,Un, output(Ĉ(σ))) if send(Ĉ(σ)) = 1,

(w,Un,⊥, output(Ĉ(σ))) otherwise,

where send(Ĉ(σ)) denotes the value sent by Ĉ (to the trusted party), on auxiliary input σ .

The real model. Let A and B be honest parties and let C be any ppt real-model adversary
with arbitrary auxiliary input σ . As in the ideal model, the real model begins with an
initialization stage in which both A and B receive an identical, uniformly distributed
passwordw ∈R D. Then the protocol is executed with A and B communicating via C .14

The execution of this protocol is denoted C A(w),B(w)(σ), where C’s view is augmented
with the accept/reject decision bits of A and B (this decision bit denotes whether a
party’s private output is a session-key or ⊥). This augmentation is necessary, since in
practice the decisions of both parties can be implicitly understood from their subsequent
actions (e.g., whether or not the parties continue the communication after the session-key
generation protocol has terminated). We note that in our specific formulation, A always
accepts and thus it is only necessary to provide C with the decision-bit output by B.
With some abuse of notation,15 the real distribution is defined as follows:

REALC(D, σ)
def= (w, output(A), output(B), output(C A(w),B(w)(σ))),

where w ∈R D is the input given to A and B in the initialization phase, and
output(C A(w),B(w)(σ)) includes an indication of whether or not output(B) = ⊥.

The definition of security. Loosely speaking, the definition requires that a secure pro-
tocol (in the real model) emulates the ideal model (in which a trusted party participates).
This is formulated by saying that adversaries in the ideal model are able to simulate
the execution of a real protocol, so that the input/output distribution of the simulation
is (1 − O(ε))-indistinguishable from in a real execution. We further require that pas-
sive adversaries can be simulated in the ideal model so that the output distributions are
computationally indistinguishable (and not just (1 − O(ε))-indistinguishable).16

by the honest parties. The “send inputs” stage then involves Ĉ only, who sends a single success/fail bit to the
trusted party. This definition is equivalent because the session-key chosen by the trusted party is independent
of the password and the honest parties always send the same password anyway.

14 We stress that there is a fundamental difference between the real model as defined here and as defined
in standard multi-party computation. Here, the parties A and B do not have the capability of communicating
directly with each other. Rather, A can only communicate with C and likewise for B. This is in contrast to
standard multi-party computation where all parties have direct communication links or where a broadcast
channel is used.

15 Here and in what follows, output(A) (resp., output(B)) denotes the output of A (resp., B) in the execution
C A(w),B(w)(σ), whereas output(C A(w),B(w)(σ)) denotes C’s output in this execution.

16 A passive adversary is one that does not modify, omit, or insert any messages sent between A or B. That
is, it can only eavesdrop and thus is limited to analyzing the transcript of a protocol execution between two
honest parties. Passive adversaries are also referred to as semi-honest in the literature (e.g., in [30]).

Session-Key Generation Using Human Passwords Only 255

Definition 2.4 (Password-Based Authenticated Session-Key Generation). A protocol
for password-based authenticated session-key generation is secure if the following two
requirements hold:

1. Passive adversaries: For every ppt real-model passive adversary C there exists a
ppt ideal-model adversary Ĉ that always sends 1 to the trusted party such that{

IDEALĈ(D, σ)
}

n,D,σ
c≡ {REALC(D, σ)}n,D,σ ,

where D ⊆ {0, 1}n is any ppt samplable dictionary and σ ∈ {0, 1}poly(n) is the
auxiliary input for the adversary.

2. Arbitrary (active) adversaries: For every ppt real-model adversary C there exists
a ppt ideal-model adversary Ĉ such that

{
IDEALĈ(D, σ)

}
n,D,σ

O(ε)≡ {REALC(D, σ)}n,D,σ ,

whereD ⊆ {0, 1}n is any ppt samplable dictionary, σ ∈ {0, 1}poly(n) is the auxiliary

input for the adversary, and ε
def= 1/|D|. We stress that the constant in O(ε) is a

universal one.

We note that the ideal model as defined here reflects exactly what one would expect from
a session-key generation protocol for which the honest parties hold joint high-entropy
cryptographic keys (as in [6]). The fact that in the real execution the honest parties only
hold low-entropy passwords is reflected in the relaxed notion of simulation that requires
only (1 − O(ε))-indistinguishability (rather than computational indistinguishability)
between the real and ideal models.

2.3.3. Properties of Definition 2.4

Definition 2.4 asserts that the joint input–output distribution from a real execution is
at most “O(ε)-far” from an ideal execution in which the adversary learns nothing (and
has no influence on the output except from the possibility of causing B to reject). This
immediately implies that the output session-key is (1− O(ε))-pseudorandom (which, as
we have mentioned, is the best possible for password-based key generation). Thus, if such
a session-key K is used for encryption then for any (partial information) predicate P and
any distribution on the plaintext m, the probability that an adversary learns P(m) given
the ciphertext EK (m) is at most O(ε)+µ(n) greater than the a priori probability (when
the adversary is not given the ciphertext). Likewise, if the key K is used for a message
authentication code (MAC), then the probability that an adversary can generate a correct
MAC-tag on a message not sent by A or B is at most negligibly greater than O(ε). We
stress that the security of the output session-key does not deteriorate with its usage; that
is, it can be used for polynomially many encryptions or MACs and the advantage of the
adversary remains O(ε) + µ(n). Another important property of Definition 2.4 is that,
except with probability O(ε), (either one party detects failure or) both parties terminate
with the same session-key.

Definition 2.4 also implies that the password used remains (1−O(ε))-indistinguishable
from a randomly chosen (new) password w̃ ∈R D: This can be seen from the fact that

256 O. Goldreich and Y. Lindell

in the ideal model, the adversary learns nothing of the password w, which is part of the
IDEAL distribution. This implies, in particular, that a secure protocol is resistant to off-line
dictionary attacks (whereby an adversary scans the dictionary in search of a password
that is “consistent” with its view of a protocol execution).

Other desirable properties of session-key protocols are also guaranteed by Defini-
tion 2.4. Specifically, we mention forward secrecy and security in the face of loss of
session-keys (also known as known-key attacks). Forward secrecy states that the session-
key remains secure even if the password is revealed after the protocol execution [21].
Analogously, security in the face of loss of session-keys means that the password and the
current session-key maintain their security even if prior session-keys are revealed [6].
These properties are immediately implied by the fact that, in the ideal model, there is no
dependence between the session-key and the password and between session-keys from
different sessions. Thus, learning the password does not compromise the security of the
session-key and vice versa.17

An additional property that is desirable is that of intrusion detection. That is, if the
adversary modifies any message sent in a session, then with probability at least (1 −
O(ε)) this is detected and at least one party rejects. This property is not guaranteed by
Definition 2.4 itself. However, it does hold for our protocol (as shown in Proposition 4.13,
see Section 4.6). Combining this with Part 1 of Definition 2.4 (i.e., the requirement
regarding passive adversaries), we conclude that in order for C to take advantage of
its ability to learn “O(ε)-information,” C must take the chance of being detected with
probability 1 − O(ε).

Finally, we observe that the above definition also enables mutual authentication. This
is because A’s output session-key is always (1 − O(ε))-pseudorandom to the adversary.
As this key is secret, it can be used for explicit authentication via a (mutual) challenge–
response protocol.18 By adding such a step to any secure session-key protocol, we obtain
explicit mutual authentication.

Comparison with other definitions. The focus of this work is not with respect to finding
the “right” definition for password-based session-key generation. Rather, the main ques-
tion that we consider is the feasibility of solving this problem under some reasonable
definition. We believe that at the very least our definition is reasonable, and in particular
it implies the natural security concerns discussed in prior work. Furthermore, our def-
inition is in agreement with the traditions of the general area (see [32], [33], [2], [43],
and [16]) as well as of the study of this specific problem (see [6], [3], and [50] and more
closely in [4]). However, as mentioned in footnote 12, there is one specific alternative
formulation, aimed at addressing the same security concerns (see [15]), which we wish
to discuss further.

17 The independence of session-keys from different sessions relates to the multi-session case, which is
discussed in Section 2.5. For now, it is enough to note that the protocol behaves as expected in that after
t executions of the real protocol, the password along with the outputs from all t sessions are (1 − O(tε))-
indistinguishable from t ideal executions. The fact that security is maintained in the face of session-key loss
is explicitly shown in Section 2.5.

18 It is easy to show that such a key can be used directly to obtain a (1 − O(ε))-pseudorandom function,
which can then be used in a standard challenge–response protocol.

Session-Key Generation Using Human Passwords Only 257

Recall that the inherent limitation of password-based security (which in turn arises
from the straightforward password-guessing attack) is dealt with in our formulation by
requiring that the real and ideal executions be only (1 − O(ε))-indistinguishable (rather
than 1-indistinguishable). An alternative way of dealing with this limitation (of password-
based security) is to allow explicitly the ideal model adversary a constant number of
password guesses to the trusted party (such that if the adversary correctly guesses the
password then it obtains full control over the honest parties’ outputs; otherwise it learns
nothing other than the fact that its guess was wrong). Security is then guaranteed by
requiring that the real and ideal executions are computationally indistinguishable.19

This definition is somewhat more elegant than ours, and is the one considered in [15].
The latter formulation implies ours, but it is not clear whether the converse holds.

Still, it seems that the actual consequences (i.e., in the sense discussed above) of both
definitions are the same. That is, in both cases the difference between using the protocol-
generated session-key and a fully random key is at most O(ε). For example, consider
the case that the parties use the session-key for authenticating messages with a MAC.
Both under our definition and under the definition of [15], no polynomial-time adversary
will be able to forge any MAC-tag (i.e., in a way that fools the parties), except than
with probability O(ε), during the entire session in which the key is used. On the other
hand, under both definitions, an adversary can always succeed in forging a MAC with
probability ε (e.g., by just carrying out a straightforward password-guessing attack).

2.3.4. Augmenting the Definition

Although Definition 2.4 seems to capture all that is desired from authenticated session-
key generation, there is a subtlety that it fails to address (as pointed out by Rackoff in a
personal communication to the authors of [6]). The issue is that the two parties do not
necessarily terminate the session-key generation protocol simultaneously, and so one
party may terminate the protocol and start using the session-key while the other party is
still executing instructions of the session-key generation protocol (i.e., determining its
last message). This situation is problematic because the use of a session-key inevitably
leaks information. Thus, the adversary may be able to use this information in order to
attack the protocol execution that is still in progress from the point of view of the other
party.

This issue is highlighted by the following attack devised by Rackoff. Consider any
protocol that is secure by Definition 2.4 and assume that in this protocol A concludes
first. Now, modify B so that if the last message received by B equals fk(0), where k is
the output session key and { fs}s is a pseudorandom function ensemble, then B publicly
outputs the password w. The modified protocol is still secure by Definition 2.4, because
in the original protocol, the value fk(0) is pseudorandom with respect to the adversary’s
view (otherwise this would amount to the adversary being able to distinguish the session-
key from a random key). However, consider a scenario in which upon completing the

19 We stress that the ideal model in the alternative formulation is stronger than the ideal model considered
by our formulation (which makes the alternative formulation of security potentially weaker), but the level of
indistinguishability required by the alternative formulation is stronger (which makes the alternative formulation
of security potentially stronger). However, the latter aspect dominates because the ideal model of the alternative
formulation can be emulated in a (1 − O(ε))-indistinguishable manner by the ideal model of our formulation.

258 O. Goldreich and Y. Lindell

session-key generation protocol, A sends a message that contains the value fk(0) (such
use of the session-key is not only legitimate, but also quite reasonable). In this case,
the adversary can easily obtain the password by passing fk(0) (as sent by A) to B,
who has not yet completed the session-key protocol. In summary, Definition 2.4 should
be modified in order to ensure that any use of the session-key after one of the parties
has completed the session-key protocol cannot help the adversary in its attack on this
protocol.

In order to address this issue, Definition 2.4 is augmented so that the adversary receives
a session-key challenge after the first party concludes its execution of the session-key pro-
tocol. The session-key challenge is chosen so that with probability 1/2 it equals the actual
session-key (as output by the party that has finished) and with probability 1/2 it is a uni-
formly distributed string. The augmentation requires that the adversary be unable to dis-
tinguish between these challenge cases. Intuitively, this solves the above-described prob-
lem because the adversary can use the session-key challenge it receives in order to sim-
ulate any messages that may be sent by A following the session-key protocol execution.

The augmented ideal model. Let Â, B̂, Ĉ , and σ be as in the above definition of the
ideal model. Then the augmented ideal model proceeds in the following phases:

Initialization: Â and B̂ receive w ∈R D.
Honest parties send inputs to the trusted party: Â and B̂ both send w.
Trusted party answers Â: The trusted party chooses k ∈R {0, 1}n and sends it to Â.
Trusted party chooses session-key challenge for Ĉ : The trusted party chooses β ∈R

{0, 1} and gives Ĉ the string kβ , where k1
def= k and k0 ∈R {0, 1}n .

Adversary Ĉ sends input to the trusted party: Ĉ sends either 1 (denoting a successful
protocol execution) or 0 (denoting a failed protocol execution).

Trusted party answers B̂: If Ĉ sent 1 in the previous phase, then the trusted party gives
the key k to B̂. Otherwise, it gives B̂ an abort symbol ⊥.

The augmented ideal distribution is defined by

IDEAL-AUGĈ(D, σ)
def= (w, output(Â), output(B̂), output(Ĉ(σ, kβ)), β),

where w ∈R D. (Notice the inclusion of β in the IDEAL-AUG distribution.) We remark
that in an ideal execution, Â always concludes first and always accepts.

The augmented real model. The real-model execution is the same as above except
for the following modification. Recall that the scheduling of a protocol execution is
controlled by C . Therefore, C controls which party (A or B) concludes first. If the first
party concluding outputs an abort symbol ⊥, then the adversary is simply given ⊥. (Since
the accept/reject bit is anyway public, this is meaningless.) On the other hand, if the first
party to terminate the execution locally outputs a session-key, then a bit β ∈R {0, 1} is
chosen, and C is given a corresponding challenge: If β = 0, then C is given a uniformly
distributed string r ∈R {0, 1}n , else (i.e., β = 1) C is given the session-key as output by
the terminating party. The augmented real distribution is defined as follows:

REAL-AUGC(D, σ)
def= (w, output(A), output(B), output(C A(w),B(w)(σ)), β),

where C A(w),B(w)(σ) denotes the above-described (augmented) execution.

Session-Key Generation Using Human Passwords Only 259

Finally, the definition of security is analogous to Definition 2.4:

Definition 2.5 (Augmented Password-Based Authenticated Session-Key Generation).
We say that a protocol for augmented password-based authenticated session-key gener-
ation is secure if the following two requirements hold:

1. Passive adversaries: For every ppt real-model passive adversary C there exists a
ppt ideal-model adversary Ĉ that always sends 1 to the trusted party such that

{IDEAL-AUGĈ(D, σ }n,D,σ
c≡ {REAL-AUGC(D, σ)}n,D,σ ,

where D ⊆ {0, 1}n is any ppt samplable dictionary and σ ∈ {0, 1}poly(n) is the
auxiliary input for the adversary.

2. Arbitrary adversaries: For every ppt real-model adversary C there exists a ppt
ideal-model adversary Ĉ such that

{IDEAL-AUGĈ(n,D, σ)}n,D,σ
O(ε)≡ {REAL-AUGC(n,D, σ)}n,D,σ ,

whereD ⊆ {0, 1}n is any ppt samplable dictionary, σ ∈ {0, 1}poly(n) is the auxiliary

input for the adversary, and ε
def= 1/|D|.

We first explain how this augmentation addresses the problem discussed above (i.e.,
prevents the attack of Rackoff). In the augmented ideal model, Ĉ learns nothing about
the value of β. Therefore, by Definition 2.5, it follows that in the augmented real model,
C can distinguish the case that β = 0 from the case that β = 1 with probability at most
O(ε). Now, consider the case that the session-key challenge given to C is a uniformly
distributed string (i.e., β = 0). Then, since C can generate the challenge itself, it clearly
cannot help C in any way in its attack on the protocol. On the other hand, we are
interested in analyzing the probability that the session-key itself can help C in its attack
on the protocol. The point is that if C could utilize knowledge of this key, then this
additional knowledge could be used to distinguish the case that β = 0 from the case that
β = 1. We conclude that the information that C can obtain about the session-key in a
real setting does not help it in attacking the session-key generation protocol (except with
probability O(ε)).

As we have seen the above augmentation resolves the problem outlined by Rackoff.
However, in contrast to Definition 2.4, it is not clear that Definition 2.5 implies all the
desired properties of secure session-key generation protocols.20 We therefore show that
all the properties of Definition 2.4 are indeed preserved in Definition 2.5. In fact:

Proposition 2.6. Any protocol that is secure by Definition 2.5 is secure by
Definition 2.4.

20 Clearly, if C were always given the session-key, then the definition guarantees no security with respect
to the session-key. So, we must show that in Definition 2.5, where C is given the key with probability 1/2,
security (as per Definition 2.4) is maintained.

260 O. Goldreich and Y. Lindell

Proof. Intuitively, the proposition holds because in the case that β = 0, the adversary
in the augmented model has no additional advantage over the adversary for the basic
model, where we refer to the model of Definition 2.4 as the basic or unaugmented model.
(Recall that when β = 0, the adversary merely receives a uniformly distributed string.)
Therefore, any success by an adversary for the basic model can be translated into an
adversarial success in the augmented model, provided that β = 0 (in the augmented
model). Since β = 0 with probability 1/2, a protocol proven secure for the augmented
model must also be secure in the basic model. Details follow.

Assume that there exists a protocol that is secure by Definition 2.5 (the rest of this
proof refers implicitly to this protocol). First, notice that for any real-model adversary
C (as in Definition 2.4), there exists an augmented real-model adversary C ′ such that

{REALC(D, σ)} ≡ {REAL-AUGC ′(D, σ) | β = 0}. (1)

In order to see this, consider an adversary C ′ who simply invokes the basic-model
adversary C in the augmented model and ignores the additional session-key challenge
provided, which in the case that β = 0 provides no information anyway. (In fact, it holds
that {REALC(D, σ)} ≡ {REAL-AUGC ′(D, σ)}, but for this proof we only need to consider
the conditional space where β = 0.)

Next, by Definition 2.5, we have that for any augmented real-model adversary C ′,
there exists an augmented ideal-model adversary Ĉ ′ such that

{REAL-AUGC ′(D, σ)}n,D,σ
κ·ε≡ {IDEAL-AUGĈ ′(D, σ)}n,D,σ , (2)

where κ is a constant. This implies that

{REAL-AUGC ′(D, σ) | β = 0} 2κ·ε≡ {IDEAL-AUGĈ ′(D, σ) | β = 0}. (3)

Equation (3) holds because β = 0 with probability 1/2, and thus any distinguishing gap
greater than 2κ · ε can be translated into a distinguishing gap greater than κ · ε for the
distributions in (2).

Finally, we claim that for any augmented ideal-model adversary Ĉ ′, their exists an
ideal-model adversary Ĉ ′′ (as in Definition 2.4) such that

{IDEAL-AUGĈ ′(D, σ) | β = 0} ≡ {IDEALĈ ′′(D, σ)}. (4)

Equation (4) holds because when β = 0, adversary Ĉ ′ receives a uniformly distributed
string in the ideal execution. Thus, Ĉ ′′ can invoke Ĉ ′ (while in the basic, unaugmented
model) and pass it a uniformly distributed string for its session-key challenge.

Combining (1), (3), and (4) we obtain the proposition.

2.3.5. Session-Key Generation as Secure Multi-Party Computation

We have cast the problem of password-based session-key generation in the framework
of secure multi-party computation. However, there are a number of essential differences

Session-Key Generation Using Human Passwords Only 261

between our model here and the standard model of multi-party computation:

• Real-model communication: In the standard model all parties can communicate
directly with each other. However, in our context, the honest parties A and B may
only communicate with the adversary C . This difference models the fact that A and
B communicate over an “open” communication channel that is vulnerable to active
man-in-the-middle attacks.

• Adversarial parties: In the standard model any party may be corrupted by the
adversary. However, here we assume that A and B are always honest and that only
C can be adversarial.

• Quantification over the inputs: In the standard model security is guaranteed for
all inputs. In particular, this means that an adversary cannot succeed in affecting
the output distribution even if it knows the honest parties’ inputs. This is in con-
trast to our setting where the honest parties’ joint password must be kept secret
from the adversary. Thus, we quantify over all ppt samplable dictionaries and all
auxiliary inputs to the adversary, rather than over specific inputs (to the honest
parties). Another way of viewing the difference is that, considering the inputs of
the honest parties, we quantify over efficiently samplable input distributions (of
certain min-entropy), whereas in the standard model the quantification is over input
values.

• The “level” of indistinguishability: Finally, in the standard model the real and ideal
output distributions are required to be computationally indistinguishable (and thus
“essentially” the same). On the other hand, due to the inherent limitation resulting
from the use of low-entropy passwords, we only require that these distributions be
(1 − O(ε))-indistinguishable.

2.4. Our Main Result

Given Definition 2.5, we can now formally state our main result.

Theorem 2.7. Assuming the existence of 1–1 one-way functions and collections of
enhanced trapdoor one-way permutations, there exist secure protocols for (augmented)
password-based authenticated session-key generation.

Other distributions overD. For simplicity, we have assumed above that the parties share
a uniformly chosen passwordw ∈R D. However, our proofs extend to any ppt samplable
distribution (over any dictionary) so that no element occurs (in this distribution) with
probability greater than ε.

2.5. Multi-Session Security

The definition above relates to two parties executing a session-key generation protocol
once. Clearly, we are interested in the more general case where many different parties
run the protocol any number of times. It turns out that any protocol that is secure for a
single invocation between two parties (i.e., as in Definitions 2.4 and 2.5), is secure in the
multi-party and sequential invocation case.

262 O. Goldreich and Y. Lindell

2.5.1. Sequential Executions for One Pair of Parties

Let A and B be parties who invoke t sequential executions of a session-key generation
protocol. Given that an adversary may gain a password guess per each invocation, the
“security loss” for t invocations should be O(tε). That is, we consider ideal and real
distributions consisting of the outputs from all t executions. Then we require that these
distributions be (1− O(tε))-indistinguishable. Below, we prove that any secure protocol
for password-based authenticated session-key generation maintains O(tε) security after
t sequential invocations.

Sequential versus concurrent executions for two parties. Our solution is proven secure
only if A and B do not invoke concurrent executions of the session-key generation
protocol with the same password. Here and below, we treat a pair of parties that share
several independently distributed passwords as different pairs of parties. We stress that
security is not guaranteed in a scenario where the adversary invokes B twice or more
(using the same password) during a single execution with A (or vice versa). Therefore,
in order actually to use our protocol, some mechanism must be used to ensure that such
concurrent executions do not take place. This can be achieved by having A and B wait
� units of time between protocol executions, where � is greater than the time taken to
run a single execution. We note that when parties do not come “under attack,” this delay
of � will usually not affect them (since they will usually not execute two successful
session-key generation protocols immediately one after the other).

We remark that this limitation on concurrent executions does not prevent the par-
ties from opening a number of different (independently keyed) communication lines.
They may do this by running the session-key protocol sequentially, once for each de-
sired communication line. However, in this case, they incur a delay of � units of time
between each execution. Alternatively, they may run the protocol once and obtain a
(1 − O(ε))-pseudorandom session-key. By applying a pseudorandom generator to this
key, any polynomial number of computationally independent (1− O(ε))-pseudorandom
session-keys can be derived. This latter solution also has the advantage that (1 − O(ε))-
pseudorandomness is maintained for any polynomial number of session keys, in contrast
with an O(ε) degradation for each key in the former approach (thereby limiting the
number of keys to at most O(1/ε)).

Proof of security for sequential executions. We prove the sequential composition of
secure password-based session-key protocols for the basic definition (Definition 2.4). The
proof for the augmented definition (Definition 2.5) is almost identical. We begin with the

following notation. Let RC(w, σ)
def= (output(A), output(B), output(C A(w),B(w)(σ))).

That is, RC(w, σ) equals the outputs of A, B, and C from a real execution where the joint
password equalsw and C’s auxiliary input is σ (and thus REALC(D, σ) = (w, RC(w, σ))

for w ∈R D). Next, we present the equivalent notation IĈ(σ) for the ideal model as
follows:

IĈ(σ) =
{
(Un,Un, output(Ĉ(σ))) if send(Ĉ(σ)) = 1,

(Un,⊥, output(Ĉ(σ))) otherwise.

Session-Key Generation Using Human Passwords Only 263

Thus, IDEALĈ(D, σ) = (w, IĈ(σ)) for w ∈R D. (Recall that send(Ĉ(σ)) denotes the
input-bit sent by Ĉ to the trusted party upon auxiliary input σ , and output(Ĉ(σ)) denotes
its final output.) We stress that IĈ(σ) is independent of the specific dictionaryD and the
password w (and for this reason D does not appear in the notation). This is equivalent
to the definition of IDEALĈ(D, σ) in Section 2.3.2 because the password plays no role
in the choice of the session-key or in Ĉ’s decision to send 0 or 1 to the trusted party.
Furthermore, as mentioned in footnote 13, since Â and B̂ are always honest, there is no
need to have them receive any password for input or send any message whatsoever to
the trusted party.

We now define the distribution REALt
C(D, σ0), representing t sequential executions,

as follows:

REALt
C(D, σ0)

def= (w, σ1 = RC(w, σ0), σ2 = RC(w, σ1), . . . , σt = RC(w, σt−1)),

where σ0 is some arbitrary auxiliary input to C and w ∈R D. (We assume, without loss
of generality, that the multi-session adversary C outputs its state information at the end
of each session. Furthermore, at the beginning of each session, it reads in its auxiliary
input and resets its state according to its contents.21 Any multi-session adversary can
be transformed into many invocations of a single-session adversary in this way. We
therefore obtain that a multi-session adversary is just a single-session adversary that is
invoked many time sequentially.) Likewise, the distribution IDEALt

Ĉ
(D, σ0) is defined by

IDEALt
Ĉ
(D, σ0)

def= (w, σ1 = IĈ(σ0), σ2 = IĈ(σ1), . . . , σt = IĈ(σt−1)),

where σ0 is some arbitrary auxiliary input to C andw ∈R D. (For the sake of brevity, we
sometimes omit the explicit assignmentsσi = IĈ(σi−1) and just write (w, IĈ(σ0), IĈ(σ1),

. . . , IĈ(σt1)).)
Notice that in the i th session, C receives all the parties’ outputs from the previous

session (i.e., including previous session-keys), rather than just its own output (or state
information) as one may expect. This models the fact that information about previous
session-keys may be leaked from protocols who use them. Therefore, we require that
the security of future session-keys holds, even if previous session-keys are revealed to
the adversary.

By the above notation, REAL1
C(D, σ0) = REALC(D, σ0) and IDEAL1

Ĉ
= IDEALĈ(D, σ0)

and thus by the definition it holds that REAL1
C(D, σ0) and IDEAL1

Ĉ
(D, σ0) are (1− O(ε))-

indistinguishable. We now show that for any polynomial function of the security pa-
rameter t = t (n), the distributions IDEALt

Ĉ
(D, σ0) and REALt

C(D, σ0) are (1 − O(tε))-
indistinguishable.

Proposition 2.8. Consider a secure protocol for password-based authenticated session-
key generation. Then for every ppt real-model adversary C there exists a ppt ideal-model

21 We stress that the running-time of all ppt adversaries is a fixed polynomial in n, and is not a function
of the length of its auxiliary input. Thus, C runs the same polynomial number of steps in each execution and
cannot run longer due to it receiving longer and longer auxiliary inputs from previous sessions.

264 O. Goldreich and Y. Lindell

adversary Ĉ such that for every polynomial function t = t (n),

{IDEALt
Ĉ
(D, σ0)}n,D,σ0

O(tε)≡ {REALt
C(D, σ0)}n,D,σ0 .

Proof. We prove the proposition by induction.22 Let C be a real-model adversary, and
let Ĉ be the ideal-model adversary that is guaranteed to exist by the security of the
protocol. (Recall that by our above assumption, C is just a stand-alone adversary who
is invoked many times sequentially. Therefore, the stand-alone definition of security
implies the existence of Ĉ .) More explicitly, we have that there exists a constant c and a
negligible function µ(·) such that for every probabilistic polynomial-time distinguisher
D and all auxiliary inputs σ ∈ {0, 1}poly(n),

| Pr[D(IDEALĈ(D, σ)) = 1] − Pr[D(REALC(D, σ)) = 1]| < c · ε + µ(n).

Recall that the above holds for all auxiliary inputs σ .
We are now ready to proceed with the induction. The base case is given by the

assumption that the protocol is secure as in Definition 2.4. That is, for C and Ĉ as
above, we have that

| Pr[D(IDEALĈ(D, σ)) = 1] − Pr[D(REALC(D, σ)) = 1]| < c · ε + µ(n).

We stress that the constant c and negligible function µ(·) are as specified above. From
here on in the proof, c and µ(·) refer to the specific constant and function used here. The
inductive hypothesis then states that

| Pr[D(REALt
C(D, σ0)) = 1] − Pr[D(IDEALt

Ĉ
(D, σ0)) = 1]| < t · c · ε + t · µ(n).

Now, by the definition of REALt+1
C (D, σ0) and RC(w, σ) we have that for every C ,

{REALt+1
C (D, σ0)} ≡ {(REALt

C(D, σ0), RC(w, σt))},
wherew and σt are the first and last items in REALt

C(D, σ0), respectively. Next notice that
there exists a ppt machine that takes as input DIST ∈ {REALt

C(D, σ0), IDEALt
Ĉ
(D, σ0)} and

generates (DIST, RC(w, σt)), where w and σt are the first and last items in DIST, respec-
tively. This machine works by (perfectly) emulating a real execution of C A(w),B(w)(σt)

and then defining RC(w, σt) to be the parties’ outputs from this emulation. Thus,
appending RC(w, σt) to the ideal and real distributions does not change the prob-
ability of distinguishing between them. That is, any distinguisher that distinguishes
{(REALt

C(D, σ0), RC(w, σt))} from {(IDEALt
Ĉ
(D, σ0), RC(w, σt))} with probability δ can

be used to distinguish {REALt
C(D, σ0)} from {IDEALt

Ĉ
(D, σ0)} with exactly the same prob-

ability δ. By the inductive hypothesis it then follows that

| Pr[D(REALt
C(D, σ0), RC(w, σt))=1]−Pr[D(IDEALt

Ĉ
(D, σ0), RC(w, σt))=1]|

< t · c · ε + t · µ(n). (5)

22 We note that proving this kind of claim by induction can be problematic due to the fact that we must
guarantee that the resulting ideal adversary runs in polynomial-time and that the indistinguishability gap stays
O(tε) as required. We deal with these issues explicitly in the proof below.

Session-Key Generation Using Human Passwords Only 265

Now, a crucial point to notice here is that in the distribution (IDEALt
Ĉ
(D, σ0), RC(w, σt)),

the value σt is generated by IDEALt
Ĉ
(D, σ0) and is thus independent of the password w.

It therefore holds that

| Pr[D(IDEALt
Ĉ
(D, σ0), RC(w, σt)) = 1] − Pr[D(IDEALt

Ĉ
(D, σ0), IĈ(σt)) = 1]|

< c · ε + µ(n). (6)

In order to see this, notice that σt = IDEALt
Ĉ
(D, σ0) can be generated via some internal

preprocessing that is independent of w. We can therefore apply the stand-alone security
of the protocol for C that holds for all auxiliary input, and, in particular, for auxiliary
input that is generated according to the distribution {IDEALt

Ĉ
(D, σ0)}.

Noting that {(IDEALt
Ĉ
(D, σ0), IĈ(σt))} ≡ {IDEALt+1

Ĉ
(D, σ0)} and {(REALt

C(D, σ0),

RC(w, σt))} ≡ {REALt+1
C (D, σ0)} we have that

| Pr[D(REALt+1
C (D, σ0))=1]−Pr[D(IDEALt+1

Ĉ
(D, σ0))=1]|<(t +1) ·c ·ε+(t+1)·µ(n),

where this is obtained by combining (5) and (6). This completes the proof of the in-
ductive step. We note that throughout the proof we have explicitly shown the constants
and indistinguishability gap. This is in order to stress the fact that the probability of
distinguishing grows linearly in each step of the induction, and so the final indistin-
guishability obtained is (1 − O((t + 1)ε)), as required. The fact that the simulation of a
multi-session execution runs in polynomial-time follows immediately from the fact that
it just involves t invocations of the polynomial-time ideal adversary Ĉ , and the fact that
in each invocation Ĉ’s running-time is a polynomial in n (and does not depend on the
length of its received auxiliary input).

2.5.2. Concurrent Executions for Many Pairs of Parties

We now show the generalization to the case where many different parties execute the
session-key protocol simultaneously. This includes the case that the adversarial channel
controls any number of the legitimate parties.23 Specifically, we claim that for m invo-
cations of the protocol (which must be sequential for the same pair of parties using the
same password and may be concurrent otherwise), the difference between the ideal and
real executions is at most O(mε).

We show this in the case of m different pairs, each pair executing a single invocation
(the general case is similar). That is, there are m pairs of parties (A1, B1), . . . , (Am, Bm),
and each pair shares a secret passwordwi ∈R D. (We do not assume that the A’s and B’s
are distinct, yet do assume that for each i
= j , the passwordswi andwj are independently
chosen.) Then the formal definition of security in this scenario is obtained by the natural
generalization of the basic definition. That is, an ideal execution is defined where the
trusted party works with each pair independently and each execution is the same as in
the basic single-execution case. We note that this means that the adversary can choose
its input bit b differently in each of the m executions. The real execution is also defined
in the natural way, where m different pairs of parties with independent passwords run

23 The importance of this extension was pointed out by Boyarsky [14].

266 O. Goldreich and Y. Lindell

concurrently in the network. We denote by MULTI-REALm
Ĉ
(D, σ) the output of such a real

execution with m pairs of parties. That is, let wi be the shared password of (Ai , Bi).
Then

MULTI-REALm
Ĉ
(D, σ) = ((w1, output(A1), output(B1)), . . . ,

(wm, output(Am), output(Bm)), output(C(σ))),

where output(C(σ)) denotes the output of C after all m concurrent executions. The
distribution MULTI-IDEALm

C (D, σ) is defined in an analogous way. In this section we
prove the following proposition:

Proposition 2.9. Consider a protocol for password-based authenticated session-key
generation that is secure according to Definition 2.4. Then, for every polynomial function
m = m(n) and every ppt real-model adversary C playing concurrent executions (as
described above), there exists a ppt ideal-model adversary Ĉ , such that

{MULTI-IDEALm
Ĉ
(D, σ)}n,D,σ

O(mε)≡ {MULTI-REALm
C (D, σ)}n,D,σ .

In order to prove Proposition 2.9, we first show that any secure session-key generation
protocol has a canonical ideal-model adversary (simulation). This canonical adversary
will be such that it can be used to simulate in the multi-execution case.

We first define the following distribution, which is a mental experiment:

MENTALC(D, σ)
def= (w, output(A), output(B), output(C A(w′),B(w′)(σ))),

wherew,w′ ∈R D are passwords that are uniformly and independently chosen from the
dictionary. That is, the difference between REAL and MENTAL is whether or not the parties
A and B use the same password that appears as the first element in the distribution, or
an independently chosen password. We stress that in the MENTAL distribution, output(A)
and output(B) relate to the parties’ outputs from the execution C A(w′),B(w′), where they
use the password w′ (and not w). Intuitively, MENTAL and REAL can be distinguished
with probability at most O(ε); otherwise, the protocol reveals more than “O(ε) infor-
mation” about the password. However, we are actually interested in the probability of
distinguishing MENTAL and IDEAL.

Claim 2.10. Let C be a ppt real-model adversary and let Ĉ be the ppt ideal-model
adversary such that

{
IDEALĈ(D, σ)

}
n,D,σ

O(ε)≡ {REALC(D, σ)}n,D,σ

as guaranteed by Definition 2.4. Then

{MENTALC(D, σ)}n,D,σ
O(ε)≡ {IDEALĈ(D, σ)}n,D,σ .

Proof. Intuitively, since MENTAL and REAL cannot be distinguished and IDEAL and
REAL cannot be distinguished, the same holds for MENTAL and IDEAL. Formally, let DIST

Session-Key Generation Using Human Passwords Only 267

be a distribution which is either sampled from IDEALĈ(D, σ) or REALC(D, σ). Then
consider the transformation obtained by replacing the first element in DIST with a random
password w̃ ∈R D. Now, if DIST was sampled from IDEALĈ(D, σ), then the result is still
a random sample from IDEALĈ(D, σ). This holds because the password w in the IDEAL

distribution is chosen independently of everything else. However, if DIST was sampled
from REALC(D, σ), then the result is exactly a random sample from MENTALC(D, σ).
This is because the only difference between the REAL and MENTAL distribution is whether
the parties use the same password that appears as the first element, or an independent
one.

We conclude that any machine distinguishing MENTAL and IDEAL with probability p
can be used to distinguish between REAL and IDEAL with probability p. Since, by the
security of the protocol, REAL and IDEAL can be distinguished with probability at most
O(ε), it holds that MENTAL and IDEAL can also be distinguished with probability at most
O(ε).

The above claim yields the following canonical ideal-model adversary:

Canonical ideal-model adversary ĈCAN. Let C be a real-model adversary. Then, upon
auxiliary inputσ , the ideal-model adversary ĈCAN works by choosing a random password
w′ ∈R D, and perfectly emulating C A(w′),B(w′)(σ). That is, ĈCAN invokes the real-model
adversary C with input σ , and plays the roles of A and B with inputw′ in their interaction
with C . At the end of this emulation, ĈCAN must send a bit to the trusted party (to state
whether B should output ⊥ or receive the same uniform key as A). ĈCAN checks whether
B accepts or rejects in the emulation that it ran. Then ĈCAN sends 1 to the trusted party
if and only if B accepts. (We note that this accept/reject also appears in C’s view, by the
definition of REAL.) Following this, ĈCAN outputs the view of C and halts. We stress that
ĈCAN uses only black-box access to C and does not rewind C at all (this has sometimes
been called “straight-line black-box simulation”).

We now prove that the distribution generated by an ideal execution with adversary
ĈCAN is at most O(ε) far from the distribution generated by an ideal execution with the
adversary Ĉ that is guaranteed to exist for C (by the security of the protocol). That is,

Claim 2.11. Let C and Ĉ be as in Claim 2.10, and let ĈCAN be as defined above. Then

{IDEALĈCAN
(D, σ)}n,D,σ

O(ε)≡ {IDEALĈ(D, σ)}n,D,σ .

Proof. Notice that the canonical ideal-model adversary ĈCAN generates a distribution
very similar to that of MENTALC . Therefore, by Claim 2.10, the resulting distribution
should be close to IDEALĈ . The only difference is with respect to the outputs of A and B
(i.e., A’s output is Un instead of its output from the protocol and B’s output depends on
the bit sent by ĈCAN). Intuitively, due to the security of the protocol, this also makes no
difference.

Formally, let DIST be a distribution that is either sampled according to MENTALC(D, σ)
or IDEALĈ(D, σ). Then consider the transformation obtained by replacing the second
element (i.e., A’s output) by a uniformly distributed string k ← Un , and the third element

268 O. Goldreich and Y. Lindell

(i.e., B’s output) by either k or ⊥, depending on the accept/reject bit that appears in the
fourth element of the distribution (that is either C or Ĉ’s view/output depending on
whether DIST equals MENTALC or IDEALĈ).

If DIST is sampled according to IDEALĈ(D, σ), then the result of the transformation
can be distinguished from IDEALĈ with probability at most O(ε). This can be seen as
follows. First, the output of Â is identically distributed in both cases. It remains to show
that the output of B̂ differs with probability at most O(ε). The only time that a difference
can occur is if the view output by Ĉ in the distribution has that B̂ accepted, and yet B̂’s
output is ⊥, or vice versa. However, the real-model adversary’s view always contains
the correct accept/reject bit of B. Therefore, in the ideal model, this bit in the view
output by Ĉ can be inconsistent with B̂’s actual accept/reject bit with probability at
most O(ε); otherwise, the real and ideal models can be distinguished with probability
greater than O(ε). We conclude that when DIST is sampled according to IDEALĈ(D, σ),
the result of the transformation can be distinguished from IDEALĈ(D, σ)with probability
at most O(ε).

However, if DIST is sampled according to MENTALC , then the result of the transfor-
mation is distributed exactly according to IDEALĈCAN

(D, σ). This follows directly from

the definition of the ideal model and the ideal-model adversary ĈCAN. (Recall that ĈCAN

sends 1 to the trusted party if and only if B accepts in its emulation. Further recall
that the accept/reject bit of B correctly appears in C’s view as output by ĈCAN in the
emulation.)

Combining the above, we have that any machine distinguishing IDEALĈ(D, σ) and
IDEALĈCAN

(D, σ) with probability p can be used to distinguish between MENTALC and
IDEALĈ with probability at least p − O(ε). Since, by Claim 2.10, MENTALC and IDEALĈ
can be distinguished with probability at most O(ε), it holds that p (i.e., the prob-
ability of distinguishing IDEALĈ(D, σ) and IDEALĈCAN

(D, σ)) is bounded by
O(ε)+ O(ε) = O(ε).

Now, let C be a real-model adversary and let Ĉ be the ideal-model adversary that
is guaranteed to exist by the security of the protocol. By Claim 2.11, we have that the
distribution generated by ĈCAN is only O(ε) far from IDEALĈ(D, σ). Furthermore, by
the security of the protocol, we have that

{IDEALĈ(D, σ)}n,D,σ
O(ε)≡ {REALC(D, σ)}n,D,σ .

We conclude that IDEALĈCAN
(D, σ) is at most O(ε) far from REALC(D, σ). That is,

Lemma 2.12. Consider any protocol for password-based authenticated session-key
generation that is secure according to Definition 2.4, and let C be any real-model
adversary. Then, for the ideal-model adversary ĈCAN as defined above,

{IDEALĈCAN
(D, σ)}n,D,σ

O(ε)≡ {REALC(D, σ)}n,D,σ .

Concurrent executions for many parties. Given the canonical simulator of Lemma 2.12,
we can prove Proposition 2.9. The proposition is proved using a standard hybrid argu-

Session-Key Generation Using Human Passwords Only 269

ment. The main point is that for any fixed i , the passwords in all other executions are
independent of the password in the i th execution. Thus, an adversary can choose the pass-
words for all other executions by itself, thereby enabling it to simulate these executions
internally and perfectly (even if they are concurrent to the i th execution).

Proof of Proposition 2.9. Let C be a real-model adversary and let m be the num-
ber of concurrent executions. Then construct a multi-execution ideal-model adversary
Ĉ based on the canonical single-execution adversary ĈCAN. Adversary Ĉ follows the
strategy of ĈCAN independently for each execution. More formally, Ĉ invokes C with
auxiliary input σ and chooses uniform passwords w1, . . . , wm ∈R D for each pair
(A1, B1), . . . , (Am, Bm). Then, in the i th execution, Ĉ plays the roles of Ai and Bi with
shared password wi , forwarding all messages between the parties and C . At the conclu-
sion of the execution of (Ai , Bi), adversary Ĉ sends 1 to the trusted party for the i th
execution if and only if Bi accepts. At the conclusion of all executions, Ĉ outputs the
view of C and halts. We now prove that

{MULTI-IDEALm
Ĉ
(D, σ)}n,D,σ

O(mε)≡ {MULTI-REALm
C (D, σ)}n,D,σ . (7)

In order to prove (7), we define a hybrid distribution in which the outputs of the first i
executions are generated from real executions with C and the outputs of the last m − i
executions are generated from ideal executions with Ĉ . That is, the first i executions are
pure real executions with C . However, the last m − i executions are ideal executions with
adversary Ĉ following the strategy of ĈCAN as described above. As in a regular ideal
execution, Ĉ internally runs (Aj , Bj) with a uniformly chosen password, and forwards
all messages to C . Furthermore, Ĉ sends 1 to the trusted party if and only if Bj accepts.
We denote this hybrid execution by HYBRIDi

C,Ĉ
(D, σ).

By the above definition, HYBRID0
C,Ĉ
(D, σ) = MULTI-IDEALĈ(D, σ) and

HYBRIDm
C,Ĉ
(D, σ) = MULTI-REALC(D, σ). It therefore remains to show that for every i ,

{HYBRIDi
C,Ĉ
(D, σ)}n,D,σ

O(ε)≡ {HYBRIDi+1
C,Ĉ
(D, σ)}n,D,σ . (8)

This follows from the fact that ĈCAN is a “good” ideal-model adversary for a single
execution, as shown in Lemma 2.12. That is, construct a single execution real-model
adversary Ci who works as follows. Ci internally emulates real executions of C with
(A1, B1), . . . , (Ai , Bi) and ideal executions of Ĉ with (Ai+2, Bi+2), . . . , (Am, Bm). In
contrast, the messages of the (i + 1)th execution are sent externally. Now, consider the
result of applying the single-execution canonical ideal-model adversary ĈCAN to the
adversary Ci . By the definition of Ĉ (who follows the strategy of ĈCAN as described),
we have that when ĈCAN is applied to Ci for a single ideal execution, the result is
the same as when the first i executions are real executions with C and the last m − i
executions are ideal executions with Ĉ ; that is, the distribution obtained is essentially
HYBRIDi

C,Ĉ
(D, σ). On the other hand, the result of a real execution with Ci is essentially

270 O. Goldreich and Y. Lindell

HYBRIDi+1
C,Ĉ
(D, σ) because here the (i + 1)th execution is real with C .24 Therefore,

(8) follows from Lemma 2.12. Applying the hybrid argument m times, we obtain (7),
completing the proof.

3. Our Session-Key Generation Protocol

Preliminaries:. All arithmetic below is over the finite field GF(2n) which is identified
with {0, 1}n . For a review of cryptographic tools used and some relevant notations, see
the Appendix.

In our protocol we use a secure protocol for evaluating non-constant, linear poly-
nomials (actually, we could use any family of 1–1 Universal2 hash functions). This
protocol involves two parties A and B; party A has a non-constant, linear polynomial
Q(·) ∈ {0, 1}2n and party B has a string x ∈ {0, 1}n . The functionality is defined by
(Q, x) �→ (λ, Q(x)); that is, A receives nothing and B receives the value Q(x) (and
nothing else). The postulate that A is supposed to input a non-constant, linear polynomial
can be enforced by simply mapping all possible input strings to the set of such polynomi-
als (this convention is used for all references to polynomials from here on). We actually
augment this functionality by having A also input a commitment to the polynomial Q
(i.e., cA ∈ Commit(Q)) and its corresponding decommitment r (i.e., cA = C(Q, r)).
Furthermore, B also inputs a commitment value cB . The augmentation is such that if
cA
= cB (or cA /∈ Commit(Q)), then B receives a special failure symbol. This is needed
in order to tie the polynomial evaluation to a value previously committed to in the main
(higher-level) protocol. The functionality is defined as follows:

Definition 3.1 (Augmented Polynomial Evaluation).

• Inputs: The input of Party A consists of a linear, non-constant polynomial Q over
GF(2n), a commitment cA to this Q, and a corresponding decommitment r . The
input of Party B consists of a commitment cB and a value x ∈ GF(2n).

• Outputs:
1. Correct Input Case: If cA = cB and cA = C(Q, r), then B receives Q(x).
2. Incorrect Input Case: If cA
= cB or cA
= C(Q, r), then B receives a special

failure symbol, denoted ⊥.
In both cases, A receives nothing.

We stress that the relevant input case can be determined from all inputs in polynomial-
time, because A provides both Q and r . Therefore, the augmented polynomial evaluation
ideal functionality can be computed in probabilistic polynomial-time and by [54] and
[30], it can be securely computed. (See Section A.1 in the Appendix for the definitions
of secure computation.)

24 The only difference between the distributions generated by C and ĈCAN or HYBRIDi and HYBRIDi+1 relates
to the format of the output. Specifically, the output of the stand-alone session with Ci or ĈCAN consists of a
single tuple (w, output(A), output(B), output(C)), where the last output of the adversary contains the outputs
of the internally simulated executions of (A1, B1), . . . , (Ai , Bi) and (Ai+2, Bi+2), . . . , (Am , Bm). Thus, the
HYBRID distributions can be generated by simply rearranging these outputs.

Session-Key Generation Using Human Passwords Only 271

3.1. The Protocol

Let f be a 1–1 one-way function and let b be a hard-core bit of f . A schematic diagram
of Protocol 3.2, is provided in Fig. 1.

Protocol 3.2 (Password-Based Authenticated Session-Key Generation).

Inputs: Parties A and B start with a joint passwordw, which is supposed to be uniformly
distributed in D.

Outputs: A and B each output an accept/reject bit as well as a session-key, denoted
kA and kB , respectively. The accept/reject bit is a public output, whereas the
session-key is a local output.

(In normal operation kA = kB and both parties accept. As can be seen below,
the public output bit of A will always be accept. We will show that in case kA
= kB

the public output bit of B is unlikely to be accept.)
Operation: The protocol proceeds in four stages.

1. Stage 1: (Non-Malleable) Commit
(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).
(b) A and B engage in a non-malleable (perfectly binding) commitment pro-

tocol in which A commits to the string (Q, w) ∈ {0, 1}3n . Denote the
random coins used by B in the commitment protocol (where he plays the
role of the receiver) by rB , and denote B’s view of the execution of the
commitment protocol by NMC(Q, w).25

After the commitment protocol terminates, B sends (the receiver’s coins)
rB to A. (This has no effect on neither the hiding property (which refers to
what B can learn) nor to the binding property (because the commitment
phase is perfectly binding and its execution has already terminated).)

2. Stage 2: Pre-Key Exchange. In this stage the parties generate strings πA and πB ,
from which the output session-keys (as well as validation checks performed
below) are derived. Thus, πA and πB are called pre-keys, and the process of
generating them is referred to as “pre-key exchange.”
(a) A sends B a (perfectly binding) commitment c = C(Q, r), for a randomly

chosen r .26

(b) A and B engage in an augmented polynomial evaluation protocol. A inputs
the polynomial Q as well as (c, r); whereas B inputs the password w
(viewed as an element of GF(2n)) as well as c.

(If indeed both parties input the same commitment value c = C(Q, r)
(as well as (Q, r) and w, respectively) then B gets the output Q(w).)

(c) We denote B’s output by πB . (Note that πB is supposed to equal Q(w).)
(d) A internally computes πA = Q(w).

3. Stage 3: Validation
(a) A sends the string y = f 2n(πA) to B.

25 Recall that B’s view consists of his random coins and all messages received during the commitment
protocol execution.

26 The purpose of this additional commitment to the polynomial Q is explained in footnote 33.

272 O. Goldreich and Y. Lindell

(b) A proves to B in zero-knowledge that she has input the same polynomial in
the non-malleable commitment (performed in Stage 1) and in the ordinary
commitment (performed in Stage 2(a)), and that the value y is “consistent”
with the non-malleable commitment. Formally, A proves the following
NP-statement:

There exists a pair (X1, x2) ∈ {0, 1}2n × {0, 1}n (where supposedly
X1 = Q and x2 = w) and random coins rA,1, rA,2 (where supposedly
rA,1 and rA,2 are A’s random coins in the non-malleable and ordinary
commitments, respectively) such that the following three conditions
hold:
(i) B’s view of the non-malleable commitment stage (denoted above

by NMC(Q, w)) is identical to the receiver’s view of a non-malle-
able commitment to (X1, x2), where the sender and receiver’s re-
spective random coins are rA,1 and rB .

(Recall that rB denotes B’s random coins in the non-malle-
able commitment, and that it has been sent to A at the end of
Stage 1(b).)27

(ii) c = C(X1, rA,2).
(iii) y = f 2n(X1(x2)).
The zero-knowledge proof used here is the specific zero-knowledge
proof of Richardson and Kilian [48], with a specific setting of param-
eters. Specifically, we refer to the setting of the number of iterations,
denoted m, in the first part of the Richardson–Kilian proof system. We
set m to equal the number of rounds in Stages 1 and 2 of our protocol
plus any non-constant function of the security parameter. For further
details, see Section A.4 of the Appendix.

(c) Let tA be the session-transcript so far as seen by A (i.e., the sequence of
all messages sent and received by A so far), and let MACk be a message

authentication code, keyed by k. Then A computes k1(πA)
def= b(πA) · · ·

b(f n−1(πA)), where b is a hard-core bit of f , and sends the value m =
MACk1(πA)(tA) to B.

4. Stage 4: Decision

(a) A always accepts and outputs k2(πA)
def= b(f n(πA)) · · · b(f 2n−1(πA)).

(b) B accepts if and only if the following three conditions are satisfied:
(i) y = f 2n(πB), where y is the string sent by A to B in Step 3(a),

and πB is B’s output from the polynomial evaluation (as defined in
Stage 2(c)).

(We stress that if πB = ⊥ then no y fulfills this equality, and B
always rejects.)

(ii) B accepts the zero-knowledge proof in Stage 3(b).

27 The view of a protocol execution is a function of the parties’ respective inputs and random strings.
Therefore, the sender’s input (X1, x2), and the party’s coins rA,1 and rB determine a unique possible view.
Recall that B sent rB to A following the commitment protocol. Thus, A has NMC(Q, w) (which includes rB),
the committed-to value (Q, w) and her own coins rA,1, enabling her to prove the above statement efficiently.

Session-Key Generation Using Human Passwords Only 273

(iii) The MAC value received in Stage 3(c) passes as a valid authentication
tag for the session-transcript as seen by B, with respect to the MAC-
key k1(πB) = b(πB) · · · b(f n−1(πB)). That is, Verifyk1(πB)

(tB,m) =
1, where tB is the transcript of Stages 1–3(b) as seen by B, the string
m is the alleged MAC-tag that B received in Stage 3(c), and MAC-
verification is with respect to the MAC-key k1(πB) = b(πB) · · ·
b(f n−1(πB)).

In case B accepts, he outputs the session-key k2(πB) = b(f n(πB)) · · ·
b(f 2n−1(πB)), otherwise he outputs ⊥. (Recall that the accept/reject deci-
sion bit is considered a public output.)

We stress that A and B always accept or reject based solely on these criteria, and
that they do not halt (before this stage) even if they detect malicious behavior.

In our description of the protocol, we have referred only to parties A and B. That is,
we have ignored the existence (and possible impact) of the channel C . That is, when
A sends a string z to B, we “pretend” that B actually received z and not something
else. In a real execution this may not be the case at all. In the actual analysis we will
subscript every value by its owner, as we have done for πA and πB in the protocol. For
example, we shall say that in Stage 3(a), A sends a string yA and the string received by B
is yB .

3.2. Motivation for the Protocol

We suggest the reader starts by considering the schematic diagram of Protocol 3.2, as
provided in Fig. 1.

-

-

-

-

H
HHj

�
���

H
HHj

? ?

Party B

NM-Commit(Q;w)

Secure Polynomial

Evaluation

f2n(Q(w))

ZK-proof of consistency

MAC of transcript

w

Q(w)

Q

Q 2R f0; 1g2n

Party A

Decision

If accept, output key:Output key:

k2(Q(w))k2(Q(w))

ww

Fig. 1. Schematic diagram of the protocol.

274 O. Goldreich and Y. Lindell

3.2.1. On the General Structure of the Protocol

The central module of Protocol 3.2 is the secure polynomial evaluation. As suggested by
Naor and Pinkas [45], this module (by itself) suffices for achieving security against pas-
sive channels (but not against active ones). Specifically, consider the following protocol.
Party A chooses a random, linear polynomial Q and inputs it into a secure polynomial
evaluation with party B who inputs the joint passwordw. By the definition of the polyno-
mial evaluation, B receives Q(w) and A receives nothing. Next, A internally computes
Q(w) (she can do this as she knows both Q and w), and both parties use this value as
the session-key. The key is uniformly distributed (since Q is random and linear) and due
to the secrecy requirements of the polynomial evaluation, the protocol reveals nothing
of w or Q(w) to a passive eavesdropper C (since otherwise this would also be revealed
to party A who should learn nothing from the evaluation).

One key problem in extending the above argument to the active channel setting is that
the standard security definitions of two-party computation (which refer to the stand-alone
setting) guarantee nothing about what happens in the concurrent setting. In fact, one can
show that the simplified protocol (as outlined in the previous paragraph) is not secure
against an active adversary. We now provide some intuition as to why our protocol,
which is derived via significant augmentations of the simplified protocol, is nevertheless
secure.

First, assume that the MAC-value sent by A at the conclusion of the protocol is such
that unless C “behaved passively” (i.e., relayed all message without modification), then
B rejects (with some high probability). Now, if C behaves passively, then B clearly
accepts (as in the case of honest parties A and B that execute the protocol without
any interference). On the other hand, if C does not behave passively, then (by our
assumption regarding the MAC-value) B rejects. However, C itself knows whether or
not it behaved passively and therefore can predict whether or not B will reject. In other
words, the accept/reject bit output by B is simulatable (by C itself). We proceed by
observing that this bit is the only meaningful message sent by B during the protocol:
apart from in the polynomial evaluation, the only messages sent by B are as the receiver
in a non-malleable commitment protocol and the verifier in a zero-knowledge proof
(clearly, no knowledge of the passwordw is used by B in these protocols). Furthermore,
the polynomial evaluation is such that only B receives output. Therefore, intuitively,
the input used by B is not revealed by the execution; equivalently, the view of C is
(computationally) independent of B’s input w (this can be shown to hold even in our
concurrent setting). We conclude that all messages sent by B during the execution can be
simulated without knowledge of w. Therefore, by indeed simulating B, we can reduce
the concurrent scenario involving A, C , and B to a (standard) two-party setting between
A and C . In this (standard) setting we can apply standard tools and techniques for
simulating C’s view in its interaction with A, and conclude that the entire real execution
is simulatable in the ideal model. Hence, assuming that the MAC-value is accepted if
and only if C “behaves passively,” the protocol is secure.

Thus, the basis for simulating C’s view (which means security of our protocol) lies
in the security of the MAC in our scenario. Indeed, the MAC is secure when the parties
using it (a priori) share a random MAC-key; but in our case the parties establish the
MAC-key during the protocol itself, and it is not clear that this key is random nor the

Session-Key Generation Using Human Passwords Only 275

same in the view of both parties. In order to justify the security of the MAC (in our
setting), two properties must be shown to hold. Firstly, we must show that with high
probability either A and B hold the same MAC-key or B is going to reject anyhow
(and C knows this). Secondly, we need to show that this (identical) MAC-key held by
A and B has “sufficient pseudorandomness” to prevent C from successfully forging a
MAC-value.

In some sense we are back to the original problem (of generating a shared secret-key).
However, notice that the security of the MAC-key only needs to hold before B concludes
and outputs accept or reject. Since proving the security of the MAC-key does not require
the simulation of B’s output accept/reject bit, it is easier to prove than the security of
the shared session-key.28 Nevertheless, this part of the proof is still the hardest.

3.2.2. On Some Specific Choices

Using a pseudorandom generator. In the protocol we implicitly use a pseudorandom
generator defined by G(s) = b(s) · · · b(f 2n−1(s))· f 2n(s). As discussed in Section A.5 of
the Appendix, this is a “seed-committing” pseudorandom generator (i.e., f 2n(s) uniquely
determines s). To see why this type of pseudorandom generator is relevant to us, recall
that as part of the validation stage, some function F of πB is sent by A to B, whereas
another function k1 (of πB) is used to derive the MAC-key, and yet another function
(i.e., k2) is used to derive the output session-key. The properties required from F are that
firstly it be 1–1 (so that F(πB) uniquely determines πB), and secondly that the MAC-key
and the output session-key (also derived from πB) be pseudorandom, even though the
adversary is given F(πB). Viewed in this light, using a seed-committed pseudorandom
generator (while setting F(·) = f 2n(·) and G(·) = k1(·)k2(·) f 2n(·)) is a natural choice.

On the use of linear polynomials. The pre-keys are generated by applying a random,
linear, non-constant polynomial on the password. Such a polynomial is used for the
following reasons. Firstly, we need “random 1–1 functions” that map each dictionary
entry to a uniformly distributed n-bit string. The 1–1 property is used in saying that Q
andπ uniquely determinew such that Q(w) = π .29 Secondly, we desire that forw′
= w,
the values Q(w′) and Q(w) be (almost) independent. This ensures that if C guesses the
wrong password and obtains Q(w′), it will gain no information on the actual key Q(w).
(Essentially, any family of 1–1 Universal2 hash functions would be appropriate.)

We note that the security of the protocol relies on the fact that non-constant polyno-
mials are indeed used (and, for example, the adversary does not try to use a constant
polynomial). This particular issue is dealt with by the fact that a secure polynomial

28 Indeed, the fact that B has not yet output its accept/reject bit is crucial in our proof of the unforgeability
of the MAC.

29 In particular, if a constant polynomial is allowed then C could choose a constant Q′ and run the en-
tire protocol with B using Q′. Since Q′ is constant, πB = Q′(w) is a fixed value and is thus KNOWN

to C . Furthermore, C can execute the zero-knowledge proof in the validation stage correctly, because
y = f 2n(Q′(w)) = f 2n(Q′(w′)) is consistent with NMC(Q′, w′) for every w′ (rather than only for w′ = w).
We conclude that (under such a flawed modification) B accepts with a session-key known to C , in contradiction
to the session-key secrecy requirement.

276 O. Goldreich and Y. Lindell

evaluation protocol is used and by the convention (discussed before Definition 3.1)
that all possible input strings are mapped to the set of non-constant polynomials.

3.3. Properties of Protocol 3.2

The main properties of Protocol 3.2 are captured by the following theorem.

Theorem 3.3. Suppose that all the cryptographic tools used in Protocol 3.2 satisfy
their stated properties. Then Protocol 3.2 constitutes a secure protocol for (augmented)
password-based authenticated session-key generation (as defined in Definition 2.5).

As we have mentioned above, Protocol 3.2 also fulfills the additional property of intrusion
detection.

Protocol 3.2 as a feasibility result. All of the cryptographic tools used in Protocol 3.2
can be securely implemented assuming the existence of 1–1 one-way functions and
collections of enhanced trapdoor permutations. Thus, at the very least, Theorem 3.3
implies the feasibility result captured by Theorem 2.7. In the Appendix, we show how
each primitive can be constructed from the above assumptions.

We note that the assumption regarding 1–1 one-way functions is used only for ob-
taining a seed-committing pseudorandom generator (all other primitives can be obtained
from collections of enhanced trapdoor permutations). Such functions are known to exist
under the RSA and Discrete Logarithm problems [29]. We leave open the question of
obtaining a protocol that is secure under the sole assumption of the existence of collec-
tions of enhanced trapdoor one-way permutations. (Note that 1–1 one-way functions are
not implied by the existence of collections of one-way permutations.)

Protocol 3.2 as a basis for efficient solutions. We now briefly discuss the efficiency of
our protocol. From this perspective, the most problematic modules of the protocol are
the non-malleable commitment, the secure (augmented) polynomial evaluation, and the
zero-knowledge proof of [48]. Focusing on round complexity, we make the following
observations: First, by a recent general result of Lindell [40] (building on [54] and [30]),
the secure (augmented) polynomial evaluation can be implemented in a constant number
of rounds. Second, by using a round-efficient version of the zero-knowledge proof of [48]
based on claw-free functions (see Section A.4 of the Appendix), the number of rounds
of communication required for this proof is m + O(1), where m equals the number
of rounds in the first two stages of our protocol plus some non-constant function in
the security parameter (say log log n). In fact, as discussed in Section 6.1.1, this can
be reduced to a single additional round. We thus conclude that the main bottleneck
with respect to the number of rounds of communication is due to the non-malleable
commitment. In a recent result by Barak [1], it was shown (under stronger complexity
assumptions) that non-malleable commitments can be achieved for a constant number of
rounds. Thus, using this non-malleable commitment, we indeed obtain a constant-round
protocol.

Turning to the bandwidth (i.e., length of messages) and the computational complex-
ity of our protocol, we admit that both are large, but this is due to the corresponding

Session-Key Generation Using Human Passwords Only 277

complexities of the problematic modules mentioned above. Any improvement in the
efficiency of these modules (which is, fortunately, an important open problem) would
yield a corresponding improvement in the efficiency of our protocol.

4. Analysis of Protocol 3.2: Proof Sketches

Regrettably, due to reasons mentioned in the Introduction and further discussed below,
the analysis of Protocol 3.2 is quite involved. In order to focus on the main ideas of this
analysis, we provide its essence in the current section, while deferring some details to
subsequent sections.

4.1. Preliminaries

Recall that the (adversarial) channel (or adversary) C may omit, insert and modify any
message sent between A and B. Thus, in a sense C conducts two separate executions:
one with A in which C impersonates B (called the (A,C) execution), and one with
B in which C impersonates A (called the (C, B) execution). These two executions are
carried out concurrently (by C), and there is no explicit execution between A and B.
Furthermore, C has full control of the scheduling of the (A,C) and (C, B) executions
(i.e., C may maliciously decide when to pause one execution and continue the other). For
this reason, throughout the proof we make statements to the effect of: “when A executes
X in her protocol with C then. . . .” This reflects the fact that the separate (A,C) and
(C, B) executions may be at very different stages.

We note that there are currently no tools for dealing with (general) concurrent com-
putation in the two-party case.30 Our solution is therefore based on an ad hoc analysis
of (two) concurrent executions of specific two-party protocols that are secure as stand-
alone (i.e., when only two parties are involved and they conduct a single execution over a
direct communication line). Our analysis of these executions proceeds by using specific
properties to remove the concurrency and obtain a reduction to the stand-alone setting.
That is, we show how an adversarial success in the concurrent setting can be translated
into a related adversarial success in the stand-alone setting. This enables us to analyze
the adversary’s capability in the concurrent setting, based on the security of two-party
stand-alone protocols.

We stress that we make no attempt to minimize the constants (in O(ε) terms) in our
proofs. In fact, some of our proofs are clearly wasteful in this sense and the results we
obtain are not tight. Our main objective is to make our (regrettably complex) proofs as
modular and simple as possible.

Channel’s output and view. We assume, without loss of generality, that the adversary’s
output always includes its view of the execution (because the adversary can always
be modified so that this holds). In fact, the reader may assume (also without loss of
generality) that the adversary’s output always equals its view (because the output is
always efficiently computable from the view).

30 There is work relating to concurrently secure honest-majority computation (see [17]). However, this does
not apply to the two-party case and furthermore assumes the existence of direct (and reliable) communication
channels between all parties.

278 O. Goldreich and Y. Lindell

Reliable channels. For the proof we define the concept of a reliable channel. We say
that a channel C is reliable in a given protocol execution if C runs the (A,C) and
(C, B) executions in a synchronized manner and does not modify any message sent
by A or B. That is, any message sent by A is immediately forwarded to B (with-
out modification), and vice versa. This property is purely syntactic and relates only
to the bits of the messages sent in a given execution of the protocol. In essence, an
execution for which C is reliable looks like an execution via a passive adversary.
However, C may decide at any time during the protocol execution to cease being re-
liable (this decision is possibly based on its current view and may be probabilistic).
This is in contrast to a passive adversary who, by definition, only eavesdrops on the
communication.

Notation. We present some notation that is used throughout the proof. As we have seen,
C A(w),B(w) denotes an execution of C with A and B, where the parties’ joint password
is w. Likewise, denote by C A(Q,w),B(w) an execution of C with A and B, where A is
modified so that she receives the random (non-constant, linear) polynomial Q to be used
in the protocol as additional input (recall that A’s input in the protocol is defined to
be the password w only). We note that such a modification makes no difference to the
outcome since in the protocol definition, party A begins by choosing such a random
polynomial Q. This modification is made for the sake of the analysis and enables us to
refer explicitly to Q when, for example, relating to the session-key output by A, which
is defined as k2(Q(w)) in the protocol. Sometimes in the proof, we refer to stand-alone
executions of an adversary with A or B. In such a case we denote by C A(Q,w) (resp.,
C B(w)) a stand-alone execution of the protocol between C and A (resp., B).

We note that, for the sake of simplicity, we often omit explicit reference to C’s auxiliary
input σ , and therefore write C A(Q,w),B(w) rather than C A(Q,w),B(w)(σ). All our proofs do,
however, hold with respect to such an auxiliary input.

Throughout our proof, it is often important to consider the accept/reject decision-bit
output by B (recall that this bit is public and therefore known to C). We denote by
“decB = acc” the case that B outputs accept, and likewise “decB = rej” the case that B
outputs reject. We also often refer to the event that C is reliable or not. Thus, we denote
“reliableC = true” if C was reliable in the given execution, and “reliableC = false”
otherwise.

The basic and augmented definitions of security. We prove that Protocol 3.2 is a secure
password-based authenticated session-key generation protocol with respect to the basic
definition (i.e., Definition 2.4). The proof of security with respect to the augmented
definition (i.e., Definition 2.5) is obtained by minor modifications, which are noted
where relevant. Our choice of presenting the proof with respect to Definition 2.4 is due
to the desire to avoid the more cumbersome formalism of Definition 2.5, while realizing
that the main issues of security arise already in Definition 2.4.

4.2. Organization and an Outline of the Proof

Due to the length and complexity of our proof, we leave the full proofs of the central
lemmas to later sections. Instead, intuitive proof sketches are provided in-place. Unless

Session-Key Generation Using Human Passwords Only 279

otherwise stated, the sketches are quite precise and the full proofs are derived from them
in a straightforward manner.

The cases of passive and active adversaries (i.e., Parts 1 and 2 of Definition 2.4) are
dealt with separately. The proof of security against passive adversaries can be found in
Section 4.3 (with further details in Section 5). On the other hand, the proof sketches for
the case of active adversaries span Sections 4.4–4.7, with the full proofs presented in
Sections 6–8.

We now outline the high-level structure of the proof of security against active adver-
saries. Conceptually, our proof works by first simulating B’s role in the (C, B) execution,
and thus reducing the entire analysis to one of a stand-alone (A,C) execution. However,
in order to do this simulation, we need to show how B’s accept/reject bit can be simulated
(see the motivating discussion in Section 3.2.1). The main property needed for this task
is what we call key-match. This property states that the probability that B accepts and
yet the pre-keys are different (i.e., πB
= πA) is at most O(ε) + µ(n). (Recall that the
pre-key πB is B’s output from the polynomial evaluation and πA = Q(w).) Then, given
the key-match property, we are able to show the simulatability of B’s accept/reject bit,
and thus the simulatability of the entire (C, B) execution. Specifically, we show that for
every C interacting with A and B, there exists an adversary C ′ interacting with A only,
such that

{w, k2(Q(w)), output(C A(Q,w),B(w))} O(ε)≡ {w, k2(Q(w)), output(C ′ A(Q,w)
)}. (9)

Then we continue by proving that C ′’s view in this two-party (stand-alone) setting with
A only, can also be simulated. Specifically, we show that for every C ′ interacting with
A only, there exists a non-interactive machine C ′′ such that

{w, k2(Q(w)), output(C ′ A(Q,w)
)} O(ε)≡ {w,Un, output(C ′′)}. (10)

Combining (9) and (10) brings us quite close to proving that the IDEAL and REAL dis-
tributions are (1 − O(ε))-indistinguishable. To see this, recall that in the real model A
always outputs k2(Q(w)), and in the ideal model Â always outputs Un . Thus, the above
equations imply the existence of a non-interactive machine Ĉ (similar to the ideal-model
machine) for which

{w, output(A), output(C A(w),B(w))} O(ε)≡ {w, output(Â), output(Ĉ)}. (11)

However, this is not enough since the IDEAL and REAL distributions also include B’s
output. Therefore, (11) must be “extended” to include B’s output as well. This is achieved
by using (a consequence of) the key-match property described above.

The key-match property is proven in Sections 4.4 and Section 6. Next, the proof of
(10) is presented (in Sections 4.5 and 7). (Conceptually, this proof should come after
the proof of (9); however, significant parts of it are used in order to prove (9) and thus
the order is reversed.) Finally, (9) is proven in Sections 4.6 and 8, and the “extension”
of (11) to complete the proof is shown in Section 4.7. These dependencies are shown in
Fig. 2.

We remark that while proving the key-match property, we show how (and under what
circumstances) A’s zero-knowledge proof can be simulated in our concurrent setting

280 O. Goldreich and Y. Lindell

Key Match [Thm 4.5]

Simulate (A,C) [Thm 4.8] Simulate (C,B) [Thm 4.6]

Simulate B’s Decision [Lem 4.11]

Prop. 4.13: the prob. that C is unreliable

Active Security [Thm 4.14]

Sec 4.4

Sec 4.6

Sec 4.5

Sec 4.7

 and B accepts is O(ε)

Fig. 2. The structure of the proof of security for active adversaries. Solid arrows show direct applications of
results, whereas dashed arrows show adaptation of proof techniques.

(Section 6.1.1). We do not know how to show this using any zero-knowledge proof;
rather our simulation utilizes properties of the specific proof system of Richardson and
Kilian. Furthermore, the “zero-knowledge property” of the proof system in our setting
is not derived merely from the fact that the Richardson and Kilian system proof is
concurrent zero-knowledge, but rather from its specific structure (which is the key to its
being concurrent zero-knowledge). Note that concurrent zero-knowledge only refers to
a setting where many instances of the same proof system are run concurrently, but says
nothing about a setting (such as ours) in which the proof system is run concurrently with
other protocols. Furthermore, it does not cover settings where the adversary controls a
prover in one instance and a verifier in another (i.e., man-in-the-middle attacks).

4.3. The Security of Protocol 3.2 for Passive Adversaries

In this section we consider the case of a passive adversarial channel. In this case the IDEAL

and REAL distributions are required to be computationally indistinguishable (rather than
being just (1 − O(ε))-indistinguishable).

Notice that in the case that the channel C is passive, the setting is actually that of
standard two-party computation, in which both parties are honest and the adversary
can only eavesdrop on their communication. Despite this, the definitions of multi-party
computation do not immediately imply that C cannot learn anything in this context. This
is because the definitions relate to an adversary C who “corrupts” one or more parties.
However, here we are dealing with the case that C corrupts zero parties and we must
show that, in this case, C learns nothing about any party’s inputs or outputs.

Theorem 4.1 (Passive Executions). Protocol 3.2 satisfies Condition 1 in Definition 2.4.
That is, for every ppt real-model passive adversary C there exists a ppt ideal-model

Session-Key Generation Using Human Passwords Only 281

adversary Ĉ that always sends 1 to the trusted party such that

{IDEALĈ(D, σ)}n,D,σ
c≡ {REALC(D, σ)}n,D,σ ,

where D ⊆ {0, 1}n is any ppt samplable dictionary and σ ∈ {0, 1}poly(n) is the auxiliary
input for the adversary.

Proof. We first note that in this case parties A and B both output the same session-key,
k2(Q(w)), and they both accept. Thus, it is enough to prove the following lemma:

Lemma 4.2. For every passive ppt channel C ,

{w, k2(Q(w)), output(C A(Q,w),B(w)(σ))} c≡ {w,Un, output(C A(Q,w̃),B(w̃)(σ))},

where Q is a random non-constant linear polynomial, and w and w̃ are independently
and uniformly distributed in D.

This lemma implies the theorem because the ideal-model adversary Ĉ can simu-
late an execution for the real-model adversary C by choosing Q and w̃ and invoking
C A(Q,w̃),B(w̃)(σ). Furthermore, since C is passive, A and B’s outputs are always identi-
cal, and equal to k2(Q(w)) in the real model and Un in the ideal model. The full REAL

and IDEAL distributions can thus be derived from the distributions in the lemma by sim-
ply repeating the second element twice. The theorem therefore follows directly from
Lemma 4.2.

The proof of Lemma 4.2 can be found in Section 5. Since C is a passive adversary (in
this case), the proof is relatively straightforward and is based on the security of two-party
protocols.

Security for executions in which C is reliable. We now strengthen the “passive ad-
versary” requirement to include executions in which an active adversary C is reliable.
Loosely speaking, we show that in real executions for which C is reliable, the output
distribution is computationally distinguishable from in the ideal model. This is a stronger
result because a passive channel is always reliable, but an active channel may sometimes
be reliable and sometimes not. Furthermore, such an active channel may dynamically
decide whether or not to be reliable, possibly depending on what occurs during the pro-
tocol execution. Despite this, we show that in a given execution for which the channel
is reliable, it can learn no more than if it was passive.

Proposition 4.3. For every ppt real-model adversary C there exists an ideal adversary
Ĉ such that for every ppt distinguisher D, for every polynomial p(·), all sufficiently large
n’s, and all auxiliary input σ ∈ {0, 1}poly(n),

| Pr[D(IDEALĈ(D, σ)) = 1 & reliableC = true]

− Pr[D(REALC(D, σ)) = 1 & reliableC = true]| < 1

p(n)
,

282 O. Goldreich and Y. Lindell

where, in the first probability, reliableC refers to whether or not the execution view of
the channel C as included in the output of Ĉ indicates that C is reliable in the said
execution.31

Proof. As in Theorem 4.1, in executions for which C is reliable, both A and B output
k2(Q(w)) and both accept. Thus it is enough to show an equivalent of Lemma 4.2 for a
reliable channel (rather than a passive channel). This is shown using the following claim:

Claim 4.4. For every ppt active channel C there exists a passive channel C ′ such that
for every ppt distinguisher D and every randomized process z = Z(Q, w),

Pr[D′(z, output(C ′ A(Q,w),B(w)
)) = 1]

= Pr[D(z, output(C A(Q,w),B(w))) = 1 & reliableC = true],

where D′(z, 0)
def= 0 and D′(z, γ) def= D(z, γ) otherwise (i.e., for any γ
= 0).

Proof Sketch. The proof is based on having C ′ emulate an execution for C . Since C ′

is passive, it receives a message-transcript of messages sent between A and B. Channel
C ′’s emulation involves passing the messages of the transcript (in order) to C , and
checking whether or not C is reliable (i.e., forwards all messages immediately and
unchanged to their intended receiver). If C is not reliable (and thus C ′ cannot continue
the emulation), then C ′ halts and outputs 0. On the other hand, if C is reliable throughout
the entire execution, then C ′ outputs whatever C does from the experiment. The equality
is obtained by considering the following two cases: In case C is reliable, C ′’s emulation
is perfect and the output of D′ equals the output of D (because the output of C ′, which
equals the output of a reliable C , is definitely not 0). On the other hand, in case C is
unreliable, C ′ outputs 0 and so does D′.

Using Claim 4.4, we obtain the analogous result of Lemma 4.2 for reliable channels.
That is, we prove that for every ppt distinguisher D,∣∣Pr

[
D(w, k2(Q(w)), out(C A(Q,w),B(w))) = 1& reliableC = true

]
− Pr[D(w,Un, out(C A(Q,w̃),B(w̃)))=1& reliableC = true]|=µ(n), (12)

where out(·) is shorthand for output(·). Equation (12) follows by applying Claim 4.4 to
each of the two probabilities in the equation (once setting z = (w, k2(Q(w))) and once
setting z = (w,Un) (while switching the roles of w and w̃)), and applying Lemma 4.2
to the result. Using (12), the proposition follows (analogously to the way Theorem 4.1
follows from Lemma 4.2).

31 Recall that the output of C , included in REALC , contains the view of C . Thus, it is natural to assume
that the output of Ĉ , included in IDEALĈ , also contains such a view. Formally, we may use a parsing rule that

applied to Ĉ’s output (included in IDEALĈ), always yields some legal view of C . Alternatively, if Ĉ’s output
(included in IDEALĈ) does not contain such a legal view, we define reliableC to be false.

Session-Key Generation Using Human Passwords Only 283

Security for the augmented definition. In the case that C is passive (or reliable), the
session-key challenge received (in the augmented setting) after the first party terminates
is of no consequence. This is because C (being passive or just reliable) makes no use
of this message (it simply becomes a part of its view). Therefore, the distinguisher (in
the basic setting), who always receives the session-key (since it is part of the output
distribution), can generate the output distribution of the augmented setting. Thus, in case
C is passive, the basic definition implies the augmented one.

4.4. The Key-Match Property

We now prove the key-match property, which states that the probability that A and B both
accept but have different pre-keys is at most O(ε). This specific property will be used

to establish the security of the entire protocol. Recall that the pre-keys are πA
def= Q(w)

and πB , where πB is B’s output from the polynomial evaluation (conducted in Stage 2).

Theorem 4.5 (Key-Match). For every ppt adversarial channel C , every polynomial
p(·) and all sufficiently large n’s,

Pr[decB = acc & πA
= πB] < 3ε + 1

p(n)
.

Proof Outline and Rough Sketch. The analysis is partitioned into two complemen-
tary subcases related to the scheduling of the two executions (i.e., C’s execution with
A and C’s execution with B). The scheduling of these two executions may be cru-
cial with respect to the non-malleable commitments. This is because the definition of
non-malleability (only) states that a commitment is non-malleable when executed con-
currently with another commitment.32 In an execution of our protocol, the commitment
from C to B may be executed concurrently with the polynomial evaluation and/or val-
idation stage of the (A,C) execution. In this case it is not clear whether or not the
non-malleable property holds.

We therefore prove the theorem by considering two possible strategies for C with
respect to the scheduling of the (A,C) and (C, B) executions. In the first case, hereafter
referred to as the unsynchronized case, we consider what happens if C completes the
polynomial evaluation with A before completing the non-malleable commitment with
B. In this case the entire (A,C) execution may be interleaved with the (C, B) non-
malleable commitment. However, according to this scheduling, we are ensured that the
(A,C) and (C, B) polynomial evaluation stages are run at different times (with no
overlap). Loosely speaking, this means that the polynomial QC input by C into the
(C, B) evaluation is sufficiently independent of the polynomial Q input by A in the
(A,C) evaluation. Recall that in the (A,C) execution, C only learns the value of Q(·) at
a single point, which we denote wC . Therefore, for every w′
= wC , the values QC(w

′)
and Q(w′) are independently distributed. In particular, unless wC = w (which occurs

32 In fact, by the definition, non-malleability is only guaranteed if the commitments are of the same
scheme. Two different non-malleable commitment schemes are not guaranteed to be non-malleable if ex-
ecuted concurrently.

284 O. Goldreich and Y. Lindell

Case 1 Case 2

A C B A C B

NMC

PE NMC

PE

NMC

PE

NMC

Fig. 3. The two scheduling cases. NMC stands for non-malleable commitment, and PE stands for polynomial
evaluation.

with probability at most ε), the random variables Q(w) and QC(w) are independently
distributed, and so C has no clue regarding the value of QC(w) (even if its view is
augmented by the value Q(w)). Therefore, the probability that the “y value” sent by C
to B will match f 2n(QC(w)) is at most ε. We conclude that B will reject with probability
at least 1 − O(ε).

In the other possible scheduling, C completes the polynomial evaluation with A after
completing the non-malleable commitment with B. In this case, hereafter referred to
as the synchronized case, only the first two stages of the (A,C) execution may be run
concurrently with the non-malleable commitment of the (C, B) execution (and so these
executions are more synchronized than in the previous case). In this case we show how
the (A,C) pre-key exchange can be simulated, and we thus remain with a concurrent
execution containing two non-malleable commitments only. Non-malleability now holds
and this prevents C from modifying the commitment sent by A, if B is to accept. This
yields the key-match property.

Further details on the proof of Theorem 4.5. We prove that for each of the two schedul-
ing cases, the probability that this case holds and the event referred to in Theorem 4.5
occurs (i.e., B accepts and there is a key mismatch) is at most O(ε). A schematic descrip-
tion of the two cases is given in Fig. 3. Using the Union Bound, Theorem 4.5 follows.
That is, Theorem 4.5 is obtained by combining the following Lemmas 4.6 and 4.7, which
refer to the two corresponding scheduling cases.

4.4.1. Case 1—The Unsynchronized Case

In this case, C completes the polynomial evaluation with A before completing the non-
malleable commitment with B. We actually prove a stronger claim here. We prove that
according to this scheduling, B accepts with probability less than 2ε + µ(n) irrelevant
of the values of πA and πB . This is enough because

Pr[decB = acc & πA
= πB & Case 1] ≤ Pr[decB = acc & Case 1].

Session-Key Generation Using Human Passwords Only 285

Lemma 4.6 (Case 1—Unsynchronized). Let C be a ppt channel and define Case 1
to be a scheduling of the protocol execution by which C completes the polynomial
evaluation with A before concluding the non-malleable commitment with B. Then for
every polynomial p(·) and all sufficiently large n’s,

Pr[decB = acc & Case 1] < 2ε + 1

p(n)
.

Proof Sketch. In this case the (C, B) polynomial evaluation stage is run strictly after
the (A,C) polynomial evaluation stage, and the executions are thus “independent” of
each other. That is, the polynomial evaluations are executed sequentially and not con-
currently. For the sake of simplicity, assume that the entire protocol consists of a single
polynomial evaluation between A and C and a single polynomial evaluation between C
and B. Then, since the evaluations are run sequentially, a party P can interact with C
and play A’s role in the (A,C) execution and B’s role in the (C, B) execution. Thus, we
can reduce our concurrent setting to a two-party setting between C and P . In this setting,
C and P run two sequential polynomial evaluations: in the first polynomial evaluation
the party P (playing A’s role) inputs a polynomial Q and the party C inputs some wC ,
whereas in the second polynomial evaluation C inputs a polynomial QC and P (playing
B’s role) inputs w. In the first polynomial evaluation C is supposed to obtain the output
Q(wC), whereas in the second polynomial evaluation C is supposed to get nothing and
B is supposed to get QC(w). The channel C “succeeds” if it can guess QC(w) (this is
“comparable” with C successfully causing B to accept by sending the correct value for
y = f 2n(QC(w))). In this (simplified) two-party setting, it can be shown that C can only
succeed with probability ε (since C learns nothing about w from the execution).

The actual reduction is more involved, since the (A,C) and (C, B) protocols involve
other steps beyond polynomial evaluation. Furthermore, some of these steps may be
run concurrently (unlike the polynomial evaluations which are executed sequentially
according to this scheduling). Therefore, the main difficulty in the proof is in defining
a two-party protocol between C and P that correctly emulates the concurrent execution
of our entire protocol (subject to the two polynomial evaluations remaining sequential).
Among other things, our proof utilizes properties of the specific zero-knowledge proof of
Richardson and Kilian [48]. We note that the way we solve this problem in the full proof
also handles the issues arising in connection with the augmented definition of security
(Definition 2.5).

The full proof of Lemma 4.6 is presented in Section 6.1, and (as hinted above) is far
more complex than the above proof sketch.

4.4.2. Case 2—The Synchronized Case

We now show that the probability that C completes the polynomial evaluation with A
after completing the non-malleable commitment with B and the bad event referred to
in Theorem 4.5 occurs (i.e., B accepts and there is a pre-key mismatch) is less than
ε + µ(n).

286 O. Goldreich and Y. Lindell

Lemma 4.7 (Case 2—Synchronized). Let C be a ppt channel and define Case 2 to be
a scheduling of the protocol by which C completes the polynomial evaluation with A
after completing the non-malleable commitment with B. Then for every polynomial p(·)
and for all sufficiently large n’s,

Pr[decB = acc & πA
= πB & Case 2] < ε + 1

p(n)
.

Proof Sketch. As we have mentioned, in this scheduling case we can show that the
non-malleability property holds with respect to A’s commitment to the pair (Q, w).
This is because the (C, B) non-malleable commitment is run concurrently only with
the (A,C) non-malleable commitment and pre-key exchange. The main point is that
the pre-key exchange can be simulated using only knowledge of Q (and without w).33

Therefore, we can give C the polynomial Q and reduce the scenario to one where the
only protocols running are non-malleable commitments (as required by the definition
of non-malleability). Given this, we have that the probability that C will commit to a
pair (Q′, w′) where w′ = w is essentially the same as the probability of it guessing the
passwordw outright. (Recall that by the non-malleability of the commitment scheme, A’s
commitment including the passwordw does not help C in generating a commitment that
includes the same w. This holds unless C simply copies A’s commitment unmodified;
however, then we can show that B rejects unless πA = πB , in which case key-match
holds.) We denote C’s non-malleable commitment by (Q′, w′).

We first consider the probability that w′ = w (i.e., that the second element in the
pair committed to by C equals the shared secret password of A and B), and Q′
= Q.34

Since A’s commitment does not help C in generating this commitment, and since w is
uniformly distributed in D with respect to C’s view, the probability that C generates
such a commitment (i.e., that w′ = w) is at most negligibly more than ε. (Indeed, if
C generates a commitment with w′ = w, then it may cause B to accept, even when
πA
= πB .)

Next, if B receives a non-malleable commitment to (Q′, w′) where w′
= w, then
the validation stage ensures that B will reject. Essentially, this is because the (C, B)
validation stage enforces that B’s output from the polynomial evaluation be consistent
with the non-malleable commitment that B received. That is, it ensures that B will reject
unless he receives Q′(w′) from the (C, B)-polynomial evaluation (i.e., πB = Q′(w′)).
On the other hand, the validation stage also enforces that the polynomial input by C into
the (C, B)-polynomial evaluation is Q′ (i.e., QC = Q′). Thus, the respective inputs of C
and B into the (C, B)-polynomial evaluation are Q′ and w, and so B receives Q′(w) as

33 This is the reason that an additional commitment to the polynomial Q is included in the pre-key exchange.
That is, were we to augment the polynomial evaluation by having the parties include their transcripts of the
non-malleable commitment to Q and w (rather than just by a commitment to Q), then knowledge of w would
be required for running A’s role in the pre-key exchange. The argument for non-malleability here would then
fall.

34 As we have mentioned, in case (Q′, w′) = (Q, w), we can show that party B rejects with overwhelming
probability, unless πA = πB . This is because the validation stage essentially enforces that πB = Q′(w′), and
therefore in case (Q′, w′) = (Q, w) it follows that πB = Q′(w′) = Q(w) = πA . Thus, in this proof sketch,
we only consider the case that (Q′, w′)
= (Q, w).

Session-Key Generation Using Human Passwords Only 287

the output of this evaluation (by the evaluation’s correctness).35 Therefore, if B accepts,
it must be the case that Q′(w′) = Q′(w), which implies that w′ = w (because Q′ is a
non-constant linear polynomial). Letting bad denote the event in the lemma’s claim, we
get

Pr[bad] = Pr[bad & w′ =w] + Pr[bad & w′
=w]

≤ Pr[bad & w′ =w & Q′ = Q] + Pr[Case 2 & w′ =w & Q′
= Q]

+ Pr[decB =acc & w′
=w]

≤ µ(n)+ (ε + µ(n))+ µ(n).

Referring to the augmented definition of security, we note that in this synchronization
case, the session-key challenge received by C in the augmented setting is of no con-
sequence. This is because C completes its non-malleable commitment to B before A
terminates, and so the value of its commitment is determined before C receives the
session-key challenge. Therefore, C’s success in generating a related commitment is
independent of the session-key challenge. Furthermore, as is shown in the full proof,
if C has failed in generating a related commitment, then B rejects with overwhelm-
ing probability even if C is later given both Q and w (and not merely the session-key
k2(Q(w))).

The full proof of Lemma 4.7, which amounts to a careful implementation of the above
proof sketch, can be found in Section 6.2.

4.5. Simulating the Stand-Alone (A,C) Execution

In this section we show that C’s view, when interacting with A only, can be simulated
by a machine that interacts with nobody.36 Actually, we show that the joint distribution
of C’s simulated view along with the password and a random string is (1 − O(ε))-
indistinguishable from C’s real view along with the password and A’s output session-
key.

Theorem 4.8. For every ppt channel C ′ interacting with A only, there exists a non-
interactive machine C ′′, such that

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))}n,D,σ

2ε≡ {w,Un, output(C ′′(σ))}n,D,σ ,

where Q is a random non-constant linear polynomial,D ⊆ {0, 1}n is any ppt samplable
dictionary, w ∈R D, and ε = 1/|D|.

35 Correctness, even in the concurrent setting, is implied by security in the stand-alone setting, because the
latter holds even when the adversary knows the private input of the honest party, which in turn allows it to
emulate the concurrent execution.

36 Recall that in the next subsection, we show that the (C, B) execution can be simulated by C itself, while
interacting with A. Thus put together, these two simulations provide the core of the proof of security of the
entire protocol (for active adversaries). Our choice of the current order of the two simulations is due to the fact
that we use elements in the analysis of the current simulation in the analysis of the next simulation.

288 O. Goldreich and Y. Lindell

Proof Sketch. First, notice that it is enough to prove that for every ppt channel C ′,

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))} 2ε≡ {w,Un, output(C ′ A(Q,w̃)

(σ))}, (13)

wherew, w̃ ∈R D are independently chosen passwords fromD. In order to see that (13)
implies Theorem 4.8, define the following non-interactive machine C ′′. Machine C ′′

chooses a random (linear, non-constant) polynomial Q and a “password” w̃ ∈R D. Then
C ′′ perfectly emulates an execution of C ′ A(Q,w̃)(σ) by playing A’s role (C ′′ can do this be-
cause it knows Q and w̃). Finally, C ′′ outputs whatever C ′ does. The resulting output of C ′′

is distributed exactly like output(C ′ A(Q,w̃)
(σ)). Thus, it is enough to prove (13). Now, no-

tice that the distributions {w,Un, output(C ′ A(Q,w̃)
(σ))} and {w̃,Un, output(C ′ A(Q,w)

(σ))}
are equivalent. We therefore proceed by proving that

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))} 2ε≡ {w̃,Un, output(C ′ A(Q,w)

(σ))}, (14)

First we show that at the conclusion of the polynomial evaluation, with respect to C ′’s
view, the pair (w, Q(w)) is (1 − ε)-indistinguishable from (w̃,Un). The fact that w
is indistinguishable from w̃ follows from the fact that in the first two stages of the
protocol, A usesw only in the non-malleable commitment. Thus, by the hiding property
of the non-malleable commitment scheme, w remains indistinguishable from w̃. It is
therefore enough to show that after the polynomial evaluation the value of Q(w) is
(1 − ε)-pseudorandom, with respect to C ′’s view.

Consider what C ′ can learn about Q(w) from the first two stages of the protocol
(i.e., until the end of the polynomial evaluation). Due to the hiding property of the two
commitment schemes in use, the two commitment transcripts reveal nothing of Q or w,
and so the only place that C ′ can learn something is from the polynomial evaluation itself.
The security of the polynomial evaluation implies that the receiver (here played by C ′)
can learn nothing beyond the value of Q(·) at a single point selected by C ′. We denote
this point by wC . Thus, in the case that wC
= w, given Q(wC), the values Q(w) and Un

are statistically close (recall that Q is a random, non-constant, linear polynomial and so
we have “almost” pairwise independence). However, sincew is uniformly distributed in
D (and C ′ learned nothing about it so far), the probability thatwC = w is at most ε. This
means that at the conclusion of the polynomial evaluation, with respect to C ′’s view,
Q(w) can be distinguished from Un with probability at most negligibly greater than ε.

We have shown that after the first two stages, with respect to C ′’s view, (w, Q(w))
is (1 − ε)-indistinguishable from (w̃,Un). We now consider the messages sent by A
in the remaining two stages. Recall that A sends nothing in the last (i.e., fourth) stage,
whereas the only messages sent by A in the third stage are the value y = f 2n(Q(w)),
messages it sends as prover in the zero-knowledge proof, and a MAC of the entire message
transcript keyed by k1(Q(w)). The zero-knowledge proof reveals nothing because it can
be simulated by C ′ itself (in the standard manner, since here we are considering a stand-
alone setting between A and C ′). Thus, it remains to deal with y and the MAC value.
These are dealt with by showing that, even when given the value y = f 2n(Q(w)), the
MAC-key k1(Q(w)), and the view of C ′ at the end of Stage 2, the value (w, Q(w))
is (1 − 2ε)-indistinguishable from (w̃,Un). The latter implies (14), and is proven by
relying on the following two facts: (1) as established above, {w, Q(w)} is (1 − ε)-
indistinguishable from {w̃,Un}, with respect to C ′’s view at the end of Stage 2 of the

Session-Key Generation Using Human Passwords Only 289

protocol, and (2) the string y = f 2n(Q(w)) along with the MAC-key k1(Q(w)) and the
session-key k2(Q(w)) constitutes a pseudorandom generator. This concludes the proof
of the theorem.

The full proof of Theorem 4.8, which amounts to a careful implementation of the above
proof sketch, can be found in Section 7.

We note that since in this theorem we consider a stand-alone execution between A
and C ′, the analogous claim for the augmented definition of security holds as well.
This is because the session-key challenge is only given to C ′ after the entire execution
has terminated. Therefore, it is equivalent to giving the session-key to the distinguisher.
However, the distinguisher receives the actual session-key anyway, and can thus generate
the challenge by itself.

4.6. Simulating the (C, B) Execution

In this section we show how the entire (C, B) execution can be simulated (by C while
interacting with A). That is, we consider the concurrent setting in which C interacts
with both A and B. We claim that a channel interacting only with A can simulate C’s
view in the concurrent setting with A and B, so that C’s simulated view is (1 − O(ε))-
indistinguishable from its view in an execution with A and B. In fact, (1 − O(ε))-
indistinguishability holds also for C’s view combined with the password and the session-
key. That is,

Theorem 4.9 (Simulating the (C, B) Execution). For every ppt channel C interacting
with A and B, there exists a ppt channel C ′ interacting only with A, such that

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))}n,D,σ

5ε≡ {w, k2(Q(w)), output(C A(Q,w),B(w)(σ))}n,D,σ ,

where Q is a random non-constant linear polynomial,D ⊆ {0, 1}n is any ppt samplable
dictionary, w ∈R D, and ε = 1/|D|.

Proof Outline. The theorem is proved in two steps. Conceptually, simulation of the
(C, B) execution is demonstrated by separately showing how the first three stages of
the (C, B) execution (i.e., everything except for B’s accept/reject bit) can be simulated,
and then showing how B’s accept/reject bit itself can also be simulated. In order to
implement this two-step process, we consider a modified party B
dec that behaves exactly
as B, except that it does not output an accept/reject bit. Theorem 4.9 is obtained by
combining the following Lemmas 4.10 and 4.11, which refer to the first and second
steps, respectively.

Further details on the proof of Theorem 4.9. As outlined above, Theorem 4.9 is obtained
by combining Lemmas 4.10 and 4.11, which are stated in the Sections 4.6.1 and 4.6.2,
respectively. In these subsections we also provide sketches for the proofs of these lemmas.
The full proofs, to be found in Section 8, are merely careful implementations of the
corresponding proof sketches.

290 O. Goldreich and Y. Lindell

4.6.1. Step 1: Simulating the (C, B
dec) Execution

We start by showing that C’s interaction with A and the modified B (i.e., B
dec, which
has no public accept/reject output) can be simulated by a machine that only interacts
with A.

Lemma 4.10. Let C̃ be a ppt channel interacting with A and a modified party B
dec

who does not output an accept/reject bit. Then there exists a ppt channel C ′ interacting
with A only, such that

{w, k2(Q(w)), output(C ′ A(Q,w)
)} c≡ {w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w))}.

Proof Sketch. Since k2(Q(w)) is a polynomial-time function of Q(w), it suffices to
prove the following equation:

{w, Q(w), output(C ′ A(Q,w)
)} c≡ {w, Q(w), output(C̃ A(Q,w),B
dec(w))}. (15)

First notice that the only messages sent by B
dec in the validation stage are as an honest
verifier in the zero-knowledge proof. These can therefore be easily simulated. Next,
observe that in the remaining first two stages, the only place that B
dec uses w is in the
(C̃, B
dec)polynomial evaluation. However, by the definition of the polynomial evaluation
functionality, C̃ receives no output from this evaluation and thus nothing is revealed about
w. This is trivial in a stand-alone setting; here we claim that it also holds in our concurrent
setting. Formally, we show that if B
dec were to use some fixed w′ ∈ D instead of the
passwordw, then this is indistinguishable to C̃ (when also interacting concurrently with
A). That is, we show that for every ppt C̃ ,

{w, Q(w), output(C̃ A(Q,w),B
dec(w))} c≡ {w, Q(w), output(C̃ A(Q,w),B
dec(w
′))}, (16)

where w ∈R D is a random password and w′ ∈ D is fixed. This is shown by reducing
C̃’s concurrent execution with A and B
dec to a stand-alone two-party setting between C̃
and B
dec only.37 The reduction is obtained by providing C̃ with the password w and the
polynomial Q, which enables C̃ to emulate the entire (A, C̃) execution perfectly. As a
result of this emulation, we are left with a stand-alone setting between C̃ and B
dec in
which B
dec inputs either w or w′ into the polynomial evaluation (and C̃ knows both w
and w′). In this stand-alone setting the security of the polynomial evaluation guarantees
that C̃ can distinguish the input cases with at most negligible probability, even when
given both w and w′ (as well as Q). Equation (16) follows.

We have established that C̃ cannot distinguish the case that B
dec uses w from the
case that B
dec uses w′. This suggests defining the channel C ′ as follows: C ′ chooses an
arbitrary w′ ∈ D and emulates the C̃ A(Q,w),B
dec(w

′) setting for C̃ , while interacting with

37 Indeed, the reader may consider this reduction (i.e., removing the (A, C̃) execution) odd, given that our
final goal here is to remove the (C̃, B
dec) execution (i.e., reduce C̃’s concurrent execution with A and B
dec to a
stand-alone two-party setting between C̃ and A). Still, such a reduction enables us to establish (16), and once
(16) is established we proceed to remove the (C̃, B
dec) execution.

Session-Key Generation Using Human Passwords Only 291

A(Q, w) (and using w′ in the emulation of B
dec(w
′)). At the end of the interaction, C ′

outputs whatever C̃ does. Channel C̃’s view in this simulation is indistinguishable from
in a real execution with A and B
dec, establishing (15) and therefore proving the lemma.

We note that the above argument is unchanged when considering the augmented
definition of security. This is true because (16) holds even if C̃ is explicitly given both
Q and w (in which case C̃ can generate the session-key challenge by itself).

4.6.2. Step 2: Simulating B’s Decision Bit

We now show how the accept/reject bit of B can be simulated (while interacting with A
and B
dec). This modification of B to B
dec is straightforward when considering Defini-
tion 2.4. However, for the augmented definition (Definition 2.5) we must also say how
the session-key challenge is generated (because by the definition of the augmented real
model, this value depends on whether or not the first party concluding accepts or rejects).
Now, if A concludes first, then nothing is changed. However, if B
dec concludes first, then
we set the challenge session-key always to equal ⊥. We now proceed to the simulation:

Lemma 4.11. Let B
dec be a party who does not output an accept/reject bit. Then, for
every ppt channel C interacting with A and B, there exists a ppt channel C̃ interacting
with A and B
dec, such that

{w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w))} 5ε≡ {w, k2(Q(w)), output(C A(Q,w),B(w))}.

Proof Sketch. The proof of this claim relies heavily on the security of the MAC value
sent in the validation stage of the protocol. Recall that A sends a MAC of her entire
session-transcript using k1(πA) = k1(Q(w)) as the key. Furthermore, B verifies the
MAC value that it receives using the key k1(πB), where πB is B’s output from the
polynomial evaluation. Intuitively, the MAC ensures that, except with probability O(ε),
if C was not reliable, then B will detect its interference and will therefore reject. On the
other hand, if C was reliable then B will surely accept. Loosely speaking, this means that
C can learn “at most an O(ε) fraction of a bit of information” from B’s accept/reject
bit.

We begin by proving the security of the MAC value when keyed by k1(πA). This
is an important step in proving Lemma 4.11. We note that we need to show that the
MAC is secure only before B outputs its accept/reject bit. Thus, we consider a scenario
in which C interacts with A and the modified party B
dec. The security of the MAC is
formally stated in the following claim. (For simplicity, we consider an implementation
of a MAC by a pseudorandom function. However, our proof can be extended to any
secure implementation of a MAC.)

Claim 4.12. Let C be an arbitrary ppt channel interacting with A and a modified party
B
dec as in Lemma 4.11, and let tA and tB denote the transcripts from the (A,C) and
(C, B
dec) executions, respectively. Then, if tA
= tB , it holds that the value MACk1(πA)(tB)

is (1 − 2ε)-pseudorandom with respect to C’s view. That is, for every probabilistic
polynomial-time distinguisher D, every dictionaryD ⊆ {0, 1}n , every auxiliary-input σ

292 O. Goldreich and Y. Lindell

and all sufficiently large n’s,

| Pr[D(MACk1(πA)(tB),C A(Q,w),B
dec(w)) = 1 & tA
= tB]

− Pr[D(Un,C A(Q,w),B
dec(w)) = 1 & tA
= tB]| < 2ε + µ(n).

Proof Sketch. We first observe that we can ignore the entire (C, B
dec) execution in
proving the claim. A similar claim has already been shown in Lemma 4.10 (above).
Loosely speaking, (15) in the proof of Lemma 4.10 states that C’s view is essentially the
same when interacting with A and B
dec or when interacting with A alone. Actually, (15)
asserts that these two views are indistinguishable also when considered in conjunction
with (w, Q(w)). Since k1(·) is a polynomial-time function, it follows that these two
views are indistinguishable also when considered in conjunction with (w, k1(Q(w)),
where k1(Q(w)) is the MAC-key.

We now analyze the security of the MAC-key in a stand-alone setting between A and
C . This proof is very similar to the proof of Theorem 4.8 (there k2(Q(w)) is shown to
be (1− O(ε))-pseudorandom; here a similar result is needed with respect to k1(Q(w))).
As in Theorem 4.8, we first establish that at the conclusion of the polynomial evaluation,
the value Q(w) is (1 − O(ε))-pseudorandom to C . Next, recall that the only messages
sent by A in the third stage of the protocol are y = f 2n(Q(w)), messages from a
zero-knowledge proof and a MAC of the message-transcript. The zero-knowledge proof
can be simulated and so it reveals nothing. Then, since G(s) = (f 2n(s), k1(s)) is a
pseudorandom generator and Q(w) is (1 − O(ε))-pseudorandom at the end of Stage 2,
it holds that the MAC-key k1(Q(w)) remains (1 − O(ε))-pseudorandom even given
y = f 2n(Q(w)).

Having established that the MAC-key is (1 − O(ε))-pseudorandom (with respect
to C’s view), we conclude by showing that this implies that the probability that C
successfully forges the MAC is at most O(ε) + µ(n). Now, since k1(Q(w)) is (1 −
O(ε))-pseudorandom, a pseudorandom function keyed by k1(Q(w)) is also (1− O(ε))-
pseudorandom. Recall that the last message sent by A is MACk1(Q(w))(tA) where tA is
A’s message-transcript. Therefore, by the properties of a (1 − O(ε))-pseudorandom
function, for every t
= tA that C can produce, the value MACk1(Q(w))(t) is (1 − O(ε))-
pseudorandom given C’s view. Since tB is part of C’s view, it follows that the value
MACk1(Q(w))(tB) is (1 − O(ε))-pseudorandom given C’s view. This concludes the proof
of the claim.

We note that the above also holds for the augmented definition of security. This is
because the MAC-key k1(Q(w)) remains (1 − O(ε))-pseudorandom even given both
y = f 2n(Q(w)) and the session-key k2(Q(w)). Therefore, even if the session-key
challenge equals k2(Q(w)), this cannot help C generate a correct MAC. Given that this
is the case, the rest of the proof also follows for the augmented definition.

We now use Claim 4.12 and Theorem 4.5 (the key-match property) to show that
the probability that B accepts in executions for which C is not reliable is at most O(ε).
(Recall that C is reliable in a particular execution if it acts like a passive (eavesdropping)
adversary in that execution.)

Session-Key Generation Using Human Passwords Only 293

Proposition 4.13. For every ppt channel C ,

Pr[decB = acc & reliableC = false] < 5ε + µ(n).

Proof Sketch. We show this proposition by combining the following facts:

• Theorem 4.5 states that the probability that B accepts and πA
= πB is at most
negligibly greater than 3ε.

• Let tA and tB be the (A,C) and (C, B) message-transcripts, respectively. Then
Claim 4.12 states that if tA
= tB , then MACk1(πA)(tB) is (1 − 2ε)-pseudorandom
with respect to C’s view.

• B only accepts if he receives MACk1(πB)(tB) (i.e., a MAC value keyed by k1(πB))
in the last step of the protocol.

Now, consider the case that C is not reliable and thus by definition tA
= tB . Then if
πA = πB we have that, by the security of the MAC, party B accepts with probability
at most negligibly more than 2ε. On the other hand, if πA
= πB , then by the key-
match property, party B accepts with probability at most 3ε (irrespective of the MAC).
Therefore, the probability that B accepts and tA
= tB is at most negligibly greater
than 5ε.

Given Proposition 4.13, we can complete the proof of Lemma 4.11. First, we describe
the adversary C̃ (who interacts with A and B
dec). Channel C̃ emulates an execution of
C A(Q,w),B(w), while interacting with A and B
dec. This emulation is “easy” for C̃ , except
for the accept/reject decision bit of B (since this is the only difference between its
execution with A and B
dec, and an execution with A and B). Therefore, at the conclusion
of the (C, B
dec) execution, C̃ attempts to guess B’s accept/reject decision-bit (which is
not given to C̃ but which C does expect to see) and outputs whatever C does. Channel
C̃’s guess for B’s decision-bit is according to the natural rule (suggested by the above
discussion): B accepts if and only if C was reliable. We stress that C̃ can easily determine
whether or not C was reliable (in the current execution). To establish the approximate-
correctness of the above rule, observe that, on one hand, if C is reliable then B always
accepts (and so, in this case, C̃’s guess is always correct). On the other hand, if C was
not reliable, then B accepts with probability at most 5ε + µ(n). Therefore, C̃ is wrong
in its guess with probability at most 5ε + µ(n), and the difference in C’s view in the
case that it really receives B’s output bit and the case it receives C̃’s guess, is at most
negligibly greater than 5ε.

We note this simulation by C̃ is also easily carried out under the augmented definition.
This is the case because if C was reliable, then A must have finished first, and so there
is no difference between the challenge session-key received by C̃ in C̃ A(Q,w),B
dec(w)

and that received by C in C A(Q,w),B(w). On the other hand, if B
dec finished first in its
execution with C̃ , then C must not have been reliable in the emulation of C A(Q,w),B(w)

by C̃ . Therefore, except with probability 5ε, the challenge session-key received by
C would equal ⊥, which is the same as what C̃ receives in the modified execution
with B
dec.

294 O. Goldreich and Y. Lindell

4.7. The Security of Protocol 3.2 for Arbitrary Adversaries

The fact that Protocol 3.2 satisfies Definition 2.4 (i.e., Theorem 3.3) follows by com-
bining the passive adversary case (i.e., Theorem 4.1) and the active adversary case (i.e.,
Theorem 4.14, below).

Theorem 4.14 (Active Executions). Protocol 3.2 satisfies Condition 2 in Definition 2.4.
That is, for every ppt real-model channel C , there exists a ppt ideal-model channel Ĉ ,
such that

{IDEALĈ(D, σ)}n,D,σ
12ε≡ {REALC(D, σ)}n,D,σ ,

where D ⊆ {0, 1}n is any ppt samplable dictionary, σ ∈ {0, 1}poly(n) is the auxiliary
input for the adversary, and ε = 1/|D|.

In this section we present a full proof of Theorem 4.14. Our main tools are the simulations
provided by Theorems 4.8 and 4.9 (presented in Sections 4.5 and 4.6, respectively). In
addition, we make essential use of Proposition 4.13 (of Section 4.6), and marginal use
(i.e., in order to save an O(ε) term) of Proposition 4.3 (of Section 4.3).

Proof. We begin by describing the ideal-model channel Ĉ . Adversary Ĉ is derived
from the transformations of Theorems 4.8 and 4.9. That is, combining these theorems
together, we have that for every ppt real-model channel, there exists a non-interactive
machine C ′′ such that

{w,Un, output(C ′′(σ))} 7ε≡ {w, k2(Q(w)), output(C A(Q,w),B(w)(σ))}. (17)

Next, we define the ideal-model channel Ĉ as follows: Ĉ first invokes the non-interactive
machine C ′′ guaranteed by (17). When Ĉ receives the output of C ′′ (which contains C’s
view and in particular B’s accept/reject bit), Ĉ sets the value of b (the bit sent by it to
the trusted party) as follows:

• If B accepted in the view output by C ′′, then Ĉ sends b = 1 to the trusted party.
• If B rejected in this view, then Ĉ sends b = 0 to the trusted party.

(Recall that upon receiving b = 1, the trusted party hands the same uniformly distributed
key to A and B. On the other hand, upon receiving b = 0, the trusted party hands
a uniformly distributed key to A, and B receives ⊥.) Finally, Ĉ halts and outputs the
output of C ′′.

Before proceeding, we remark on an important property regarding the simulated view
of C that is output by C ′′. In this view, B accepts if and only if C was reliable. This is
because this is the way that B’s accept/reject bit is simulated by C̃ , as described at the
end of the proof of Lemma 4.11. We use this property below.

We now show that the combined input/output distributions in the real and ideal models
are at most negligibly greater than 12ε apart. By (17) and the definition of Ĉ , we have
that

{w,Un, output(Ĉ)} 7ε≡ {w, k2(Q(w)), output(C A(Q,w),B(w))}. (18)

Session-Key Generation Using Human Passwords Only 295

This seems very close to proving the theorem (the first distribution is “almost” the ideal-
model distribution and the second distribution is “almost” the real-model distribution),
where in both cases the only thing missing is B’s local output (which may or may not
equal A’s local output). It remains to show that the distributions are still (1 − O(ε))-
indistinguishable even when B’s output is included. Loosely speaking, this is shown
by separately considering the cases that C acts reliably and unreliably. When C is
reliable, then the IDEAL and REAL distributions are computationally indistinguishable
(by Proposition 4.3). On the other hand, when C is not reliable, then B rejects with
probability at least 1 − 5ε, in which case B’s output is defined as ⊥.

Formally, let D be any ppt distinguisher who attempts to distinguish between the IDEAL

and REAL distributions. We separately analyze the distance between the distributions
when B accepts and when B rejects. When referring to B’s decision (i.e., decB), within
the context of IDEALĈ , we mean B’s decision as included in the emulated view of C
(which is part of the output of Ĉ). (Note that by the construction of Ĉ , it holds that B’s
decision in the emulated view matches the output of B in the ideal-model; i.e., decB = rej
iff the output of B in the ideal-model is ⊥.) We begin with the case that B rejects:

| Pr[D(IDEALĈ(D, σ)) = 1 & decB = rej] − Pr[D(REALC(D, σ)) = 1 & decB = rej]|
= | Prw[D(w,Un,⊥, output(Ĉ)) = 1 & decB = rej]

− PrQ,w[D(w, k2(Q(w)),⊥, output(C A(Q,w),B(w))) = 1 & decB = rej]|.

The above follows from the protocol definition that states that when B rejects it outputs
⊥, and from the construction of the ideal-model adversary Ĉ who sends b = 0 to the
trusted party (causing B’s output to be ⊥) in the case that B rejects in the view output
by C ′′. Noting that C’s view includes B’s accept/reject decision bit (and thus implicitly
B’s output of ⊥ in the case that B rejects), by (18) we have that

| Pr[D(IDEALĈ(D, σ)) = 1 & decB = rej]

− Pr[D(REALC(D, σ)) = 1 & decB = rej]| < 7ε + µ(n). (19)

We now analyze the case that B accepts. Here, we further break down the events and
separately consider the case that C is reliable and C is not reliable. (Recall that in the
ideal distribution, the event of C being reliable or not refers to its behavior as implicit in
the view output by C ′′ for Ĉ .) Starting with the subcase in which C is reliable, we have

| Pr[D(IDEALĈ(D, σ)) = 1 & decB = acc & reliableC = true]

− Pr[D(REALC(D, σ)) = 1 & decB = acc & reliableC = true]|
= | Prw[D(w,Un,Un, output(Ĉ)) = 1 & decB = acc & reliableC = true]

− PrQ,w[D(w, k2(Q(w)), k2(Q(w)), output(C A(Q,w),B(w)))

= 1& decB = acc & reliableC = true]|.

Noting that when C is reliable, B always accepts (and so its real-model and ideal-model
outputs are always k2(Q(w)) and Un respectively), we have that the above difference

296 O. Goldreich and Y. Lindell

equals

| Pr[D(REALC(D, σ)) = 1 & reliableC = true]

− Pr[D(IDEALĈ(D, σ)) = 1 & reliableC = true]|.
By Proposition 4.3 this difference is at most negligible. We now consider the case in
which B accepts and C is not reliable:

| Pr[D(IDEALĈ(D, σ)) = 1 & decB = acc & reliableC = false]

− Pr[D(REALC(D, σ)) = 1& decB = acc & reliableC = false]|.
By Proposition 4.13 we have that in a real execution, Pr[decB = acc & reliableC =
false] < 5ε + µ(n). In contrast, in an ideal execution, Pr[decB = acc & reliableC =
false] = 0. This is due to the fact that in the simulated transcript output by C ′′, party B
accepts if and only if C was reliable (as mentioned above). Therefore, we have that the
above difference is at most negligibly greater than 5ε. Putting these together, we have
that

| Pr[D(IDEALĈ(D, σ)) = 1 & decB = acc]

− Pr[D(REALC(D, σ)) = 1 & decB = acc]| < 5ε + µ(n). (20)

Combining (19) and (20) we conclude that,

| Pr[D(IDEALĈ(D, σ)) = 1] − Pr[D(REALC(D, σ)) = 1]| < 12ε + µ(n)

and the theorem follows.

5. Full Proof of Security for Passive Adversaries

In this section we present the proof of Lemma 4.2, used for proving the “passive adver-
saries” requirement of Definition 2.4. Recall that this lemma relates to a passive channel
C who can only eavesdrop on protocol executions between honest parties A and B. This
means that C receives the transcript of messages sent by A and B and tries to “learn
something” based on this transcript alone.

Lemma 5.1 (Lemma 4.2—Restated). For every passive ppt channel C ,

{w, k2(Q(w)), output(C A(Q,w),B(w))} c≡ {w,Un, output(C A(Q,w̃),B(w̃))},
where Q is a random non-constant linear polynomial, and w and w̃ are independently
and uniformly distributed in D.

Proof. As we have mentioned, since C is passive, it merely receives a message-
transcript of a two-party protocol. We stress that there are no concurrent adversarial
executions in this case, but rather merely a transcript of a standard stand-alone protocol
execution between two honest parties. The issue is merely what can a third party (i.e.,

Session-Key Generation Using Human Passwords Only 297

C) learn from such a transcript. We answer this question by relying on the (stand-alone)
security of the different modules in our protocol. We start by presenting notation for
transcripts of executions of our protocol.

The message-transcript of an execution of our protocol is a function of the inputs Q
and w, and the respective random coins of A and B, denoted rA and rB . We denote the
message transcript of the first two stages of the protocol by t2(Q, w, rA, rB). Furthermore,
we denote by T2(Q, w) a random variable that assumes values of t2(Q, w, rA, rB)where
rA and rB are randomly chosen. (Note that the security parameter n, and thus the lengths
of Q, w, rA, and rB are implicit in all these notations.)

We begin by showing that the probability ensemble {T2(Q1, w1)}Q1,Q2,w1,w2 is compu-
tationally indistinguishable from {T2(Q2, w2)}Q1,Q2,w1,w2 .38 This is proved in the follow-
ing claim, which is then used to establish the lemma (which refers to the entire protocol
execution, rather than just to the first two stages as shown in the claim).

Claim 5.2. The probability ensemble {T2(Q1, w1)}Q1,Q2,w1,w2 is computationally in-
distinguishable from {T2(Q2, w2)}Q1,Q2,w1,w2 . That is, for every non-uniform ppt distin-
guisher D, every polynomial p(·) and all sufficiently large pairs (Q1, w1) and (Q2, w2),

|Pr[D(t2(Q1, w1, rA, rB)) = 1] − Pr[D(t2(Q2, w2, rA, rB)) = 1]| < 1

p(n)
,

where rA and rB are uniformly chosen strings.

Proof. The proof is based on the security of the different modules in the protocol.

The Commitments: Due to the hiding property of string commitments, a non-malleable
commitment to (Q1, w1) is indistinguishable from one to (Q2, w2), and likewise an
ordinary commitment to Q1 is indistinguishable from one to Q2.

The Polynomial Evaluation: The inputs to the polynomial evaluation are Q, w and
Commit(Q). Denote by TP(Q, w), a random variable assuming transcripts for this eval-
uation (when the parties A and B use uniformly distributed random tapes). We claim
that for all sufficiently large values of Q1, Q2, w1, w2, we have that {TP(Q1, w1)} and
{TP(Q2, w2)} are indistinguishable. This can be derived from the following two facts
(and is based on the security of the polynomial evaluation that implies that A learns
nothing and that B learns only Q(w)):

1. For all sufficiently large non-constant, linear polynomials Q, passwords w ∈ D
and strings x ∈ {0, 1}n , we have that

{TP(Q, w)}Q,w,x
c≡ {TP(Q, x)}Q,w,x . (21)

38 Notice that it is not true that the ensembles {T (Q1, w1)}Q1,Q2,w1,w2 and {T (Q2, w2)}Q1,Q2,w1,w2 are
indistinguishable, where T (Q, w) is a random variable assuming message-transcripts for the entire protocol
(including the validation stage). This is because the string y = f 2n(Q(w)) is sent during the validation stage.
Thus, given (Q1, w1), a distinguisher may compare f 2n(Q1(w1)) with the y-value of the transcript, and
determine whether or not the transcript is based on (Q1, w1).

298 O. Goldreich and Y. Lindell

This is based directly on the fact that A learns nothing of B’s input (which is either
w or x) from the evaluation. Therefore, given her message-transcript, A must not be
able to distinguish the case that B usedw from the case that B used x . Equation (21)
follows.

2. For all sufficiently large non-constant, linear polynomials Q1, Q2 and strings x ∈
{0, 1}n such that Q1(x) = Q2(x), it holds that

{TP(Q1, x)}Q1,Q2,x
c≡ {TP(Q2, x)}Q1,Q2,x . (22)

This is because B obtains only Q(x) from the evaluation, where A inputs Q ∈
{Q1, Q2}. Since Q1(x) = Q2(x), party B cannot distinguish the case that A
inputs Q1 or Q2 into the evaluation (otherwise he learns more than just Q(x)).
Equation (22) follows.

Now, for every two non-constant polynomials Q1 and Q2, there exists a third polynomial
Q3 and values x1 and x2 such that Q1(x1) = Q3(x1) and Q2(x2) = Q3(x2). Therefore, we
have that for all sufficiently large non-constant linear polynomials Q1, Q2 and passwords
w1, w2 ∈ D,

{TP(Q1, w1)} c≡ {TP(Q1, x1)}
c≡ {TP(Q3, x1)}
c≡ {TP(Q3, x2)}
c≡ {TP(Q2, x2)}
c≡ {TP(Q2, w2)},

where Q3, x1, x2 are as described above (the ensembles in the above equations are
indexed by (Q1, Q2, Q3, w1, w2, x1, x2)). The first, third and fifth “

c≡” are due to
(21) and the second and fourth is from (22). We therefore have that {TP(Q1, w1)} c≡
{TP(Q2, w2)}. Combining this with what we have shown regarding the commitments,
the claim follows.

Loosely speaking, the above claim shows that the transcript of the first two stages of
the protocol reveals nothing significant about the polynomial or password used in the
execution. Recalling that no messages are sent in the last (fourth) stage, it remains to
analyze the additional messages sent in the third stage of the protocol. Recall that the third
stage (validation) consists of A sending y = f 2n(Q(w)), a zero-knowledge proof, and a
MAC of the session-transcript keyed by k1(Q(w)). To simplify the exposition, we assume
that A sends the MAC-key itself, rather than the MAC value (which can be computed by
C from the MAC-key and the visible session-transcript). Intuitively, the zero-knowledge
proof reveals nothing, and the session-key k2(Q(w)) remains pseudorandom even given

f 2n(Q(w)) and k1(Q(w)) because G(Q(w))
def= (

f 2n(Q(w)), k1(Q(w)), k2(Q(w))
)

constitutes a pseudorandom generator. Furthermore, the password w is “masked” by Q,
and therefore remains secret, even given Q(w) itself. Details follow.

By the definition of zero-knowledge, there exists a simulator that generates proof-
transcripts indistinguishable from real proofs. Thus, we may ignore this part of the

Session-Key Generation Using Human Passwords Only 299

validation stage for the rest of the proof (because, using the simulator, C may generate
this part by itself). Thus, we may assume that the entire session-transcript consists of
T2(Q, w) along with the pair

(
f 2n(Q(w)), k1(Q(w))

)
. From here on, we denote by

{T2(Q, w), Q, w)}n,D (and variations of this), a probability ensemble where Q and w
are chosen randomly and then the transcript T2 is generated based on this Q and w.
(Previously, the ensembles considered here were indexed by Q andw; from here on, the
ensembles are indexed by n and D.) Thus, in order to complete the proof of the lemma,
it remains to show that for randomly chosen values Q1, Q2, w1, w2,

{T2(Q1, w1), f 2n(Q1(w1)), k1(Q1(w1)), k2(Q1(w1)), w1}n,D
c≡ {T2(Q2, w2), f 2n(Q2(w2)), k1(Q2(w2)),Un, w1}n,D. (23)

Now, using Claim 5.2 and the fact that for a random Q1, the value Q1(w1) is uniformly
distributed in {0, 1}n (for every w1), we have

{T2(Q1, w1), Q1(w1), w1}n,D
c≡ {T2(Q2, w2), Q1(w1), w1}n,D
c≡ {T2(Q2, w2),Un, w1}n,D. (24)

(Notice that Q1 is independent of T2(Q2, w2).) This then implies that

{T2(Q1, w1), f 2n(Q1(w1)), k1(Q1(w1)), k2(Q1(w1)), w1}n,D
c≡ {T2(Q2, w2), f 2n(Un), k1(Un), k2(Un), w1}n,D
c≡ {T2(Q2, w2), f 2n(U (1)

n), k1(U
(1)
n),U (2)

n , w1}n,D, (25)

where the last “
c≡” is by pseudorandomness of the generator G(s) = (f 2n(s), k1(s),

k2(s)), and U (1)
n and U (2)

n denote independent uniform distributions over n-bit strings.
Using (24), we have

{T2(Q2, w2),Un}n,D
c≡ {T2(Q1, w1), Q1(w1)}n,D ≡ {T2(Q2, w2), Q2(w2)}n,D

and since w1 ∈R D independently of (Q2, w2), it holds that

{T2(Q2, w2),U
(1)
n , w1}n,D

c≡ {T2(Q2, w2), Q2(w2), w1}n,D.

This, in turn, implies that

{T2(Q2, w2), f 2n(U (1)
n), k1(U

(1)
n),U (2)

n , w1}n,D
c≡ {T2(Q2, w2), f 2n(Q2(w2)), k1(Q2(w2)),U

(2)
n , w1}n,D. (26)

Combining (25) and (26), we obtain (23) completing the proof of the lemma (by replacing
w1 with w and w2 with w̃ in (23), this is the same as the lemma statement).

6. Full Proof of the Key-Match Property

The key-match property captured in Theorem 4.5 states that the probability that A and
B both accept, yet have different pre-keys (i.e., πA
= πB) is at most O(ε). Recall that

300 O. Goldreich and Y. Lindell

πA
def= Q(w) and that πB is B’s output from the polynomial evaluation. We prove this

theorem by considering two complementary schedulings of the concurrent executions.
We show that for each scheduling, the probability that B accepts and πA
= πB is at
most O(ε). (In fact, in the first scheduling, B accepts with probability at most O(ε),
irrespective of whether or not πA = πB .)

6.1. Proof of Lemma 4.6 (The Unsynchronized Case)

The proof of Lemma 4.6 involves considering a variety of different settings. Specifically,
we consider the probability that B accepts when interacting with C , which in turn interacts
with a pair of machines that are not necessarily A and B. For sake of clarity, we introduce
the notation dec(C A′,B ′

) that means the decision of B ′ (which is public and known to C)
when interacting with C that interacts concurrently also with A′.

Lemma 6.1 (Lemma 4.6—Restated; Case 1—Unsynchronized). Let C be a ppt chan-
nel and define Case 1 to be a scheduling of the protocol execution by which C completes
the polynomial evaluation with A before concluding the non-malleable commitment with
B. Then for every polynomial p(·) and all sufficiently large n’s,

Pr[dec(C A,B) = acc & Case 1] < 2ε + 1

p(n)
.

Proof. The proof of this lemma is the most complex proof in this paper. It proceeds
by reducing the concurrent setting to a two-party stand-alone setting. However, before
performing this reduction, we “remove” the zero-knowledge proofs from the protocol.
This is done in two steps: a small step in which the zero-knowledge proof in which
B plays the verifier is removed (from the (C, B) interaction), and a big step in which
the zero-knowledge proof in which A plays the prover is removed (from the (A,C)
interaction).

We start with the small step. We consider a modified party, denoted B ′, that accepts
or rejects based solely on the y-value received in the validation stage. That is, B ′ does
not play the verifier in the zero-knowledge proof given by C , and also ignores the MAC
sent by C . Since we only omitted checks that may make B reject, we have that

Pr[dec(C A,B) = acc & Case 1] ≤ Pr[dec(C A,B ′
) = acc & Case 1]. (27)

The proof of the lemma proceeds by showing that the right-hand side is upper-bounded
by 2ε + µ(n). We stress that (by considering B ′ rather than B) we have removed the
zero-knowledge proof given by C to B, but the zero-knowledge proof given by A to C
still remains. The next subsection is devoted to eliminating the latter proof, which is the
big step (mentioned above). Once this is achieved, we turn (in Section 6.1.2) to analyzing
the residual protocol, by reducing the analysis of its execution in the concurrent three-
part setting to an analysis of an auxiliary two-party protocol in the standard stand-alone
setting.

Session-Key Generation Using Human Passwords Only 301

6.1.1. Simulating A’s Zero-Knowledge Proof

We begin by showing that when C interacts with A and B ′, the zero-knowledge proof
given by A to C can be simulated. Since the proof (given by A to C) is zero-knowledge, it
seems that the channel C (who plays the verifier in the proof) should be able to simulate it
itself. This is true (by definition) if the zero-knowledge proof is executed as stand-alone.
However, the definitions of zero-knowledge guarantee nothing in our setting, where
the proof is run concurrently with other related protocols (belonging to the (C, B ′)
execution). Technically speaking, the zero-knowledge simulation of A typically requires
rewinding C . However, messages belonging to the (C, B ′) execution may be interleaved
with the proof. For example, C’s queries to A in the proof may depend on messages
received from B ′. Rewinding C would thus also require rewinding B ′. However, since
B ′ is an external party, he cannot be rewound.

We remark that concurrent zero-knowledge does not solve this problem either, since
it relates to concurrent executions of a (zero-knowledge) protocol with itself, and not
concurrently with arbitrary protocols. Still, we use the ideas underlying the concurrent
zero-knowledge proof system of Richardson and Kilian [48] in order to address the
problem that arises in our application.

We refer the reader to Section A.4 of the Appendix for a description of the Richardson
and Kilian (RK) proof system. Recall that we set the parameter m (the number of
iterations in the first part of the RK proof) to equal r + t (n), where r is the total number
of rounds in the first two stages of our protocol, and t (n) is any non-constant function
of the security parameter n (e.g., t (n) = log log n).

We now motivate how the proof simulation is done in our scenario, where C interacts
with A and B ′. In such a case (when B ′ rather than B is involved) the total number of
rounds in the (C, B ′) execution equals r = m − t (since B ′ does not participate in the
zero-knowledge proof given by C in the validation stage). On the other hand, the number
of iterations in the first part of the RK proof given by A to C equals m. Therefore there are
t complete iterations in the first part of this proof in which C receives no messages from
B ′. In these iterations it is possible to rewind C without rewinding B ′. This is enough to
establish zero-knowledge, since the RK construction is such that as soon as rewinding
is possible in one iteration, the entire proof may be simulated. The crucial point is that
we rewind C at a place that does not require the rewinding of B ′ (which is not possible,
since B ′ is an outside party). With this motivation in mind, we move to our actual proofs.

The modification of A into A
zk . In our above description, when we say that A’s proof
can be simulated by C itself, this means that A can be modified to a party A
zk , whose
protocol definition does not include providing a zero-knowledge proof in the validation
stage. Before continuing, we formally define what we mean by this modification of A to
A
zk . This needs to be done carefully because the transcript (and not just the result) of the
zero-knowledge proof affects other parts of our protocol. Specifically, in the validation
stage, A sends a MAC of her entire message-transcript to C . This message-transcript
also includes the messages of the zero-knowledge proof. Therefore, the protocol of A
zk

must be appropriately redefined to take this issue into account.
In the zero-knowledge proof with C , party A plays the prover. The essence of the

modification of A to A
zk is in replacing A’s actions as prover in the (A,C)-proof by C

302 O. Goldreich and Y. Lindell

simulating the resulting messages by itself. This modification works only if C’s view
in the protocol execution with A
zk is indistinguishable from its view in an execution
with A. As mentioned, the MAC sent by A in the validation stage refers to the entire
message-transcript, including messages from the zero-knowledge proof. Therefore, the
MAC value sent by A
zk must also include messages from the simulated proof. However,
A
zk does not see these messages as the simulation is internal in C ; therefore the message-
transcript of the proof must be explicitly given to her.

In light of this discussion, we define the modified A
zk to be exactly the same as
A, except that she does not provide a zero-knowledge proof (in her validation stage).
Instead, at the point in which A’s zero-knowledge proof takes place, she receives a string
s that she appends to her message-transcript. This means that the only difference between
A and A
zk’s message-transcripts is that A’s transcript includes messages from a zero-
knowledge proof and A
zk’s transcript includes s instead. Intuitively, if s is the transcript
of the simulated proof, then A and A
zk’s message-transcripts are indistinguishable. This
ensures that the MACs sent by A and A
zk , respectively, are indistinguishable.

The simulation. We now show that for every channel C interacting with A and B ′,
there exists a channel C ′ interacting with A
zk and B ′ such that the channels’ views in the
two cases are indistinguishable. Since B’s accept/reject bit is part of C’s view (which is
included in C’s output), it follows that the probability that B ′ accepts (in an execution
with C ′ and A
zk) is negligibly close to the probability that B ′ accepts (in an execution
with C and A). This enables us to continue proving Lemma 6.1 by considering the setting
where C interacts with A
zk and B ′ (rather than with A and B ′).

Lemma 6.2. Let A
zk and B ′ be as above. Then for every ppt channel C there exists a
ppt channel C ′ such that

{output(C ′ A
zk (Q,w),B ′(w)
)} c≡ {output(C A(Q,w),B ′(w))}.

Proof. Our proof is based on the intuitive simulation strategy described above. In order
to see formally why this works, we first recall the RK proof system (or actually a sim-
plification of it which suffices for our purposes). This proof system (for NP-statements)
consists of two parts. The first part consists of m iterations, where in iteration i the verifier
(who is played by C in our case) sends the prover a commitment to a random string,
denoted vi . The prover then sends a commitment to a random string, denoted pi , and
the verifier decommits. The commitments used are perfectly binding, and so given the
commitment we can refer to the unique value committed to by it. (Indeed, we shall make
extensive use of this fact.) In the second part of the proof the prover proves (using a
witness-indistinguishable proof [23]) that either there exists an i such that pi = vi or
that the original NP-statement (i.e., the one on which the proof system is invoked) is
correct. In a real proof the prover will not be able to set pi = vi , except with negligible
probability, which implies that the proof system is sound (i.e., false statements can be
proved only with negligible probability). On the other hand, if there is one iteration of the
first part in which the simulator can rewind the verifier, then it can set pi = vi (because
it rewinds after obtaining the decommitment value vi and can thus set its commitment pi

to equal vi). In this case it can successfully execute the witness-indistinguishable proof
(by using this pi = vi and without knowing a proof of the original statement).

Session-Key Generation Using Human Passwords Only 303

Now, in our case there are t iterations in which no messages are sent to B ′. In these
iterations it is possible to rewind C . The only problem remaining is that C may refuse
to decommit (or decommit improperly, which is effectively the same). If during the
execution of a real proof, C refuses to decommit, then the prover halts. During the
simulation, however, we must ensure that the probability that we halt due to C’s refusal
to decommit is negligibly close to this probability in a real execution. This prevents us
from simply halting if, after a rewind, C refuses to decommit (since this may skew the
probability).

Before we continue, we define the concepts of promising and successful iterations,
which are used in describing our simulation strategy. Loosely speaking, a promising
iteration is one that enables the simulator to rewind C (i.e., C properly decommits
before sending any message to B ′), with the hope of obtaining a successful simulation.
(Recall that once C has been rewound, the simulator can send a commitment to the value
pi satisfying pi = vi .) However, even if C can be rewound at some point, a successful
simulation is not necessarily obtained. This is because after rewinding, it is possible that
C refuses to decommit (or sends a message to B ′). Thus, a successful iteration is one
in which, after C receives a commitment to pi such that pi = vi , it (i.e., C) properly
decommits (before sending any messages to B ′). That is:

• An iteration i is called promising if when C receives a commitment generated
according to the protocol instructions (i.e., a commitment to a uniformly distributed
pi), the iteration is such that no messages are sent to B ′ and C decommits properly.
(This refers to the situation before any rewinding of iteration i .)

• An iteration i is called successful if when C receives a commitment to pi such that
pi = vi , the iteration is such that no messages are sent to B ′ and C decommits
properly. (This typically occurs after rewinding when pi can be set to vi .)

We note that the notion of promising and successful relate both to the messages sent and
how they were generated. In our use below, an iteration may be promising before any
rewinding has been carried out (and, indeed, we will rewind only promising iterations),
and an iteration may be successful after it has been rewound (where the simulator will
always commit to a value pi = vi).

Restating the above motivating discussion using this terminology, we have that when
any iteration is successful, we can complete a full simulation of the proof. This is
because the first part of the proof is such that there exists an i for which pi = vi .
Therefore the simulator (having an adequate NP-witness) can execute the necessary
witness-indistinguishable proof. Another important point is that the probability that an
iteration is successful is very close to the probability that it is promising (by the hiding
property of the commitment used on pi). Finally, we note that unless there exists an
iteration in which C refuses to decommit when it receives a commitment to a random pi ,
there must be at least t promising iterations. Retrying to rewind each promising iteration
polynomially many times yields that with overwhelming probability, at least one of these
rewinding tries is successful, allowing us to complete the simulation.

The Actual Simulator: We now show how C ′ runs the simulation for C . The channel C ′

plays the prover to C ; in each iteration i it receives a commitment to vi from C and
replies with a commitment to a random string pi . If an iteration is not promising, then
there are two possible reasons why: (1) C refused to decommit—in this case C ′ halts

304 O. Goldreich and Y. Lindell

the simulation (successfully); (2) C sent a message to B ′ during the iteration—in this
case C ′ simply continues to the next iteration. We call this (first) execution of the i th
iteration the initial execution, and call the subsequent executions of the i th iteration
rewinding attempts. Note that rewinding attempts for iteration i take place only if the
initial execution of iteration i is promising.

If iteration i is promising, then C ′ obtains the decommitted value vi , rewinds C , and
commits to pi = vi . That is, C ′ attempts to obtain a successful iteration. If the rewound
iteration is successful, then (as we have argued) C ′ can complete the entire simulation
successfully. However, the iteration may not be successful after the rewinding. That is,
C may refuse to decommit or may send messages to B ′. As long as the rewound iteration
is not successful, C ′ continues to rewind up to N times (where N = O(n2)). If none
of the rewinds were successful then C ′ resends its original commitment to a random pi

(i.e., the very same commitment sent in the initial execution), and continues to the next
iteration. We stress that each rewinding attempt is independent of the others in the sense
that C ′ sends an independent random commitment to pi = vi each time.

It is crucial that during a rewinding attempt C ′ blocks any message sent by C to B ′.
This is because C cannot be rewound beyond a point in which it sent a message to
B ′ (because B ′ is an outside party and its message receipt event cannot be rewound).
Furthermore, since C may refuse to decommit, further rewindings (or a replay of the
initial execution) may be necessary. Thus, in case that C sends a message to B ′ during a
rewinding attempt, C ′ halts the attempt (without forwarding the message), and rewinds
again (up to N times).

The Output of the Simulator: We show below that, with overwhelmingly high probability,
either the initial executions of all iterations are non-promising or one of the rewinding
attempts succeeds. In both cases C ′ completes the simulation, and outputs a transcript
of a (simulated) proof. We claim that this transcript is indistinguishable from transcripts
of real executions of the RK proof.

Consider first the simulation of the first part of the RK proof. For each iteration, con-
sider the initial execution of this iteration by the simulator, and note that this execution is
distributed identically to the real execution. In case the initial execution is non-promising
the simulator just appends it to the simulation transcript (and truncates the simulation
if the verifier has decommitted improperly). Thus, this case is identical to the real exe-
cution. If, on the other hand, the initial execution is promising then the simulator tries
to rewind it. If none of the rewinding attempts succeeds then the simulator appends the
initial execution to the simulation transcript, which again means that the appended part
is distributed identically to the real execution. On the other hand, if one of the rewinds
is successful then the simulator appends its (i.e., the rewinding’s) transcript to the simu-
lation transcript. By the hiding property of the commitment scheme, the appended part
is computationally indistinguishable from the corresponding part in the real execution
(although these distributions are statistically far apart). We conclude that the simulation
of the first part of the RK proof is computationally indistinguishable from the first part
of a real RK proof.

Assuming that the simulator has succeeded in generating a successful rewinding, it
has obtained an NP-witness to the claim that pi = vi . Playing the role of the prover while
using this witness, allows the simulator to produce a transcript of the second part of the

Session-Key Generation Using Human Passwords Only 305

RK proof. By the witness-indistinguishability of the proof system used in the second
part, it follows that the simulated transcript is computationally indistinguishable from the
real one. (Actually, we rely on the fact that the latter proof system has a strong witness-
indistinguishability property; that is, if two claims are computationally indistinguishable
then so are the real proof transcripts regardless of which witness is used by the prover
[25, Section 4.6].) Thus, it remains to show that the probability that the simulator fails to
generate a successful rewind (in case some iteration is promising) is negligible.

Analysis of the Simulator’s Failure Probability Recall that the simulator fails only if it has
completed a non-truncated simulation of the first part of the RK proof without generating
any successful rewinding. Note that for this to happen, each of the simulated iterations
must include a proper decommitment, or else the simulation terminates successfully
while outputting a truncated transcript (as the prover would do in a real proof). Since
there at least t iterations for which C does not send any messages to B ′ (recall that
there are m iterations and only m − t messages are sent from C to B ′), it follows that
a non-truncated transcript must contain at least t promising iterations. The simulation
fails only if all N rewinding attempts for these promising iterations are not successful;
we show that for an adequate choice of N (the number of rewindings of a promising
iteration), this occurs with at most negligible probability.

The above statement is easy to establish in the case where the identities of the promising
iterations are fixed. If iteration i is always promising then a corresponding rewinding
attempt must be successful with overwhelming probability (or else a contradiction to
the hiding property of the commitment is reached). What makes the analysis more
complicated is that the identities of the promising iterations may be random variables
(which may even depend on the transcript of previous iterations).

Our aim is to show that the simulation fails with negligible probability. That is, for
every positive polynomial p, we show that (for all but finitely many n’s) the simulation
fails with probability smaller than 1/p(n). In the rest of the analysis we assume that
m <

√
n (this is easy to enforce, possibly by artificially increasing the original security

parameter n to a polynomial in n). We use the following notation:

• Let X1, . . . , Xm be random variables such that Xi = 1 if and only if C sends
no messages to B ′ during the initial execution of iteration i (i.e., when a random
commitment to a random pi is sent, before any rewinding of iteration i).

• Let Y1, . . . , Ym be random variables such that Yi = 1 if and only if C correctly
decommits during the initial execution of iteration i .

Thus, an iteration i is promising if and only if Xi = Yi = 1.
We now introduce similar notations for rewinding attempts of iterations.

• Let X ′
1, . . . , X ′

m be random variables such that X ′
i = 1 if and only if C sends no

messages to B ′ during a single rewinding attempt for iteration i , when a random
commitment to pi = vi is sent.

• Let Y ′
1, . . . , Y ′

m be random variables such that Y ′
i = 1 if and only if C correctly

decommits during a single rewinding attempt for iteration i , when a random com-
mitment to pi = vi is sent.

Thus, a given rewinding attempt for iteration i is successful if and only if X ′
i = Y ′

i = 1.

306 O. Goldreich and Y. Lindell

We note that some of the above random variables may be undefined, in which case
we just define them arbitrarily. Specifically, the random variables of iteration i are not
defined (above) if the simulation halted in some iteration j < i (which happens if and
only if Yj = 0).

We start by showing that the success event X ′
i = Y ′

i = 1 occurs essentially as often
as the promising event Xi = Yi = 1. We wish to establish this not only for the a priori
probabilities but also when conditioned on any past event that occurs with noticeable
probability.39 Specifically, we prove the following.

Claim 6.3. For every polynomial q , every i ≤ m, and every α ∈ {0, 1}i−1 either

Pr[Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α] <
1

q(n)
(28)

or

if Pr[Xi = Yi = 1 | Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α] ≥ 1

n
,

then Pr[X ′
i = Y ′

i = 1 | Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α] >
1

2n
.

(29)

Proof. The claim follows by the hiding property of the commitment scheme. Specifi-
cally, an algorithm violating the hiding property is derived by emulating the first i − 1
iterations (of the real execution) with the hope that Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α

holds, which indeed occurs with noticeable probability. Given that this event occurs, the
algorithm can distinguish a commitment to a random value from a commitment to a given
vi . More precisely, contradiction to the hiding property is derived by presenting two al-
gorithms. The first algorithm emulates the real interaction for i −1 iterations and checks
if the event Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α occurred. If yes, then it emulates the
i th iteration. If it holds that Xi = Yi = 1, then the algorithm obtains vi from the verifier
decommitment. This string vi is then output by the first algorithm as the challenge string
for the commitments. Then the second algorithm is given the view of the first algorithm
along with a challenge commitment which is either a commitment to vi or to a random
pi . This algorithm then re-emulates the i th iteration using the challenge commitment,
and outputs 1 if and only if C correctly decommits and sends no messages to B ′. The
point is that if the algorithm received a commitment to a random pi , then it outputs 1
with probability exactly Pr[Xi = Yi = 1 | Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α]. In
contrast, if it received a commitment to vi , then it outputs 1 with probability exactly
Pr[X ′

i = Y ′
i = 1 | Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α]. Thus, if the claim does not

hold, then the algorithm distinguishes commitments with non-negligible probability.

Using Claim 6.3, we show that the simulation fails with at most negligible probability.
That is,

39 We note that Claim 6.3 and the remainder of the proof can be simplified using a non-uniform reduction.
However, since the rest of our proof uses uniform reductions, we present the more complicated uniform
reduction here as well.

Session-Key Generation Using Human Passwords Only 307

Claim 6.4. Let fail denote the event in which the simulation fails. Then for every
polynomial p(·) and all sufficiently large n’s,

Pr[fail] <
1

p(n)
.

Proof. Our aim is to upper bound the probability that the simulation fails, by consid-
ering all possible values that X = X1 · · · Xm can obtain in such a case. We have

Pr[fail] =
∑

β∈{0,1}m

Pr[fail& X = β]

=
∑
α∈S

Pr[fail& X1 · · · X |α| = α], (30)

where S is any maximal prefix-free subset of U
def= ⋃m

i=1{0, 1}i , and (30) is justified
below. Recall that a set S is prefix-free if for every α, β ∈ S it holds that α is not a
prefix of β. By maximality we mean that adding any string in U to S violates the prefix-
free condition. It follows that every α ∈ {0, 1}m has a (unique) prefix in S. To justify
(30) observe that the strings in {0, 1}m can be partitioned into subsets such that all the
strings in each subset have a unique prefix in the set S, and so we can consider events
corresponding to these prefixes rather than events that correspond to all possible m-bit
long strings.

For a constant k < t to be determined later, we define Hk to be the set of all strings
having length at most m − 1 and hamming weight exactly k (note that k will eventually

be set to 1 + 2 limn→∞ logn p(n)). Let S1
def= {α′1 : α′ ∈ Hk} (i.e., strings of length at

most m and hamming weight k + 1 that have no strict prefix satisfying this condition),
and let S2 be the set of all m-bit long strings having hamming weight at most k. Observe
that S1 ∪ S2 is a maximal prefix-free subset of {0, 1}m . (Prefix-freeness holds because
all strings in S1 have hamming weight k + 1 and so cannot be prefixes of string in S2,
nor can any m-bit string be a prefix of another m-bit string.) Applying (30) we have

Pr[fail] =
∑

α∈S1∪S2

Pr[fail& X1 · · · X |α| = α]

=
∑
α′∈Hk

Pr[fail& X1 · · · X |α′|+1 = α′1],

where the last equality follows because S1 = {α′1 : α′ ∈ Hk} and Pr[fail& X ∈ S2] =
0, where the latter fact is justified as follows. Recall that the simulator may fail only
if C properly decommits in all the first m − 1 iterations, which implies that all Xi ’s
are properly defined (i.e., reflect what actually happens to these iterations, rather than
when fictitiously defined in an arbitrary manner). This implies that there must be at least
t ≥ k + 1 iterations/indices i such that Xi = 1 holds (i.e., no message was sent to B ′),
and so X /∈ S2. Now, using |Hk | < mk+1, we have

Pr[fail] < mk+1 · max
α′∈Hk

{Pr[fail& X1 · · · X |α′|+1 = α′1]}

≤ mk+1 · max
α′∈Hk

{Pr[fail& X1 · · · X |α′| = α′]}.

308 O. Goldreich and Y. Lindell

We will show that, for every α′ ∈ Hk , it holds that

Pr[fail& X1 · · · X |α′| = α′] <
1

mk+1 · p(n)
, (31)

which establishes our claim that the simulation fails with probability smaller than 1/p(n).
In order to establish (31), we fix an arbitrary α′ ∈ Hk , let i = |α′| + 1, and we consider
two cases:

Case 1: Pr[Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α′] < 1/(mk+1 · p(n)). In this case,
using the fact that the simulation never fails if any of the Yj ’s equals 0 (i.e., the fail
event implies that all the Yj ’s equal 1), it follows that Pr[fail& X1 · · · Xi−1 = α′] <
1/(mk+1 · p(n)) as desired.

Case 2: Pr[Y1 · · · Yi−1 = 1i−1 & X1 · · · Xi−1 = α′] ≥ 1/(mk+1 · p(n)). In this case,
setting q(n) = mk+1 · p(n), we conclude that (29) holds. Furthermore, for every j ≤ i , it
holds that Pr[Y1 · · · Yj−1 = 1 j−1 & X1 · · · X j−1 = α′′] ≥ 1/(mk+1 · p(n)) holds, where
α′′ is the (j − 1)-bit long prefix of α′. Thus, (29) holds for α′′ too. We are particularly
interested in prefixes α′′ such that α′′1 is a prefix of α′. We know that there are k such
prefixes α′′1 and we denote the set of their lengths by J (i.e., j ∈ J if the j-bit long
prefix of α′ ends with a 1). We consider two subcases:

1. If for some j ∈ J , it holds that Pr[X j =Yj =1 | Y1 · · · Yj−1 =1 j−1 & X1 · · · X j−1 =
α′′] ≥ 1/n then (by (29)) it holds that Pr[X ′

j = Y ′
j = 1 | Y1 · · · Yj−1 = 1 j−1 &

X1 · · · X j−1 = α′′] > 1/2n. This means that a rewinding attempt at iteration j suc-
ceeds with probability greater than 1/2n, and the probability that we fail in O(n2) at-
tempts is exponentially vanishing. Thus, in this subcase Pr[fail& X1 · · · Xi−1 =
α′] < 2−n < 1/(mk+1 · p(n)) as desired.

2. The other subcase is that for every j ∈ J , it holds that Pr[X j = Yj = 1 |
Y1 · · · Yj−1 = 1 j−1 & X1 · · · X j−1 = α′′] < 1/n. Recalling that failure may occur
only if all Yj ’s equal 1, and letting α′ = σ1 · · · σi−1, we get (using σj = 1 for j ∈ J)

Pr[fail& X1 · · · Xi−1 = α′]

≤ Pr[Y1 · · · Yi−1 =1i−1 & X1 · · · Xi−1 =α′]

=
i−1∏
j=1

Pr[X j =σj & Yj =1 | Y1 · · · Yj−1 =1 j−1 & X1 · · · X j−1 =σ1 · · · σj−1]

≤
∏
j∈J

Pr[X j =1 & Yj =1 | Y1 · · · Yj−1 =1 j−1 & X1 · · · X j−1 =σ1 · · · σj−1]

<

(
1

n

)k

.

By a suitable choice of k (e.g., k = 1 + 2 limn→∞ logn p(n)) and recalling that
m <

√
n, we have 1/nk = 1/

√
nk+1 · 1/n(k−1)/2 < 1/(mk+1 · p(n)) as desired.

Thus, we have established the desired bound of (31) in all possible cases. The claim
follows.

Session-Key Generation Using Human Passwords Only 309

Completing the (A,C) Simulation: So far we have focused on the simulation of the RK
proof (concurrently to interacting with B ′), but actually our goal is to simulate (A,C)
by (A
zk,C ′), while interacting concurrently with B ′. Clearly, whatever happens in the
(A,C) execution before the RK proof is emulated trivially by the (A
zk,C ′) execution
(which is identical at this stage). The issue is what happens after the (simulated) RK
proof. Recall that by the construction of A
zk , party A
zk expects to receive a string s
in place of the zero-knowledge proof. This string is then concatenated to A
zk’s session-
transcript before she (applies the MAC and) sends the MAC value. In order to ensure that
C’s view of the protocol in this simulation is indistinguishable from in a real execution
(where A proves the zero-knowledge proof), the channel C ′ must ensure that C receives
a MAC value that is indistinguishable from the MAC value that it would have received
from A. Channel C ′ does this by defining s to be the transcript of the zero-knowledge
simulation. This means that the resulting session-transcript of A
zk is identical to the
transcript held by C . Furthermore, this transcript is indistinguishable from a transcript
that C would hold after a real execution with A (rather than in this simulated interaction).
This implies that the MAC value sent by A
zk is indistinguishable from one that A would
have sent (because the transcripts are indistinguishable to C even given the MAC-key
k1(Q(w))). This completes the proof of Lemma 6.2.

Combining (27) and Lemma 6.2 (while noting that both the scheduling case and B’s
decision are visible by the channel), we get

Corollary 6.5. For every ppt C there exists a ppt Ĉ such that

Pr[dec(C A,B) = acc & Case 1] < Pr[dec(Ĉ A
zk ,B ′
) = acc & Case 1] + µ(n).

A note on the number of rounds. Our simulator works given that the number of iterations
in the first part of the RK proof is greater than the total number of the rest of the rounds
in the protocol by any non-constant function of the security parameter n (say log log n).
We note that a single additional round actually suffices. This can be shown using the
techniques of [28], but would further complicate the analysis.

6.1.2. Proof of a Modified Lemma 4.6 (When C Interacts with A
zk and B ′)

In view of Corollary 6.5, we now proceed to show that when C interacts with A
zk and
B ′, the probability that B ′ accepts in the synchronization of Case 1 is at most negligibly
greater than 2ε. That is, we proved

Lemma 6.6. For every ppt C

Pr[dec(C A
zk ,B ′
) = acc & Case 1] < 2ε + µ(n).

Proof. Our first step is to reduce the concurrent setting to a two-party stand-alone
setting. The key point in this reduction is in noticing that according to the scheduling
of Case 1, the two polynomial evaluations are run sequentially without any overlap.
Specifically, the (A
zk,C) evaluation terminates before the (C, B ′) evaluation begins. As
a warm-up, consider a simplified setting in which the entire (A
zk,C) protocol consists

310 O. Goldreich and Y. Lindell

Table 1. The assignment of “simulation roles” to P and C ′.

Roles

Stage A
zk B ′

1. Commitment Run by P; needs (Q, w) Run by C ′; needs nothing
2. Pre-Key Exchange Run by P; needs Q Run by P; needs w
3. Validation Run by C ′; needs Q(w) Run by P; needs nothing

only of a single polynomial evaluation; likewise for the (C, B ′) protocol. Then, when the
scheduling is as mentioned, a party P , can execute two sequential polynomial evaluations
with an adversary C ′; in the first P plays A
zk’s role and in the second, P plays B ′’s role.
That is, when this scheduling occurs the above two-party setting perfectly simulates the
concurrent setting.

The actual reduction is, however, more complex since the (A
zk,C) and (C, B ′) proto-
cols involve other steps beyond the polynomial evaluation. The protocol that we define
between P and C ′ must correctly simulate these other steps as well. As we shall see,
some of the additional steps can be internally simulated by C ′, and some are emulated
by an interaction of C ′ with P . Specifically, apart from playing in both polynomial
evaluations, P plays A
zk’s role in the (A
zk,C) commitment stage and B ′’s role in the
(C, B ′) validation stage. What remains is B ′’s role in the (C, B ′) commitment stage and
A
zk’s role in the (A
zk,C) validation stage; these are internally simulated by C ′. Table 1
shows which party (P or C ′) simulates A
zk and B ′’s respective roles. Note that when
we say that C ′ plays a role, this means internal simulation of the corresponding stage
by C ′ (who plays both parties); whereas when we say that P plays a role this means
that the corresponding stage is emulated by C ′ interacting with P (who plays the other
party). (For example, in the (C, B ′) commitment, C ′ plays B ′’s role and this therefore
means that the entire (C, B ′) commitment is internally run by C ′.) Table 1 also shows
the information that is “needed” by the parties for the simulation of each stage.

In order to play the corresponding roles, both parties get suitable inputs. Specifically,
party P is given the input (Q, w), which enables it to play the roles of A
zk and B ′ (in
any stage). Party C ′ is given Q(w) as an auxiliary input (which, as we show, enables it
to simulate the remaining parts of the execution internally). Thus, we actually prove that
Lemma 6.6 holds even when C gets Q(w) as an auxiliary input.

The following protocol makes sense whenever the scheduling of Case 1 occurs (in
the emulated execution of C A
zk (Q,w),B ′(w)). We will show that for every channel C , the
(two-session concurrent) execution of C A
zk (Q,w),B ′(w) in the scheduling of Case 1 is
“simulated” (in some adequate sense) by an adversary C ′ to a single-session execution
of the following (mental experiment) protocol (where C ′ may also internally emulate
additional steps).

Protocol 6.7 (Mental Experiment Protocol (P,C ′).
Inputs

• P has (Q, w), where Q is a linear (non-constant) polynomial and w ∈ D.
• C ′ receives the string Q(w), where (Q, w) is the input of P .

Session-Key Generation Using Human Passwords Only 311

Operation:

1. Emulation of Stage 1 of the (A
zk,C) execution (commitment stage):
• P sends C ′ a non-malleable commitment to (Q, w).

2. Emulation of Stage 2 of the (A
zk,C) execution (pre-key exchange):
• P sends C ′ a commitment c1 = Commit(Q) = C(Q, r1) for a random r1.
• P and C ′ invoke an augmented polynomial evaluation, where P inputs the

polynomial Q and (c1, r1) and C ′ inputs c1 and some value wC (of its choice).
Party C ′ then receives the output value Q(wC) (or ⊥ in the case of incorrect
inputs).

3. Emulation of Stage 2 of the (C, B ′) execution (pre-key exchange):
• C ′ sends P a commitment c2 = C(QC , r2), for some polynomial QC and r2 (of

its choice).
• C ′ and P invoke another augmented polynomial evaluation (in the other direc-

tion), where C ′ inputs the polynomial QC and (c2, r2) and P inputs c2 and w.
Party P receives π , which equals either QC(w) or ⊥, from the evaluation.

4. Emulation of Stage 3 of the (C, B ′) execution (validation stage):
• C ′ sends a string y to P , and P outputs accept if and only if y = f 2n(π).

We say that C ′ succeeds if P outputs accept at the conclusion of the protocol execution.
We now show that any C succeeding in having B ′ accept in the concurrent protocol with
the scheduling of Case 1, can be used by a party C ′ to succeed with the same probability in
the above protocol with P . We prove this by having C ′ simulate the concurrent execution
of C with A
zk and B ′, while interacting with P . We note that in this simulation, the values
QC and wC referred to in Protocol 6.7 intuitively represent the values that C uses in its
secure polynomial evaluations with A
zk and B ′. However, this intuition can only be
formalized once the polynomial evaluations are replaced with ideal executions (because
in the real model we cannot say anything about how C works, whereas in the ideal model
explicit QC and wC values must actually be produced).

Claim 6.8. Let C be a ppt channel interacting with A
zk and B ′. Then there exists a ppt
party C ′ interacting with P in Protocol (P,C ′) such that

PrQ,w[P(Q, w) accepts when interacting with C ′(Q(w))]

= Pr[dec(C A
zk ,B ′
) = acc & Case 1].

Recall that C A
zk ,B ′
is actually shorthand for C A
zk (Q,w),B ′(w), where (Q, w) are random as

in the left-hand side above.

Proof. The party C ′ incorporates C internally and perfectly simulates the concurrent
setting with A
zk and B ′ for C (i.e., C A
zk (Q,w),B ′(w)). First notice that Step 4 of the (P,C ′)
protocol constitutes the full validation stage of the (C, B ′) protocol (recall that the
validation stage for B ′ consists only of checking that y = f 2n(πB)). This means that
the (P,C ′) protocol contains all stages of the (A
zk,C) and (C, B ′) protocols, except for
the first stage of the (C, B ′) protocol and the third stage of the (A
zk,C) protocol. As
mentioned above, these stages are internally simulated by C ′.

312 O. Goldreich and Y. Lindell

The C ′ simulation. We now describe how C ′ runs the simulation. Party C ′ invokes C
and emulates the C A
zk (Q,w),B ′(w) setting for it, while interacting with P . This involves
separately simulating the (A
zk,C) and (C, B ′) executions. This simulation is carried out
as follows (recall that C fully controls the scheduling):

• The (A
zk,C) Execution:
1. Stages 1 and 2: All messages from these stages of the execution are passed

between C and P (without any change). That is, C ′ forwards any messages sent
from C (to A
zk) to P and likewise, messages from P are forwarded to C .

2. Stage 3: C ′ internally emulates A
zk’s role here, and thus P is not involved at
all. In this stage C expects to receive the string y = f 2n(Q(w)) and a MAC of
the (A
zk,C) session-transcript keyed by k1(Q(w)). Party C ′ can determine and
send these messages since it has Q(w) as input, and can thus compute both the
y-string and the MAC-key (and so the MAC value).

• The (C, B ′) Execution:
1. Stage 1: C ′ internally emulates B ′’s role here, and thus P is not involved at all.

Recall that B ′’s role in this stage is as the receiver of a non-malleable commit-
ment; therefore no secret information is needed by C ′ to emulate this part (by
using C).

2. Stages 2 and 3: When C sends the first message belonging to Stage 2 of the
(C, B ′) execution, party C ′ acts as follows:

• Scheduling Violation Case: If this first message was sent before the
completion of Stage 2 of the (A
zk,C) execution (i.e., the scheduling of
Case 1 does not hold), then C ′ halts (the simulation fails).

• Scheduling Conforming Case: If this first message was sent after the
completion of Stage 2 of the (A
zk,C) execution (i.e., the scheduling
conforms with Case 1), then C ′ continues the simulation by forwarding
this and all consequent messages belonging to these stages to P (and
returning messages from P to C).

This completes the simulation. Note that, when the simulation succeeds, C’s view is
identical to a real execution with A
zk and B ′. Recall that the (P,C) protocol emulates
Stages 1 and 2 of the (A
zk,C) protocol before Stages 2 and 3 of the (C, B ′) protocol.
Therefore, the simulation succeeds as long as C’s scheduling is such that Stage 2 of
the (A
zk,C) execution is completed before Stage 2 of the (C, B ′) execution begins.
However, this is exactly the definition of the scheduling of Case 1. In other words, the
simulation is successful if and only if the scheduling is according to Case 1. Now, if the
simulation is successful, then P accepts with the same probability as B ′ would have.
On the other hand, if the simulation is not successful (i.e., Case 1 did not occur), then
P never accepts. We conclude that the probability that P accepts is exactly equal to the
probability that the scheduling is according to Case 1 and B ′ accepts.

We note that since C ′ is given the value Q(w), it can also simulate this scenario for
C when the augmented definition of security is considered. (In the case that A
zk finishes
first, its output key is always a function of Q(w), and so the challenge session-key is
either uniform or the same function of Q(w). On the other hand, the case that B finishes
first makes no difference because the challenge session-key is presented after B’s de-
cision bit is determined, and here we bound the probability that B’s decision bit equals

Session-Key Generation Using Human Passwords Only 313

accept.) The rest of the proof of this lemma therefore follows also for the augmented
definition.

It remains to bound the probability that P accepts in Protocol 6.7.

Claim 6.9. For every ppt party C ′ interacting with P in Protocol 6.7 it holds that

PrQ,w[P(Q, w) accepts when interacting with C ′(Q(w))] < 2ε + µ(n).

Proof. We analyze the probability that P accepts in the two-party protocol for P and
C ′ defined above. This is an ordinary two-party setting, and as such it can be analyzed
by directly considering the security of the different modules.

We first modify the protocol so that in Step 1, party P sends a random commitment,
instead of a commitment to (Q, w). Due to the hiding property of the commitment,
this can make at most a negligible difference. (We stress that this replacement has no
impact because this commitment is not used anywhere in the rest of the protocol.40)
Therefore, C ′ can internally emulate this commitment and this stage can be removed
from the protocol. We thus remain with a protocol consisting of the following stages:

• (Emulation of Stage 2 of (A
zk,C)): P sends C ′ a commitment to Q and then P and
C ′ execute an augmented polynomial evaluation in which C ′ receives either Q(wC)

for some wC (chosen by C ′) or ⊥. By the security of the polynomial evaluation, C ′

receives either Q(wC) or ⊥ and nothing else.
• (Emulation of Stage 2 of (C, B ′)): C ′ sends P a commitment to some polynomial

QC and then C ′ and P execute an augmented polynomial evaluation in which P
receives QC(w) or ⊥. By the security of the polynomial evaluation, C ′ receives
nothing in this stage.

• (Emulation of Stage 3 of (C, B ′)): C ′ sends a string y to P and P accepts if
y = f 2n(QC(w)).

The intuition behind showing that P accepts with probability at most negligibly greater
than 2ε is as follows: C ′ must send the “correct” y based solely on the value Q(wC)

that it (possibly) received from the first evaluation and its auxiliary input Q(w). Now,
if wC
= w, then the only thing that party C ′ learns about w (from Q(w) and Q(wC))
is that it does not equal wC . This is due to the “pairwise independence” property of the
random polynomial Q. Therefore, C must guess the correct value for y from |D| − 1
possibilities (i.e., f 2n(QC(w

′)) for every w′
= wC). On the other hand, the probability
that wC = w is at most ε, because at the time that C ′ selects wC it knows nothing about
w (although it knows Q(w) for a random Q). A detailed analysis follows.

The above argument is based on the security of the polynomial evaluations. We there-
fore proceed by analyzing the probability that P accepts in an ideal execution where the
two polynomial evaluations are replaced by ideal evaluations. We denote the ideal-model
parties by P̂ and Ĉ ′. By the sequential composition theorem of multi-party computa-
tion [16], we have that the accepting probabilities of P (in a real execution) and P̂ (in
an ideal execution) are at most negligibly different.

40 This is due to the fact that the zero-knowledge protocol of Stage 3 has already been removed.

314 O. Goldreich and Y. Lindell

We now upper bound the probability that P̂ accepts in an ideal execution. Party Ĉ ′ is
given Q(w) for auxiliary input and in the first polynomial evaluation Ĉ ′ inputs a value
wC (of its choice). We differentiate between the case that wC = w and wC
= w, and
separately upper bound the following probabilities:

1. Pr[P̂ = acc & wC = w],
2. Pr[P̂ = acc & wC
= w].

Bounding the probability that P̂ = acc and wC = w. We actually show that Pr[wC =
w] ≤ ε + µ for some negligible function µ. The only message received by Ĉ ′ prior to
its sending wC is an (ordinary) commitment to the polynomial Q. That is, Ĉ ′’s entire
view at this point consists of its auxiliary input Q(w) and Commit(Q). Due to the hiding
property of the commitment, Commit(Q) can be replaced by Commit(02n) and this
makes at most a negligible difference. We therefore remove the commitment and bound
the probability that wC = w, where Ĉ ′ is only given Q(w). Since Q is a random linear
polynomial, we have that for every w, the string Q(w) is uniformly distributed. That is,
Q(w) reveals no information about w. Therefore, we have that Pr[wC = w] ≤ ε (with
equality in casewC ∈ D). This implies that when Ĉ ′ is given a commitment to Q (rather
than to 02n), we have that Pr[wC = w] ≤ ε + µ(n). Therefore,

Pr[P̂ = acc & wC = w] ≤ Pr[wC = w] ≤ ε + µ(n). (32)

Bounding the probability that P̂ = acc and wC
= w. We actually analyze the follow-
ing conditional probability: Pr[P̂ = acc | wC
= w]. Recall that Ĉ ′’s view (after the
first polynomial evaluation) consists of its random tape, auxiliary input Q(w), and the
following messages:

1. A commitment to a polynomial Q sent by P̂ .
As before, the commitment to Q can be replaced with a commitment to 02n with

at most a negligible difference. We therefore ignore this part of Ĉ ′’s view from
now on.

2. An input–output pair (wC , Q(wC)) (or (wC ,⊥) in the case of incorrect inputs)
from the first polynomial evaluation, where wC
= w.

We ignore the output case (wC ,⊥) because C ′ knows a priori which of the two
input/output cases will occur, and we may give it Q(wC) for free in the incorrect
inputs case.

Continuation of the protocol involves Ĉ ′ selecting and inputting a polynomial QC into
the second polynomial evaluation and sending a string y, where P̂ accepts if and only if
y = f 2n(QC(w)). Restated, the probability that P̂ accepts equals the probability that Ĉ ′,
given its view (Q(w),wC , Q(wC)), generates a pair (QC , y) such that y = f 2n(QC(w)).

Now, the polynomial Q is random and linear, and we are considering the case that
wC
= w. Therefore, by pairwise independence we have that Q(w) is almost uniformly
distributed, even given the value of Q at wC . (Since Q cannot be a constant polynomial,
Q(w) is only statistically close to uniform; this is however enough.) This means that
given Ĉ ′’s view, the password w is almost uniformly distributed in D − {wC}. Since
both f 2n and QC are 1–1 functions, we have that the probability that Ĉ ′ generates a pair
(QC , f 2n(QC(w))) equals the probability that it guessesw, which equals 1/(|D| − 1) =

Session-Key Generation Using Human Passwords Only 315

ε/(1 − ε). Replacing the commitment to 02n with a commitment to Q, we have that for
some negligible function µ,

Pr[P̂ = acc | wC
= w] ≤ ε

1 − ε
+ µ(n). (33)

Combining the bounds. Using (32) and (33), we conclude that in an ideal execution

Pr[P̂ = acc] = Pr[P̂ = acc | wC = w] · Pr[wC = w]

+ Pr[P̂ = acc | wC
= w] · Pr[wC
= w]

≤ 1 · Pr[wC = w] + ε

1 − ε
· (1 − Pr[wC = w])+ µ(n),

Pr[wC = w] = ε

1 − ε
+ 1 − 2ε

1 − ε
· Pr[wC = w] + µ(n)

≤
(

1 + (1 − 2ε)

)
· ε

1 − ε
+ µ(n) = 2ε + µ(n),

where the last inequality is due to Pr[wC = w] ≤ ε + µ. This implies that in a real
execution the probability that P accepts is at most negligibly greater than 2ε. The claim
follows.

Lemma 6.6 follows by combining Claims 6.8 and 6.9.

Lemma 6.1 follows by combining Corollary 6.5 and Lemma 6.6.

6.2. Proof of Lemma 4.7 (The Synchronized Case)

Lemma 6.10 (Lemma 4.7—Restated; Case 2—Synchronized). Let C be a ppt channel
and define Case 2 to be a scheduling of the protocol by which C completes the polynomial
evaluation with A after completing the non-malleable commitment with B. Then

Pr[B = acc & πA
= πB & Case 2] < ε + µ(n).

Proof. The proof of this lemma relies on the non-malleability of the commitment
sent in the commitment stage of the protocol. As was explained in the proof sketch,
in the case that πA
= πB , the validation stage ensures that B only accepts if the non-
malleable commitment he received was to (Q′, w), where Q′
= Q and w is A and
B’s shared password. (Recall that in the case that (Q′, w′) = (Q, w), party B rejects
with overwhelming probability, unless πA = πB .)41 Furthermore, the probability that
C succeeds in generating such a commitment (in which Q′
= Q and yet w is the
second element) is at most negligibly greater than ε. We now formally prove both these
statements.

41 This is because the validation stage essentially enforces that πB = Q′(w′) (see Fact 6.14), and by the
case hypothesis Q′(w′) = Q(w) = πA .

316 O. Goldreich and Y. Lindell

In order to use the non-malleability property (of the commitment sent in Stage 1), we
define the following relation R. Recall that the non-malleable commitment value sent
by A is (Q, w), and denote the value corresponding to the commitment received by B
by (Q′, w′). Define R ⊂ {0, 1}3n × {0, 1}3n such that

((Q, w), (Q′, w′)) ∈ R if and only if (Q′, w′)
= (Q, w) and w′ = w. (34)

That is, C “succeeds” with respect to R (and thus B may accept) if C does not copy A’s
commitment (or rather does not commit to the same pair) and yet the second element of
the committed pair is the correct password.

We consider the probability that B accepts in Case 2 and πA
= πB in two comple-
mentary subcases. In the first subcase, channel C succeeds with respect to the relation
R and in the second subcase, C fails. We prove claims showing the following:

1. Success Case: Pr[B = acc & Case 2 & πA
= πB & ((Q, w), (Q′, w′)) ∈ R] <
ε + µ(n).

2. Fail Case: Pr[B = acc & Case 2 & πA
= πB & ((Q, w), (Q′, w′))
∈ R] < µ(n).

The lemma follows by summing up B’s accepting probability in the above two subcases.
We begin by upper bounding the success case. Specifically, we show that the probability
that C succeeds in generating a correct (related) commitment is at most negligibly greater
than ε.

Claim 6.11 (Success with respect to R). Let C be a ppt channel and denote by (Q′, w′)
the value committed to by C in the non-malleable commitment received by B (if the
commitment is not valid, then (Q′, w′) is taken as some fixed value). Then

Pr[Case 2 & ((Q, w), (Q′, w′)) ∈ R] < ε + µ(n).

Proof. The definition of non-malleability states that a commitment is non-malleable
when run concurrently with another commitment only. Therefore, in a simpler scenario
in which the (A,C) and (C, B) non-malleable commitments are run in isolation, we can
directly apply the non-malleability property to the relation R that we have defined above.
However, in our scenario, other parts of the (A,C) protocol can also be run concurrently
to the (C, B) non-malleable commitment. Specifically, by the scheduling of Case 2, (part
of) the (A,C) pre-key exchange may run concurrently to the (B,C) commitment (but
Stage 3 of the (A,C) execution starts only after the (B,C) commitment ends). The crux
of the proof is in showing that the (A,C) pre-key exchange can be simulated. Given
such a simulation, we have a scenario in which the (A,C) and (C, B) non-malleable
commitments are run in isolation, and thus non-malleability holds.

Recall that A’s input to the pre-key exchange stage depends only on the polynomial
Q (and is independent of the password w). Therefore, if C has Q, then it can perfectly
emulate this stage by itself (this is true irrespective of the security of the modules making
up the pre-key exchange stage of the protocol). Fortunately, even if C is explicitly given
Q, the probability that C can generate a commitment to (Q′, w′) for which (Q′, w′)
=
(Q, w) and w′ = w is at most negligibly greater than ε (recall that C’s sole aim here
is to generate such a commitment). Thus, we prove that for every ppt channel C given

Session-Key Generation Using Human Passwords Only 317

auxiliary input Q, it holds that

Pr[Case 2 & ((Q, w), (Q′, w′)) ∈ R] < ε + µ(n).

As we have described, C has Q and thus can perfectly emulate the (A,C) pre-key ex-
change. By the scheduling of Case 2, we have that the (C, B) commit stage concludes
before the completion of the (A,C) pre-key exchange. Therefore, the probability that
C succeeds with respect to R is the same as when the (A,C) and (C, B) non-malleable
commitments are run in isolation.42 We therefore proceed by upper bounding the prob-
ability that a ppt adversary C (given a commitment to (Q, w) and auxiliary input Q)
successfully generates a commitment to (Q′, w′) where ((Q, w), (Q′, w′)) ∈ R.

Intuitively, A’s commitment to (Q, w) does not help C in generating a related commit-
ment. Therefore, the probability of generating a commitment to (Q′, w) is the same as
the probability of guessing w. Formally, by the definition of non-malleability, for every
C there exists a simulator Ĉ who generates a commitment to (Q̂′, ŵ′) without seeing the
commitment to (Q, w) such that

| Pr[((Q, w), (Q′, w′)) ∈ R] − Pr[((Q, w), (Q̂′, ŵ′)) ∈ R]| < µ(n).

Sincew is uniformly distributed inD and Ĉ is given no information aboutw, the proba-
bility that Ĉ generates a commitment to (Q̂′, w) is at most ε. Therefore, the probability
that C generates a commitment to (Q′, w) where Q′
= Q, is less than ε + µ(n) as
required.

We note that the above holds also for the augmented definition of security. This
is because in Case 2, channel C concludes its non-malleable commitment before A
terminates. Therefore, it may receive a session-key challenge only after (Q′, w′) are
determined.

We now show that when C fails with respect to R, then B accepts with at most negligible
probability.

Claim 6.12 (Failure with respect to R). For every ppt channel C ,

Pr[B = acc & πA
= πB & ((Q, w), (Q′, w′))
∈ R] < µ(n).

Proof. In proving this claim, we rely solely on the fact that C “fails” with respect to the
relation R, in order to show that B rejects. As described in the proof sketch, intuitively
B rejects in this case because the validation stage enforces consistency between the non-
malleable commitment, the polynomial input by C into the polynomial evaluation,and
B’s output from the polynomial evaluation. That is, with overwhelming probability,
B rejects unless C inputs Q′ into the polynomial evaluation and B’s output from the
evaluation equals Q′(w′). However, B’s input into the polynomial evaluation is w, and
thus (by the correctness condition of secure protocols) B’s output must equal Q′(w).

42 Formally, an adversary attacking a non-malleable commitment protocol (and given Q as auxiliary input)
can use C in order to generate a related commitment with the same probability as C succeeds in our session-key
protocol when the scheduling is according to Case 2.

318 O. Goldreich and Y. Lindell

Thus, with overwhelming probability B rejects unless Q′(w′) = Q′(w). As we will show,
this implies that πA = πB , in contradiction to the claim hypothesis. In the following fact
we formally show that with overwhelming probability, when B accepts, its output from
the polynomial evaluation equals Q′(w) (recall that Q′ is the polynomial committed to
by C in the non-malleable commitment).

Fact 6.13. For every ppt channel C ,

Pr[B = acc & πB
= Q′(w)] < µ(n).

Proof. This fact is derived from the correctness condition of the secure polynomial
evaluation and the soundness of the zero-knowledge proof. Loosely speaking, the cor-
rectness condition of a secure two-party protocol states that an adversary cannot cause
the output of an honest party to deviate significantly from its output in an ideal execution
(where the output is exactly according to the functionality definition). We stress that this
has nothing to do with privacy and holds even if the adversary knows the honest party’s
input.

Now, let QC be the polynomial in the ordinary commitment sent by C to B before the
polynomial evaluation. Then, by the definition of the augmented polynomial evaluation,
B’s output πB is either QC(w) (in the case of correct inputs) or ⊥ (in the case of incorrect
inputs). Therefore, in a stand-alone two-party setting, we have that with overwhelming
probability πB ∈ {QC(w),⊥}.

We now show that this also holds in our concurrent setting. As we have mentioned,
the correctness requirement holds even if the adversary knows the honest party’s input.
That is, it holds even if C knows w (and Q), in which case C can perfectly emulate the
entire (A,C) execution, and we remain with a non-concurrent execution with B. The
correctness condition thus holds and we conclude that with overwhelming probability
πB ∈ {QC(w),⊥}. However, since B accepts only if y = f 2n(πB) and this never holds
when πB = ⊥, we have πB = QC(w) (with overwhelming probability). Getting back
to our original concurrent setting, we have

Pr[B = acc & πB
= QC(w)] < µ(n).

The proof is completed by noticing that the statement proved in the zero-knowledge
proof implies (among other things) that QC = Q′. Thus, by the soundness of the zero-
knowledge proof (which also holds in our setting), we conclude that

Pr[B = acc & πB
= Q′(w)] < µ(n).

On the other hand, we now show that when B accepts, with overwhelming probability
it holds that πB = Q′(w′).

Fact 6.14. For every ppt channel C ,

Pr[B = acc & πB
= Q′(w′)] < µ(n).

Session-Key Generation Using Human Passwords Only 319

Proof. In the first step of the validation stage, B receives a string y. The statement
proved by C (in zero-knowledge) includes the condition y = f 2n(Q′(w′)). Furthermore,
by another check made by B, it rejects unless y = f 2n(πB). Since f 2n is a 1–1 function,
we conclude that with overwhelming probability, B rejects unless πB = Q′(w′).

We now use the above two facts to show that when ((Q, w), (Q′, w′))
∈ R, party B
rejects with overwhelming probability. There are two possible cases for which ((Q, w),
(Q′, w′))
∈ R: either (Q′, w′) = (Q, w) or w′
= w.

• Case (Q′, w′) = (Q, w). By Fact 6.13 (or equivalently by Fact 6.14), we have that
with overwhelming probability, B rejects unless πA = Q(w) = Q′(w′) = πB , in
contradiction to the hypothesis that πA
= πB .

• Case w′
= w: By Facts 6.13 and 6.14 we have that with overwhelming proba-
bility whenever B accepts it holds that Q′(w′) = πB = Q′(w). However, Q′ is
a non-constant linear polynomial and is thus 1–1. This implies that w′ = w, in
contradiction to the case hypothesis.

This completes the proof of Claim 6.12. We note that the above proof also holds for
the augmented definition of security. This can be seen by noticing that B rejects with
overwhelming probability even if C knows Q and w. Therefore, C can generate the
session-key challenge itself.

Lemma 6.10 is obtained by combining Claims 6.11 and 6.12.

7. Simulating the Stand-Alone (A,C) Execution

In this section we show that C’s view of its execution with A can be simulated by a
non-interactive machine C ′′. That is,

Theorem 7.1 (Theorem 4.8 Restated). For every ppt channel C ′ interacting with A
only, there exists a non-interactive machine C ′′, such that

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))}n,D,σ

2ε≡{w,Un, output(C ′′(σ))}n,D,σ ,

where Q is a random non-constant linear polynomial,D ⊆ {0, 1}n is any ppt samplable
dictionary, w ∈R D, and ε = 1/|D|.

Proof. As we described in the proof sketch, it is enough to prove that for every ppt
channel C ′,

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))}2ε≡{w,Un, output(C ′ A(Q,w̃)

(σ))},

wherew, w̃ ∈R D are independently chosen passwords fromD. This implies the theorem
because C ′′ can simulate C ′’s view by choosing Q and w̃ and invoking an execution of
C ′ A(Q,w̃)

(σ). See the proof sketch for details on how C ′′ works.

320 O. Goldreich and Y. Lindell

Notice that the distributions {w,Un, output(C ′ A(Q,w̃)
)} and {w̃,Un, output(C ′ A(Q,w)

)}
are equivalent. We therefore continue by showing that

{w, k2(Q(w)), output(C ′ A(Q,w)
)}2ε≡{w̃,Un, output(C ′ A(Q,w)

)}. (35)

We begin by showing that the pair (w, Q(w)) is (1 − ε)-indistinguishable from (w̃,Un)

at the end of the polynomial evaluation. For this aim, we consider a modified party
A2 who halts at the conclusion of Stage 2 of the protocol (i.e., after the polynomial
evaluation). Then we show that after an execution of C with A2, the pair (w, Q(w)) is
(1 − ε)-indistinguishable from the pair (w̃,Un) with respect to C’s view. That is,

Lemma 7.2. For every ppt channel C ′ interacting with a party A2 who halts after the
polynomial evaluation,

{w, Q(w), output(C ′ A2(Q,w))} ε≡{w̃,Un, output(C ′ A2(Q,w))},

where Q is a random non-constant linear polynomial, and w, w̃ ∈R D.

Proof. First note that the non-malleable commitment sent by A2 in this setting plays
no role in the continuation of the protocol (the commitment is referred to only in the val-
idation stage, which A2 does not reach). Due to the hiding property of the commitment,
if A2 commits to all-zeros instead of to the pair (Q, w), this makes at most a negligible
difference to C ′’s view. This enables us to remove the non-malleable commitment en-
tirely, because C ′ can internally simulate receiving such a commitment. From here on,
we consider the modified party A2 to be a party whose non-malleable commitment is to
zeros and who halts after the polynomial evaluation.

What remains is thus the (A2,C ′) pre-key exchange, consisting of A2 sending
Commit(Q) to C ′ followed by a single polynomial evaluation. Since the polynomial
evaluation is secure, C can learn at most a single point of Q(·), but otherwise gains no
other knowledge of the random polynomial Q (as with the non-malleable commitment,
Commit(Q) reveals nothing of Q). As described in the proof sketch, this implies that C
can distinguish Q(w) from Un with probability at most negligibly greater than ε (where
the ε advantage comes from the case thatw turns out to equal the input fed by C ′ into the
polynomial evaluation). We now formally show how the limitation on C ′’s distinguishing
capability is derived from the security of the polynomial evaluation.

The security of the polynomial evaluation states that C ′ can learn no more in a real
execution than in an ideal scenario where the polynomial evaluation is replaced by an
ideal module computed by a trusted third party. We stress that the other messages sent
by the parties in the protocol, including the commitment to Q, remain unmodified in
this (partially) ideal execution. Denote the ideal model parties by Â2 and Ĉ ′ and an

ideal execution by Ĉ ′ Â2(Q,w)
(in this execution, Ĉ ′ is adversarial). By the definition of

secure two-party computation, for every real adversary C ′ interacting with A2, there
exists an ideal adversary Ĉ ′ interacting with Â2 such that the output distributions of
C ′ and Ĉ ′ are computationally indistinguishable. However, by the definition of secure
computation, the above output distributions should be indistinguishable also when given

Session-Key Generation Using Human Passwords Only 321

parties’ respective inputs, and specifically A’s input (Q, w). That is,

{(Q, w), output(C ′ A2(Q,w))} c≡ {(Q, w), output(Ĉ ′ Â2(Q,w)
)}.

In particular, it follows that

{w, Q(w), output(C ′ A2(Q,w))} c≡ {w, Q(w), output(Ĉ ′ Â2(Q,w)
)}, (36)

{w̃,Un, output(C ′ A2(Q,w))} c≡ {w̃,Un, output(Ĉ ′ Â2(Q,w)
)}. (37)

Thus, it suffices to show that for every ppt party Ĉ ′ interacting with Â2 in an ideal
execution, it holds that

{w, Q(w), output(Ĉ ′ Â2(Q,w)
)} ε≡{w̃,Un, output(Ĉ ′ Â2(Q,w)

)}. (38)

We therefore consider an ideal execution of the pre-key exchange consisting of Â2

sending Ĉ ′ a commitment to Q followed by an ideal augmented polynomial evaluation.
The view of Ĉ ′ in such an execution consists only of a commitment to Q and the result of
the polynomial evaluation. (The exact definition of the augmented polynomial evaluation
can be found in Section 3.)

Notice that the distributions {w̃,Un, output(Ĉ ′ Â2(Q,w)
)} and {w,Un, output(Ĉ ′ Â2(Q,w)

)}
are equivalent. This is because Â2 uses w nowhere in the execution (recall that the non-
malleable commitment sent by Â2 is to all-zeros). Therefore, we should actually show
that

{w, Q(w), output(Ĉ ′ Â2(Q,w)
)} ε≡{w,Un, output(Ĉ ′ Â2(Q,w)

)}. (39)

Assume for now that the execution of the polynomial evaluation is such that Ĉ ′ al-
ways receives Q(wC) for some wC input by it into the evaluation (and not ⊥ as
in the case of incorrect inputs). Then Ĉ ′’s view is exactly (r,Commit(Q), Q(wC)),
where r is the string of its random coin tosses and wC is determined by Ĉ ′ based
on r and Commit(Q). For the sake of clarity, we augment the view by wC itself
(i.e., we write Ĉ ′’s view as (r,Commit(Q), wC , Q(wC))). Assuming without loss of
generality that Ĉ ′ always outputs its entire view, we conclude that our aim is to show that
{w, Q(w), (r,Commit(Q), wC , Q(wC))} is (1 − ε)-indistinguishable from
{w,Un, (r,Commit(Q), wC , Q(wC))}. We now show that if wC
= w, then the above
two tuples are computationally indistinguishable. That is, we show that

{w, Q(w), (r,Commit(Q), wC , Q(wC)) | wC
= w}
c≡ {w,Un, (r,Commit(Q), wC , Q(wC)) | wC
= w}, (40)

where Q is a random non-constant linear polynomial. First, by the hiding property
of the commitment scheme, we can replace the commitment to Q in the above dis-
tributions with a commitment to 02n . (If this makes a non-negligible difference, then
Ĉ ′ can be used to distinguish a commitment to Q from a commitment to 02n . We re-
mark that this argument actually only holds if the probability that wC
= w is non-
negligible. However, this follows from the fact that w ∈R D appears nowhere in the

322 O. Goldreich and Y. Lindell

Ĉ ′ A2(Q,w)
execution (recall that the non-malleable commitment has been replaced with

a commitment to zeros). Therefore, wC = w with probability at most ε.) Next, having
replaced the commitment to Q by a commitment to 02n , notice that the following dis-
tributions are statistically close: {w, Q(w), (r,Commit(02n), wC , Q(wC)) | wC
= w}
and {w,Un, (r,Commit(02n), wC , Q(wC)) | wC
= w}.43 Then, by returning the com-
mitment to Q in place of the commitment to 02n , we obtain (40).

As we have mentioned, the password w ∈R D does not appear anywhere in the

Ĉ ′ A2(Q,w)
execution. Therefore, Pr[wC = w] ≤ ε (with equality whenwC is chosen from

D). Therefore, by separately considering the case that wC
= w (where the distributions
cannot be distinguished) and the case that wC = w (which occurs with probability at
most ε), (39) follows.

This completes the analysis of the simplified case in which the output from the poly-
nomial evaluation is always Q(wC) for somewC (and never ⊥). However, Ĉ ′ may cause
the result of the evaluation to be ⊥ and we must show that this cannot help it. Intuitively,
if Ĉ ′ were to receive ⊥ then it would learn nothing about Q and this would thus be a
“bad” strategy. Nevertheless, it must be shown that Ĉ ′ cannot learn anything by the mere
fact that it received ⊥ and not Q(wC). The reason that Ĉ ′ indeed learns nothing from the
latter event is because it can determine it a priori (i.e., the output is ⊥ if and only if Ĉ ′

does not supply the commitment explicitly sent to it in the previous step by the honest
A (which will always input the corresponding decommit information)). This completes
the proof of Lemma 7.2.

We now continue by showing that Lemma 7.2 implies (35) (and thus the current theorem);
that is,

{w, Q(w), output(C ′ A2(Q,w))} ε≡{w̃,Un, output(C ′ A2(Q,w))}
implies that

{w, k2(Q(w)), output(C ′ A(Q,w)
)}2ε≡{w̃,Un, output(C ′ A(Q,w)

)}.
Notice that in the second equation, C ′ executes a complete execution of the protocol with
A, rather than a truncated execution with A2. Therefore, the additional messages sent by
A in the validation stage must be taken into account. Recall that in the validation stage
A sends the string y = f 2n(Q(w)), proves a statement in zero-knowledge, and sends
a MAC (keyed by k1(Q(w))) of the entire message-transcript. In order to simplify the
proof, we assume that A sends the MAC-key k1(Q(w)) itself during the validation stage.
Given the MAC-key (i.e., k1(Q(w))), the channel C ′ can always compute the MAC
value by itself. Therefore, this only gives C ′ more information. We start by ignoring the
zero-knowledge proof (which, as we show below, is easily justified in this context).

The proof is based on the fact that since G(s) = (f 2n(s), k1(s), k2(s)) is a pseudo-
random generator, the output key k2(Q(w)) is (1 − O(ε))-pseudorandom, even given

43 If Q was randomly chosen from all linear polynomials (rather than only from those that are non-constant),
then due to pairwise independence the distributions would be identical. However, because Q cannot be constant,
wC
= w implies that Q(wC)
= Q(w) always. On the other hand, Q(wC) = Un with probability 2−n .
Therefore, with probability 2−n the two distributions can be distinguished by seeing if the last two elements
are equal or not. This is the only difference between the distributions and they are therefore statistically close.

Session-Key Generation Using Human Passwords Only 323

f 2n(Q(w)) and k1(Q(w)). This must be justified, since in our case the generator is seeded
by Q(w) that is only (1 − ε)-pseudorandom, whereas a generator is usually seeded by
a truly random string. In the following claim we show that if, given some information,
the string Q(w) is (1 − ε)-pseudorandom (as previously shown), then given the same
information along with f 2n(Q(w)) and k1(Q(w)), the string k2(Q(w)) is (1 − 2ε)-
pseudorandom. (By “given” we mean that a ppt distinguishing machine is given these
strings, along with the challenge string which is either k2(Q(w)) or Un .) Applied to the
analysis of our protocol, this means that even after A sends the string f 2n(Q(w)) and the
MAC in the validation stage, the output session-key k2(Q(w)) is (1−2ε)-pseudorandom
with respect to the view of C ′.

Claim 7.3. Let I (·) be a random process, and assume that {w, Q(w), I (Q, w)} is (1−
ε)-indistinguishable from {w̃,Un, I (Q, w)}. Then {w, k2(Q(w)), I (Q, w), f 2n(Q(w)),
k1(Q(w))} is (1−2ε)-indistinguishable from {w̃,Un, I (Q, w), f 2n(Q(w)), k1(Q(w))}.

Indeed, the claim will be applied with I (Q, w) = output(C ′ A2(Q,w)).

Proof. We prove the claim in three steps:

1. {w, I (Q, w), f 2n(Q(w)), k1(Q(w)), k2(Q(w))} ε≡ {w̃, I (Q, w), f 2n(Un),

k1(Un), k2(Un)}.
This is due to the hypothesis {w, I (Q, w), Q(w)} ε≡ {w̃, I (Q, w),Un}.

2. {w̃, I (Q, w), f 2n(Un), k1(Un), k2(Un)} c≡ {w̃, I (Q, w), f 2n(U (1)
n), k1(U (1)

n),

U (2)
n }, where U (1)

n and U (2)
n are two independent uniform distributions.

This is derived directly from the fact that (f 2n(Un), k1(Un), k2(Un)) is pseudo-
random.

3. {w̃, I (Q, w), f 2n(U (1)
n), k1(U (1)

n),U (2)
n } ε≡ {w̃, I (Q, w), f 2n(Q(w)), k1(Q(w)),

U (2)
n }
This is because the hypothesis implies that {I (Q, w),Un} ε≡ {I (Q, w), Q(w)}.

Combining the above, we have that

{w, I (Q, w), f 2n(Q(w)), k1(Q(w)), k2(Q(w))}
2ε≡ {w̃, I (Q, w), f 2n(Q(w)), k1(Q(w)),Un}

and this completes the proof of the claim.

Combining Lemma 7.2 and Claim 7.3, we now establish (35). We use the following
facts:

1. In Stage 3, A sends the string y = f 2n(Q(w)), proves a statement in zero-
knowledge and sends the MAC-key k1(Q(w)) (recall that we assume that A sends
the MAC-key instead of the MAC value).

2. C ′ can simulate the zero-knowledge proof given by A in Stage 3, because here
we are considering a stand-alone execution between A and C . Thus, the view of
C ′ from the entire interaction with A can be generated out of its view of the first

324 O. Goldreich and Y. Lindell

two stages (i.e., output(C ′ A2(Q,w))), the string y = f 2n(Q(w)), and the MAC-key
k1(Q(w)).

Using I (Q, w)
def= output(C ′ A2(Q,w)), Lemma 7.2 asserts that the corresponding hy-

pothesis of Claim 7.3 holds. The corresponding conclusion (of Claim 7.3) implies
that (35) holds (because output(C ′ A(Q,w)

) is easily computed from output(C ′ A2(Q,w)),
y = f 2n(Q(w)), and k1(Q(w))). The theorem follows.

As we have mentioned in the proof sketch, the above proof remains unchanged when
proving the security of Protocol 3.2 with respect to the augmented definition of security
(Definition 2.5). This is because in a stand-alone execution between A and C ′, the channel
C ′ is given the session-key challenge only after the entire execution has been completed.
Therefore, the session-key challenge can be generated from the input/output distribution
as a post-processing step.

8. Simulating the (C,B) Execution

In this section we show how the entire (C, B) execution can be simulated. The simulation
is such that the joint distribution of C’s view in the simulation along with the password
and session key is at most (1 − 5ε)-indistinguishable from the joint distribution of its
view in a real execution along with the password and session-key.

Theorem 8.1 (Theorem 4.9 Restated—Simulating the (C, B) Execution). For every
ppt channel C interacting with A and B, there exists a ppt channel C ′ interacting only
with A, such that

{w, k2(Q(w)), output(C ′ A(Q,w)
(σ))}n,D,σ

5ε≡{w, k2(Q(w)), output(C A(Q,w),B(w)(σ))}n,D,σ ,

where Q is a random non-constant linear polynomial,D ⊆ {0, 1}n is any ppt samplable
dictionary, w ∈R D, and ε = 1/|D|.

Proof. As we have described in the proof sketch, this lemma is proved in two stages.
First, in Lemma 8.2, we show that when C interacts with A and a modified party B
dec

who does not output any accept/reject bit, then the (C, B
dec) execution can be simulated.
Next, in Lemma 8.3, we show that B’s accept/reject bit can also be simulated. Combining
these two lemmas together, we have that the entire (C, B) execution can be simulated.

8.1. Simulating the (C, B
dec) Execution

Lemma 8.2 (Lemma 4.10 Restated). Let C̃ be a ppt channel interacting with A and
a modified party B
dec who does not output an accept/reject bit. Then there exists a ppt
channel C ′ interacting with A only, such that

{w, k2(Q(w)), output(C ′ A(Q,w)
)} c≡ {w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w))}.

Session-Key Generation Using Human Passwords Only 325

Proof. Intuitively, B
dec’s role can be simulated without any knowledge of w. Loosely
speaking, this is because B
dec only uses w in the (C̃, B
dec) polynomial evaluation, and
in this evaluation C̃ receives no output. Formally, this is shown by proving that if B
dec

were to input an arbitrary, fixedw′ ∈R D (into the polynomial evaluation), instead ofw,
then C̃ would not be able to tell the difference. That is, for every ppt channel C̃ ,

{w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w))}
c≡ {w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w

′))}. (41)

(Observe that in the second distribution, B
dec’s input isw′.) We prove (41) even when C̃
is given Q and w as auxiliary input. Now, since Q and w constitute all of A’s input, the
channel C̃(Q, w) can perfectly simulate the entire (A,C) execution. That is, for every
ppt channel C̃ there exists a ppt channel Ĉ such that the following two equations hold:

{w, k2(Q(w)), output(Ĉ B
dec(w)(Q, w))}
≡ {w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w)(Q, w))},

{w, k2(Q(w)), output(Ĉ B
dec(w
′)(Q, w))}

≡ {w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w
′)(Q, w))}.

It thus remains to show that

{w, k2(Q(w)), output(Ĉ B
dec(w)(Q, w))}
c≡ {w, k2(Q(w)), output(Ĉ B
dec(w

′)(Q, w))}. (42)

The latter is derived from the security of the polynomial evaluation. Intuitively, Ĉ obtains
no output from the polynomial evaluation, whereas the polynomial evaluation is the
only part of the entire protocol in which B
dec uses his input (of w or w′). Formally,
we may consider a ppt Ĉ ′ that emulates the entire (Ĉ, B
dec) execution except for the
polynomial evaluation that it actually performs with B̂ ′ that uses input w or w′. That is,
B̂ ′ is merely playing receiver in the polynomial evaluation protocol, whereas Ĉ ′ is some
(fancy) adversary for that protocol. Still, the security of the latter protocol (as stand-
alone) implies that Ĉ ′ cannot distinguish the case that B̂ ′ has input w from the case that
it has input w′ (because the ideal-model adversary cannot do so). We conclude that Ĉ
can distinguish the cases that B
dec has input w or w′ with at most negligible probability.
Equation (42) follows, and thus so does (41).

We are now ready to show how C ′ works (recall that C ′ interacts with A only and its
aim is to emulate an execution of C̃ with A and B
dec). Machine C ′ begins by selecting an
arbitraryw′ ∈ D. Then C ′ perfectly emulates an execution of C̃ A(Q,w),B
dec(w

′) by playing
B
dec’s role in the (C, B
dec) execution (C ′ can play B
dec(w

′)’s role because w′ is known
to it), and relaying all messages belonging to the (A,C) execution (i.e., passing each
message sent by A to C̃ , and each message sent by C̃ to A). Finally, C ′ outputs whatever
C̃ does. By the definition of C ′, we have

{w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w
′))} ≡ {w, k2(Q(w)), output(C ′ A(Q,w)

)}. (43)

The lemma follows from (41) and (43).

326 O. Goldreich and Y. Lindell

8.2. Simulating B’s Accept/Reject Decision Bit

Lemma 8.3 (Lemma 4.11 Restated). Let B
dec be a modified party that does not output
an accept/reject bit. Then, for every ppt channel C interacting with A and B, there exists
a ppt channel C̃ interacting with A and B
dec, such that

{w, k2(Q(w)), output(C̃ A(Q,w),B
dec(w))}5ε≡{w, k2(Q(w)), output(C A(Q,w),B(w))}.

Proof. We prove this lemma by showing how the accept/reject bit of B can be predicted
by C . Specifically, we show that the MAC sent in the validation stage is such that if C
was not reliable, then B rejects with probability 1 − 5ε. This enables C̃ to “predict” B’s
output-bit based on whether or not C was reliable. We thus start by proving the security

of the MAC when keyed by k1(πA) (recall that πA
def= Q(w)). As we have mentioned

in the proof sketch, we need to show that the MAC is secure only before B outputs
its accept/reject bit. Thus, we consider a scenario in which C interacts with A and the
modified party B
dec. In the following claim we formally state the security of the MAC.
(Recall that for simplicity we consider an implementation of a MAC by a pseudorandom
function. However, our proof can be extended to any secure implementation of a MAC.)

Claim 8.4 (Claim 4.12 Restated). Let C be an arbitrary ppt channel interacting with
A and a modified party B
dec as in Lemma 8.3, and let tA and tB denote the transcripts
from the (A,C) and (C, B
dec) executions, respectively. Then, if tA
= tB , it holds that
the value MACk1(πA)(tB) is (1 − 2ε)-pseudorandom with respect to C’s view. That is,
for every probabilistic polynomial-time distinguisher D, every dictionary D ⊆ {0, 1}n ,
every auxiliary-input σ , and all sufficiently large n’s,

| Pr[D(MACk1(πA)(tB),C A(Q,w),B
dec(w)) = 1 & tA
= tB]

− Pr[D(Un,C A(Q,w),B
dec(w)) = 1 & tA
= tB]| < 2ε + µ(n).

Proof. We prove this claim by first showing that the MAC-key k1(πA) is (1 − 2ε)-
pseudorandom before A sends the MAC in the validation stage. Formally, consider a
modified party A
mac who is exactly the same as A excepts that it does not send the MAC
message. Then we show that for every ppt C ,

{k1(Q(w)),C A
mac(Q,w),B
dec(w)}2ε≡{Un,C A
mac(Q,w),B
dec(w)}, (44)

where Q is a random non-constant linear polynomial and w ∈R D. First, we claim that
for every ppt channel C interacting with A
mac and B
dec, there exists a ppt channel C ′

interacting only with A
mac, such that

{k1(Q(w)),C ′ A
mac(Q,w)} c≡ {k1(Q(w)),C A
mac(Q,w),B
dec(w)}

and

{Un,C ′ A
mac(Q,w)} c≡ {Un,C A
mac(Q,w),B
dec(w)}.

Session-Key Generation Using Human Passwords Only 327

The above two equations can be shown in the same way as Lemma 8.2 above. Therefore,
in order to obtain (44), it is enough to show that for every ppt channel C ′ interacting only
with A
mac(Q, w),

{k1(Q(w)),C ′ A
mac(Q,w)}2ε≡{Un,C ′ A
mac(Q,w)}.

Now, by Lemma 7.2, we have that after the conclusion of the polynomial evaluation
between A
mac and C ′, it holds that Q(w) is (1 − ε)-pseudorandom to C ′. We claim
that this implies that k1(Q(w)) is (1 − 2ε)-pseudorandom to C ′ at the conclusion of the
complete protocol between A
mac and C . This can be shown using an almost identical
proof as in Claim 7.3. (We note that here we are in a standard stand-alone setting, and so
the zero-knowledge proof can be simulated, and reveals nothing about k1(Q(w)).) This
completes the proof of (44).

We have so far established that the MAC-key k1(Q(w)) used by A is (1 − 2ε)-
pseudorandom with respect to C’s view. It thus remains to show that using a (1 − 2ε)-
pseudorandom string as a key to a pseudorandom function (for the MAC) yields a (1−2ε)-
pseudorandom function. This then implies that when tA
= tB , the value MACk1(πA)(tB) is
(1 − 2ε)-pseudorandom with respect to C’s view. (Recall that A sends MACk1(πA)(tA) in
the protocol execution and thus this value itself is not (1−2ε)-pseudorandom. However,
since the MAC used is a (1 − 2ε)-pseudorandom function, the claim holds for any t
that C produces, including tB that is part of its view.) In the following claim, we prove
that MACk1(πA)(·) is a (1 − 2ε)-pseudorandom function. As in Claim 7.3, we model any
information C may have learned about Q and w during the protocol with A
mac by a
random process I (·) (i.e., I (Q, w) denotes output(C A
mac(Q,w))).

Claim 8.5. Assume that {k1(Q(w)), I (Q, w)} is (1 − 2ε)-indistinguishable from
{Un, I (Q, w)}. Furthermore, let fr (·) be a pseudorandom function when r is uniformly
distributed. Then, given I (Q, w), the function fk1(Q(w))(·) is (1 − 2ε)-pseudorandom.

Proof. The proof is based on the idea that a string distinguisher that needs to distinguish
k1(Q(w)) from Un can simulate oracle queries to fk1(Q(w))(·) or fUn (·) depending on its
input. Since we know that fUn (·) is indistinguishable from a random function (by the
claim hypothesis), distinguishing fk1(Q(w))(·) from a random function essentially means
distinguishing k1(Q(w)) from Un . Details follow.

Let D be a ppt oracle machine that receives the output of the random process I (Q, w)
as well as oracle access to either fk1(Q(w)) or a random function f . Then

| Pr[D fk1(Q(w)) (I (Q, w), 1n) = 1] − Pr[D f (I (Q, w), 1n) = 1]|
≤ | Pr[D fk1(Q(w)) (I (Q, w), 1n) = 1] − Pr[D fUn (I (Q, w), 1n) = 1]| (45)

+ | Pr[D fUn (I (Q, w), 1n) = 1] − Pr[D f (I (Q, w), 1n) = 1]|. (46)

Equation (46) is negligible by the definition of a pseudorandom function. On the other
hand, (45) is bounded above by 2ε + µ(n), because otherwise a ppt machine D′ that,
given I (Q, w) and trying to distinguish k1(Q(w)) from Un , can invoke D on input

328 O. Goldreich and Y. Lindell

(I (Q, w), 1n) and answer all oracle queries by using fx , where x denotes its input string
(which is either k1(Q(w)) or Un).

This completes the proof of Claim 8.4.

We are now ready to show how C̃ works. Channel C̃ runs the protocol (with A and
B
dec) by passing all messages, unmodified, via C . Furthermore, C̃ checks whether or not
C was reliable during the execution. Recall that C is reliable if the (A,C) and (C, B)
executions are run in a synchronized manner, and C does not modify any of the messages
sent by A or B. This is a syntactic feature, which is easily checked by C̃ (since it views
the entire interaction). If C was reliable then C̃ outputs accept for B, otherwise it outputs
reject for B. This completes the simulation of C’s interaction with A and B. Let χC̃

denote the simulated accept/reject bit output by C̃ .
Now, when C̃ predicts B’s output bit correctly, we have that C’s view in this simulation

is identical to a real execution with A and B. This means that the difference in the exper-
iments referred to in the lemma’s conclusion equals the probability that C̃’s prediction
is wrong (i.e., the probability that decB = acc and χC̃ = rej or vice versa). Noticing that
χC̃ = acc if and only if C is reliable, we have that for every distinguisher D,

| PrQ,w[D(w, k2(Q(w)), C̃ A(Q,w),B
dec(w))=1]

− PrQ,w[D(w, k2(Q(w)),C A(Q,w),B(w))=1]|
≤ Pr[decB = acc & reliableC = false]+Pr[decB = rej & reliableC = true].

First, notice that when C is reliable, B always accepts. That is, Pr[decB = rej & reliableC =
true] equals zero. We will now show that Pr[decB = acc & reliableC = false] is at most
negligibly more than 5ε, and this will complete the proof of Lemma 8.3.

Proposition 8.6 (Proposition 4.13—Restated). For every ppt channel C ,

Pr[decB = acc & reliableC = false] < 5ε + µ(n).

Proof. The proof of this proposition is based on the security of the MAC sent in the
validation stage. Intuitively, sending a MAC on the entire session transcript ensures that
if any messages were modified (as in the case of an unreliable C), then this will be noticed
by B. However, in our protocol, A and B may have different MAC-keys (in which case
nothing can be said about detecting C’s malicious behavior). Fortunately, the key-match
property ensures that this happens (undetectably by B) with probability at most 3ε.

The security of the MAC, shown above in Claim 8.4 states the following. Let tA and tB

be A and B’s respective message-transcripts. Then if tA
= tB , the string MACk1(πA)(tB)

is (1 − 2ε)-pseudorandom with respect to C’s view. By the definition of reliability, if C
is not reliable then indeed tA
= tB and so MACk1(πA)(tB) is (1 − 2ε)-pseudorandom with
respect to C’s view.

Now, party B’s protocol definition is such that he rejects unless the last message he
receives equals MACk1(πB)(tB), where k1(πB) is the MAC-key used by B. We stress that
the key used by B for the MAC is k1(πB), whereas Claim 8.4 refers to a MAC keyed
by k1(πA). However, if πA = πB then k1(πA) = k1(πB). Therefore, if πA = πB then

Session-Key Generation Using Human Passwords Only 329

the claim holds and the probability that C generates the correct MAC value is at most
negligibly greater than 2ε. That is,

Pr[B = acc & reliableC = false & πA = πB] < 2ε + µ(n).

On the other hand, if πA
= πB then irrespective of the MAC, the probability that B
accepts is at most negligibly more than 3ε. This is due to the key-match property proven
in Theorem 4.5. We conclude that

Pr[decB = acc & reliableC = false]

= Pr[decB = acc & reliableC = false & πA
= πB]

+ Pr[decB = acc & reliableC = false & πA = πB]

< 3ε + 2ε + µ(n)

and the proposition follows.

As stated above, this completes the proof of Lemma 8.3.

8.3. Conclusion

Theorem 8.1 is obtained by combining Lemmas 8.2 and 8.3.

We note that when considering the augmented definition of security (Definition 2.5),
the proof of Lemma 8.2 remains unchanged. This is because (41) (and thus the lemma)
holds even in the case that C̃ is given Q andw and can generate the session-key challenge
itself. On the other hand, there are some minor differences in the proof of Lemma 8.3.
In particular, one must justify the correctness of Claim 8.4 even when C may also be
given k2(Q(w)). That is, we must show that the MAC-key k1(Q(w)) remains (1 − 2ε)-
pseudorandom to C , even if it is given the session-key k2(Q(w)) as well. However, this is
derived from the property of the pseudorandom generator G(s) = (k1(s), k2(s), f 2n(s)).
The actual proof of this is very similar to that of Claim 7.3. We must also define how
the challenge session-key is generated when B is replaced with B
dec. As we described
in the proof sketch, we define the challenge session-key in the case that B
dec concludes
first always to equal ⊥. Then, we rely on the fact that if B
dec concludes first, this implies
that C was not reliable, and so B would reject (except with probability 5ε). Therefore,
having the session-key challenge equal ⊥ in this case makes no difference (modulo a 5ε
difference). The rest of the proof remains almost the same.

Acknowledgements

We thank Moni Naor for suggesting this problem to us and for his valuable input in the
initial stages of our research. We are also grateful to Alon Rosen for much discussion
and feedback throughout the development of this work. We also thank Jonathan Katz for
helpful discussions, and Ran Canetti, Shai Halevi, and Tal Rabin for discussion that led
to a significant simplification of the protocol. Finally, we thank the anonymous referees
for their hard work and many helpful comments.

330 O. Goldreich and Y. Lindell

Appendix. Cryptographic Tools

In this section we briefly describe the tools used in our construction. That is, we describe
secure two-party computation, string commitment and non-malleable string commit-
ment, the Richardson–Kilian zero-knowledge proof system, seed-committed pseudo-
random generators and message authentication codes. We present comprehensive and
formal definitions for secure two-party computation as this forms the basis for the ma-
jority of our proofs.

A.1. Secure Two-Party Computation

In this section we present definitions for secure two-party computation. The following
description and definition is taken from Chapter 7 of [26].

A two-party protocol problem is cast by specifying a random process which maps pairs
of inputs (one input per each party) to pairs of outputs (one per each party). We refer to
such a process as the desired functionality, denoted f : {0, 1}∗×{0, 1}∗ �→ {0, 1}∗×{0, 1}∗.
That is, for every pair of inputs (x, y), the desired output-pair is a random variable,
f (x, y), ranging over pairs of strings. The first party, holding input x , wishes to obtain
the first element in f (x, y); whereas the second party, holding input y, wishes to obtain
the second element in f (x, y).

Whenever we consider a protocol for securely computing f , it is implicitly assumed
that the protocol is correct provided that both parties follow the prescribed program.
That is, the joint output distribution of the protocol, played by honest parties, on input
pair (x, y), equals the distribution of f (x, y).

We consider arbitrary feasible deviation of parties from a specified two-party proto-
col. A few preliminary comments are in place. Firstly, there is no way to force parties
to participate in the protocol. That is, possible malicious behavior may consist of not
starting the execution at all, or, more generally, suspending (or aborting) the execution
at any desired point in time. In particular, a party can abort at the first moment when
it obtains the desired result of the computed functionality. We stress that our model of
communication does not allow us to condition the receipt of a message by one party on
the concurrent sending of a proper message by this party. Thus, no two-party protocol
can prevent one of the parties from aborting when obtaining the desired result and be-
fore its counterpart also obtains the desired result. In other words, it can be shown that
perfect fairness—in the sense of both parties obtaining the outcome of the computation
concurrently—is not achievable in two-party computation. We thus give up on such
fairness altogether.

Another point to notice is that there is no way to talk of the correct input to the protocol.
That is, a party can always modify its local input, and there is no way for a protocol to
prevent this.

To summarize, there are three things we cannot hope to avoid:

1. Parties refusing to participate in the protocol (when the protocol is first invoked).
2. Parties substituting their local input (and entering the protocol with an input other

than the one provided to them).
3. Parties aborting the protocol prematurely (e.g., before sending their last message).

Session-Key Generation Using Human Passwords Only 331

The ideal model. We now translate the above discussion into a definition of an ideal
model. That is, we will allow in the ideal model whatever cannot be possibly prevented in
any real execution. An alternative way of looking at things is that we assume that the two
parties have at their disposal a trusted third party, but even such a party cannot prevent
specific malicious behavior. Specifically, we allow a malicious party in the ideal model
to refuse to participate in the protocol or to substitute its local input. (Clearly, neither can
be prevented by a trusted third party.) In addition, we postulate that the first party has
the option of “stopping” the trusted party just after obtaining its part of the output, and
before the trusted party sends the other output-part to the second party. Such an option
is not given to the second party.44 Thus, an execution in the ideal model proceeds as
follows (where all actions of the both honest and malicious party must be feasible to
implement):

Inputs: Each party obtains an input, denoted z.
Send inputs to trusted party: An honest party always sends z to the trusted party. A

malicious party may, depending on z, either abort or sends some z′ ∈ {0, 1}|z| to
the trusted party.

Trusted party answers first party: In case it has obtained an input pair, (x, y),
the trusted party (for computing f), first replies to the first party with f1(x, y).
Otherwise (i.e., in case it receives only one input), the trusted party replies to both
parties with a special symbol, ⊥.

Trusted party answers second party: In case the first party is malicious it may,
depending on its input and the trusted party answer, decide to stop the trusted
party. In this case the trusted party sends ⊥ to the second party. Otherwise (i.e., if
not stopped), the trusted party sends f2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary (polynomial-time computable)
function of its initial input and the message it has obtained from the trusted
party.

The ideal model computation is captured in the following definition.45

Definition A.1 (Malicious Adversaries, the Ideal Model). Let f : {0, 1}∗ × {0, 1}∗ �→
{0, 1}∗ × {0, 1}∗ be a functionality, where f1(x, y) (resp., f2(x, y)) denotes the first
(resp., second) element of f (x, y). Let C = (C1,C2) be a pair of polynomial-size
circuit families representing adversaries in the ideal model. Such a pair is admissible
(in the ideal malicious model) if for at least one i ∈ {1, 2} we have Ci (I) = I and
Ci (I, O) = O . The joint execution under C in the ideal model (on input pair (x, y)),

44 This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate
that the trusted party sends the answer first to the first party, the first party (but not the second) has the option to
stop the third party after obtaining its part of the output. The second party can only stop the third party before
obtaining its output, but this is the same as refusing to participate.

45 In the definition, the circuits C1 and C2 represent all possible actions in the model. In particular, C1(x) = ⊥
represents a decision of Party 1 not to enter the protocol at all. In this case C1(x,⊥) represents its local-output.
The case C1(x)
= ⊥, represents a decision to hand an input, denoted C1(x), to the trusted party. Likewise,
C1(x, z) and C1(x, z,⊥), where z is the answer supplied by the trusted party, represents the actions taken by
Party 1 after receiving the trusted party answer.

332 O. Goldreich and Y. Lindell

denoted ideal f,C(x, y), is defined as follows:

• In case C2(I) = I and C2(I, O) = O (i.e., Party 2 is honest),

(C1(x,⊥) , ⊥) if C1(x) = ⊥, (47)

(C1(x, f1(C1(x), y),⊥) , ⊥) if C1(x)
= ⊥ and C1(x, f1(C1(x), y))=⊥, (48)

(C1(x, f1(C1(x), y)), f2(C1(x), y)) otherwise. (49)

• In case C1(I) = I and C1(I, O) = O (i.e., Party 1 is honest),

(⊥ , C2(y,⊥)) if C2(y) = ⊥, (50)

(f1(x, y) , C2(y, f2(x,C2(y))) otherwise. (51)

Equation (47) represents the case where Party 1 aborts before invoking the trusted
party (and outputs a string which only depends on its input; i.e., x). Equation (48)
represents the case where Party 1 invokes the trusted party with a possibly substituted
input, denoted C1(x), and aborts while stopping the trusted party right after obtaining
the output, f1(C1(x), y). In this case the output of Party 1 depends on both its input and
the output it has obtained from the trusted party. In both these cases, Party 2 obtains no
output (from the trusted party). Equation (49) represents the case where Party 1 invokes
the trusted party with a possibly substituted input, and allows the trusted party to answer
to both parties (i.e., 1 and 2). In this case the trusted party computes f (C1(x), y), and
Party 1 outputs a string which depends on both x and f1(C(x), y). Likewise, (50) and (51)
represent malicious behavior of Party 2; however, in accordance to the above discussion,
the trusted party first supplies output to Party 1 and so Party 2 does not have an option
analogous to (48).

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exist no trusted third parties). In this case a malicious
party may follow an arbitrary feasible strategy; that is, any strategy implementable by
polynomial-size circuits. In particular, the malicious party may abort the execution at
any point in time, and when this happens prematurely, the other party is left with no
output. In analogy to the ideal case, we use circuits to define strategies in a protocol.

Definition A.2 (Malicious Adversaries, the Real Model). Let f be as in Definition A.1,
and let � be a two-party protocol for computing f . Let C = (C1,C2) be a pair of
polynomial-size circuit families representing adversaries in the real model. Such a pair
is admissible (with respect to�) (for the real malicious model) if at least one Ci coincides
with the strategy specified by �. The joint execution of � under C in the real model (on
input pair (x, y)), denoted real

�,C(x, y), is defined as the output pair resulting from the
interaction between C1(x) and C2(y).

We assume that the circuit representing the real-model adversary (i.e., the Ci which
does not follow �) is deterministic. This is justified by standard techniques.

Security as emulation of real execution in the ideal model. Having defined the ideal
and real models, we obtain the corresponding definition of security. Loosely speaking,

Session-Key Generation Using Human Passwords Only 333

the definition asserts that a secure two-party protocol (in the real model) emulates the
ideal model (in which a trusted party exists). This is formulated by saying that admissible
adversaries in the ideal model are able to simulate (in the ideal model) the execution of
a secure real-model protocol (with admissible adversaries).

Definition A.3 (Security in the Malicious Model). Let f and�be as in Definition A.2.
Protocol � is said to securely compute f (in the malicious model) if there exists a
polynomial-time computable transformation of pairs of admissible polynomial-size cir-
cuit families A = (A1, A2) for the real model (of Definition A.2) into pairs of admissible
polynomial-size circuit families B = (B1, B2) for the ideal model (of Definition A.1) so
that

{ideal f,B(x, y)}x,y s.t. |x |=|y|
c≡ {real

�,A(x, y)}x,y s.t. |x |=|y|.

Implicit in Definition A.3 is a requirement that in a non-aborting (real) execution of a
secure protocol, each party “knows” the value of the corresponding input on which the
output is obtained. This is implied by the equivalence to the ideal model, in which the
party explicitly hands the (possibly modified) input to the trusted party. For example,
say Party 1 uses the malicious strategy A1 and that real

�,A(x, y) is non-aborting. Then
the output values correspond to the input pair (B1(x), y), where B1 is the ideal-model
adversary derived from the real-model adversarial strategy A1.

Secrecy and correctness. By the above definition, the output of both parties together
must be indistinguishable in the real and ideal models. The fact that the adversarial
party’s output is indistinguishable in both models formalizes the secrecy requirement of
secure computation. That is, an adversary cannot learn more than what can be learned
from his private input and output. On the other hand, the indistinguishability requirement
on the honest party’s output relates to the issue of correctness. Loosely speaking, the
correctness requirement states that if a party is computing f (x, y), then the adversary
cannot cause him to receive f ′(x, y) for some f ′
= f . This is of course true in the ideal
model as a trusted party computes f . Therefore the indistinguishability of the outputs
means that it also holds in the real model (this is not to be confused with the adversary
changing his own private input which is always possible). It is furthermore crucial that
the secrecy and correctness requirements be intertwined, see [16] and [26] for further
discussion.

General plausibility results. Assuming the existence of collections of enhanced trap-
door permutations, one may provide secure protocols for ANY two-party computation
(allowing abort) [54], as well as for ANY multi-party computations with honest major-
ity [30]. Thus, a host of cryptographic problems are solvable assuming the existence of
enhanced trapdoor permutations. Specifically, any desired (input–output) functionality
can be enforced, provided we are either willing to tolerate “early abort” (as defined
above) or can rely on a majority of the parties to follow the protocol.

A.2. String Commitment

Commitment schemes are a basic ingredient in many cryptographic protocols. They are
used to enable a party to commit itself to a value while keeping it secret. In a latter stage
the commitment is “opened” and it is guaranteed that the “opening” can yield only a
single value determined in the committing phase.

334 O. Goldreich and Y. Lindell

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol
through which one party, called the sender, can commit itself to a value so that the
following two conflicting requirements are satisfied:

1. Secrecy (or hiding): At the end of the first phase, the other party, called the receiver,
does not gain any knowledge of the sender’s value (this can be formalized anal-
ogously to the definition of indistinguishability of encryptions). This requirement
has to be satisfied even if the receiver tries to cheat.

2. Unambiguity (or binding): Given the transcript of the interaction in the first phase,
there exists at most one value that the receiver may later (i.e., in the second phase)
accept as a legal “opening” of the commitment. This requirement has to be satisfied
even if the sender tries to cheat.

The first phase is called the commit phase, and the second phase is called the reveal
phase. Without loss of generality, the reveal phase may consist of merely letting the
sender send, to the receiver, the original value and the sequence of random coin tosses
that it has used during the commit phase. The receiver will accept the value if and only
if the supplied information matches its transcript of the interaction in the commit phase.

Our informal definition above describes a perfectly binding commitment scheme.
That is, there exists only a single value that the receiver will accept as a decommitment.
Therefore, even if the sender is computationally unlimited, he cannot cheat.

We now present a construction of a non-interactive, perfectly binding bit commitment
using collections of one-way permutations (which are implied by the existence of col-
lections of enhanced trapdoor permutations). Specifically, let (I, D, F) be a collection
of one-way permutations, where loosely speaking, I is a probabilistic algorithm that
samples a domain Di and a function fi , D is an algorithm that receives the output i of I
and samples a hard-to-invert value from the domain, and F is an algorithm that receives
i and any x ∈ Di and outputs fi (x). Below, we refer to a hard-core predicate bi for fi .
The commitment scheme is as follows:

1. Commit Phase: To commit to a bit τ ∈ {0, 1}, the sender runs I (1n) with random-
tape rI and obtains an index i . It then uniformly selects rx ∈ {0, 1}n , computes
x = Di (rx) and sends the tuple (i, fi (x), bi (x)⊕ τ).

2. Reveal Phase: The sender reveals the random-tape rI , the bit τ and the string x
computed in the commit phase. The receiver accepts τ as the decommitment if the
index i is the result of running I (1n) with random-tape rI , if fi (x) = α, and if
bi (x)⊕ τ = β, where (i, α, β) is the receiver’s view of the commit phase.

It is easy to see that this construction is a secure commitment scheme. The reason that
the sender reveals the random-tape rI is to ensure that the index i is in the range of I .
This ensures that f is a permutation, and so perfect binding is achieved.46

In order to commit to a string of n bits, τ = τ1 · · · τn , the sender simply commits to
each τi separately as above. We denote the commitment by Commit(τ) = C(τ, r)where
the randomness used by the sender is r = r1, . . . , rn (∀i ri ∈R {0, 1}n).

46 We note that this assumes that the function sampling algorithm I always outputs a permutation. This is
not a problem for known candidates. Alternatively, one can construct perfectly binding commitment schemes
directly from 1–1 one-way functions (whose existence we also assume in this paper).

Session-Key Generation Using Human Passwords Only 335

A.3. Non-Malleable String Commitment

Loosely speaking, a non-malleable string commitment scheme is a commitment scheme
with the additional requirement that given a commitment, it is infeasible to generate a
commitment to a related value. We note that the commitment scheme presented in Sec-
tion A.2 is easily malleable.47 The concept of non-malleability was introduced by Dolev
et al. in [22], where they also provide a perfectly binding, (interactive) non-malleable
commitment scheme based on any one-way function. We note that it is possible to con-
struct a one-way function g (and not a collection of one-way functions) from a collection
of trapdoor permutations (I, D, F) by defining g(r, s) = (I (r), f I (r)(DI (r)(s))).

We now present an informal definition of a non-malleable commitment scheme. Let
A be an adversary who plays the receiver in a commitment protocol with a sender S.
Furthermore,A concurrently plays the sender in a commitment protocol with a receiver
T (one can look at S and T as executing a commitment protocol, with A playing a
man-in-the-middle attack). To be more exact, consider the following experiment. Let D
be some distribution of strings from which the values being committed to are chosen.
In the experiment, the sender S chooses α ∈R D and commits to α in an execution of
the commitment protocol with A as the receiver. Concurrently, the adversary A plays
the sender in a commitment protocol with T as the receiver. We denote by β the value
committed to byA in the execution betweenA and T . The adversaryA’s aim is to succeed
in having its committed value β related to α (A is not considered to have succeeded if
β = α; that is, copying is not ruled out). Thus, for a given polynomial-time computable
relation R, we denote by �(A, R), the probability that A’s commitment is to a string
β such that (α, β) ∈ R. That is, �(A, R) denotes the probability that A succeeds in
generating a commitment that is related (by the relation R) to the commitment sent by S.

On the other hand, we consider another experiment involving an adversarial simulator
A′ who does not participate as the receiver in a commitment protocol with S. Rather,A′

sends T a commitment to β and we denote by�′(A′, R) the probability that (α, β) ∈ R
for α ∈R D. That is,�(A′, R) denotes the a priori probability that a related commitment
can be generated. We stress thatA′ must generate a “related” commitment without seeing
any commitment to α.

We say that a string commitment scheme is non-malleable if for every ppt samplable
distribution D, every polynomial-time relation R and every adversaryA, there exists an
adversarial simulatorA′ such that

∣∣�(A, R)−�′(A′, R)
∣∣ is negligible. Intuitively, this

implies that the fact that A receives a commitment to α does not noticeably help it in
generating a commitment to a related β. This formalization is conceptually similar to
that of semantic security for encryptions (that states that the ciphertext itself does not
help in learning any function of the plaintext).

A.4. The Zero-Knowledge Proof of Richardson and Kilian

We first review the notion of zero-knowledge. Loosely speaking, zero-knowledge proofs
are proofs which yield nothing beyond the validity of the assertion. That is, a verifier

47 The malleability of the commitment scheme of Section A.2 can be seen as follows. Let (y, b) be a
commitment to some bit τ (i.e., y = f (r) for some string r , and b(r)⊕ b = τ). Then, given this commitment,
it is easy to generate a commitment to τ by defining C(τ) = (y, 1−b). We stress that this can be done without
any knowledge whatsoever of the value of τ itself.

336 O. Goldreich and Y. Lindell

obtaining such a proof only gains conviction in the validity of the assertion. Using
the simulation paradigm this requirement is stated by postulating that anything that is
feasibly computable from a zero-knowledge proof is also feasibly computable from the
valid assertion alone.

The above informal paragraph refers to proofs as to interactive and randomized pro-
cesses. That is, here a proof is a (multi-round) protocol for two parties, called the verifier
and the prover, in which the prover wishes to convince the verifier of the validity of a
given assertion. Such an interactive proof should allow the prover to convince the verifier
of the validity of any true assertion, whereas NO prover strategy may fool the verifier to
accept false assertions. Both the above completeness and soundness conditions should
hold with high probability (i.e., a negligible error probability is allowed). The prescribed
verifier strategy is required to be efficient. See [25] for a formal definition of interactive
proofs. Zero-knowledge is a property of some prover strategies. More generally, we con-
sider interactive machines which yield no knowledge while interacting with an arbitrary
feasible (i.e., probabilistic polynomial-time) adversary on a common input taken from a
predetermined set (in our case the set of valid assertions).

Definition A.4 (Zero-Knowledge [33]). A strategy P is zero-knowledge on inputs from
S if, for every feasible strategy V ∗, there exists a feasible computation M∗ so that the
following two probability ensembles are computationally indistinguishable:

1. {(P, V ∗)(x)}x∈S
def= the output of V ∗ when interacting with P on common input

x ∈ S; and

2. {M∗(x)}x∈S
def= the output of M∗ on input x ∈ S.

A general plausibility result [31]. Assuming the existence of commitment schemes,
there exist zero-knowledge proofs for membership in any NP-language. Furthermore,
the prescribed prover strategy is efficient provided it is given an NP-witness to the
assertion that is proven.

The Protocol of Richardson and Kilian [48]

We actually simplify their presentation in a way that suffices for our own purposes. In
essence, the protocol consists of two parts. In the first part, which is independent of
the actual common input, m instances of coin tossing into the well [11] are sequentially
executed where m is a parameter (to be discussed below). Specifically, the first part
consists of m iterations, where the i th iteration proceeds as follows: The verifier uniformly
selects vi ∈ {0, 1}n , and commits to it using a perfectly hiding commitment scheme. Next,
the prover selects pi ∈R {0, 1}n , and sends a perfectly binding commitment to it. Finally,
the verifier decommits to vi . (The result of the i th coin toss is defined as vi ⊕ pi and is
known only to the prover.)

In the second part the prover provides a witness indistinguishable (WI) proof [23]
that either the common input is in the language or one of the outcomes of the m coin
tosses is the all-zero string (i.e., vi = pi for some i). Intuitively, since the latter case
is unlikely to happen in an actual execution of the protocol, the protocol constitutes a
proof system for the language. However, the latter case is the key to the simulation of

Session-Key Generation Using Human Passwords Only 337

the protocol in the concurrent zero-knowledge model. We utilize this in our setting as
well, when setting m to be equal to the total number of rounds in our own protocol (not
including this subprotocol) plus any non-constant function of the security parameter n.
The underlying idea is that whenever the simulator may cause vi = pi to happen for
some i , it can simulate the rest of the protocol (and specifically Part 2) by merely running
the WI proof system with vi (and the prover’s coins) as a witness. (By the WI property,
such an execution will be indistinguishable from an execution in which an NP-witness
for the membership of the common input (in the language) is used.)

We remark that any perfectly hiding commitment scheme can be used in the first part
of the proof. In particular, 2-round schemes exist under the assumption of the existence
of collections of claw-free functions with efficiently recognizable index sets [25]. Alter-
natively, one can use an O(n)-round scheme based on any one-way permutation [44].
However, our main theorem assumes only the existence of collections of enhanced trap-
door permutations, and thus collections of one-way permutations (rather than one-way
permutations themselves). We now show how to modify the commitment of [44] so that
collections of one-way permutations may be used. In order to do this, first note that the
one-wayness of the one-way permutation is needed for the binding property, whereas
the fact that the function is 1–1 is used for the hiding property. Therefore, it suffices for
the receiver to choose the permutation f and prove in zero-knowledge that it is indeed
a permutation. This can be done by having the receiver simply prove that there exists a
value r such that I (r) = f , where I is the function sampling algorithm.48 The fact that a
standard zero-knowledge proof can be used here to prove that f is a permutation is due
to the fact that the perfect hiding property of the commitment scheme (which relies on
the fact that f is 1–1) is only used for the soundness property of the Richardson–Kilian
proof system. Furthermore, the soundness of the Richardson–Kilian proof system is only
used in Fact 6.13, where it is applied for a standard two-party, stand-alone setting.

A.5. Seed-Committed Pseudorandom Generators

A seed-committed pseudorandom generator is an efficiently computable deterministic
function G mapping a seed to a (sequence,commitment) pair that fulfills the following
conditions:

• The sequence is pseudorandom, even given the commitment.
• The partial mapping of the seed to the commitment is 1–1.

We use the following implementation [13], [12] of a seed-committed generator. Let f
be a 1–1 one-way function and let b be a hard-core of f . Then define

G(s) = 〈 f 2n(s), b(s)b(f (s)) · · · b(f 2n−1(s))〉.
This generator clearly fulfills the requirements: f 2n(s) is the commitment and b(s) · · ·
b(f 2n−1(s)) is the sequence.

48 This assumes that the function sampling algorithm outputs a permutation with probability 1. In case this
does not hold, a different method of proving that f is a permutation is needed. General methods for achieving
this can be found in [8]. We remark that in actuality, the solution of [8] only provides a proof that f is almost
a permutation. However, this suffices by having the committer commit separately to shares of its input. With
overwhelming probability, at least one of these shares will be perfectly hidden.

338 O. Goldreich and Y. Lindell

We note that the following naive implementation does not work. Let G be any pseu-
dorandom generator and consider the seed as a pair (s, r). Then define the mapping
(s, r) �→ (G(s),C(s, r)) where C(s, r) is a commitment to s using randomness r . It is
true that the sequence is pseudorandom given the commitment. Furthermore, for every
s
= s ′ and for every r, r ′ we have that C(s, r)
= C(s ′, r ′). However, there may be an s
and r
= r ′ for which C(s, r) = C(s, r ′) and therefore the mapping of the seed to the
commitment is not necessarily 1–1.

A.6. Message Authentication Codes (MACs)

A Message Authentication Code, or MAC, enables parties A and B who share a joint
secret key to achieve data integrity. That is, if B receives a message which is purportedly
from A, then by verifying the MAC, B can be sure that A indeed sent the message and
that it was not modified by any adversary on the way. A Message Authentication Scheme
is comprised of the following algorithms:

1. A Key Generation algorithm that returns a secret key k.
2. A Tagging algorithm that given a key k and a message m, returns a tag t =

MACk(m).
3. A Verification algorithm that given a key k, a message m, and a candidate tag t ,

returns a bit b = Verifyk(m, t).

We now briefly, and informally, describe the security requirements of a MAC. Let
AMACk (·) be a ppt adversary with oracle access to the tagging algorithm and let m1, . . . ,mq

be the list ofA’s oracle queries during her execution. Upon termination,A outputs a pair
(m, t). We say thatA succeeds if for every i , m
= mi and furthermore Verifyk(m, t) = 1
(i.e.,A generates a valid tag for a previously unseen message). Then a MAC is secure if
for every ppt machine A, the probability that A succeeds is negligible.

This ensures integrity, because if an adversary modifies a message sent from A to B to
one not previously seen, then B’s verification will surely fail (there is an issue of replay
attacks which we ignore here). The property that A cannot find an appropriate tag t for
a “new” m is called unpredictability.

It is easy to see that any pseudorandom function is a secure implementation of a
MAC. This is because any random function is unpredictable and so any non-negligible
success in generating t such that f (m) = t (for an “unseen” m) distinguishes f from
random.

References

[1] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared Random
String Model. In Proceedings of the 43rd IEEE Symposium on the Foundations of Computer Science,
pages 345–355, 2002.

[2] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Systems Tolerating a Fault Mi-
nority. Journal of Cryptology, 4(2):75–122, 1991.

[3] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Design and Analysis of Authen-
tication and Key Exchange Protocols. In Proceedings of the 30th ACM Symposium on the Theory of
Computing, pages 419–428, 1998.

[4] M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary
Attacks. In EUROCRYPT ’00, pages 139–155. Springer-Verlag (LNCS 1807), Berlin, 2000.

Session-Key Generation Using Human Passwords Only 339

[5] M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm for Designing Efficient Pro-
tocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security, pages
62–73, 1993.

[6] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In CRYPTO ’93, pages 232–
249. Springer-Verlag (LNCS 773), Berlin, 1994.

[7] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party Case. In
Proceedings of the 27th ACM Symposium on the Theory of Computing, pages 57–66, 1995.

[8] M. Bellare and M. Yung. Certifying Permutations: Non-Interactive Zero-Knowledge Based on Any
Trapdoor Permutation. Journal of Cryptology, 9(3):149–166, 1996.

[9] S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against
Dictionary Attacks. In Proceedings of the ACM/IEEE Symposium on Research in Security and Privacy,
pages 72–84, 1992.

[10] S.M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based Protocol
Secure Against Dictionary Attacks and Password File Compromise. In Proceedings of the 1st ACM
Conference on Computer and Communication Security, pages 244–250, 1993.

[11] M. Blum. Coin Flipping by Phone. Proceedings of the IEEE Spring COMPCOM, pages 133–137,
February 1982.

[12] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme Which
Hides All Partial Information. In CRYPTO ’84, pages 289–302. Springer-Verlag (LNCS 196), Berlin,
1985.

[13] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.
SIAM Journal of Computation, 13(4):850–864, 1984.

[14] M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User Case. In Proceedings
of the 6th ACM Conference on Computer and Communication Security, pages 63–72, 1999.

[15] V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password-Authenticated Key Exchange Using
Diffie–Hellman. In EUROCRYPT ’00, pages 156–171. Springer-Verlag (LNCS 1807), Berlin, 2000.

[16] R. Canetti. Security and Composition of Multi-Party Cryptographic Protocols. Journal of Cryptology,
13(1):143–202, 2000.

[17] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings of the 42nd IEEE Symposium on the Foundations of Computer Science, pages 136–145,
2001.

[18] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In Proceedings
of the 30th ACM Symposium on the Theory of Computing, pages 209–218, 1998.

[19] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building Secure
Channels. In EUROCRYPT ’01, pages 453–474. Springer-Verlag (LNCS 2045), Berlin, 2001.

[20] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information
Theory, IT-22:644–654, 1976.

[21] W. Diffie, P.C. Van Oorschot and M.J. Wiener. Authentication and Authenticated Key Exchanges.
Designs Codes and Cryptography, 2(2):107–125, 1992.

[22] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,
30(2):391–437, 2000.

[23] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In Proceedings of
the 22nd ACM Symposium on the Theory of Computing, pages 416–426, 1990.

[24] Y. Gertner, S. Kannan, T. Malkin, O. Reingold and M. Viswanathan. The Relationship between Public-
Key Encryption and Oblivious Transfer. In Proceedings of the 41st IEEE Symposium on the Foundations
of Computer Science, pages 325–335, 2000.

[25] O. Goldreich. Foundation of Cryptography: Volume 1—Basic Tools. Cambridge University Press, Cam-
bridge, 2001.

[26] O. Goldreich. Foundations of Cryptography: Volume 2—Basic Applications. Cambridge University
Press, Cambridge, 2004.

[27] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of the ACM,
33(4):792–807, 1986.

[28] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for
NP. Journal of Cryptology, 9(3):167–190, 1996.

[29] O. Goldreich, L.A. Levin and N. Nisan. On Constructing 1–1 One-Way Functions. Electronic Collo-
quium on Computational Complexity, TR95-029, 1995.

340 O. Goldreich and Y. Lindell

[30] O. Goldreich, S. Micali and A. Wigderson. How to Play Any Mental Game—A Completeness Theorem
for Protocols with Honest Majority. In Proceedings of the 19th ACM Symposium on the Theory of
Computing, pages 218–229, 1987. For details see Chapter 7 of [26].

[31] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but Their Validity or All Languages
in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, 38(1):691–729, 1991.

[32] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

[33] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

[34] S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. In Proceedings of the
5th ACM Conference on Computer and Communications Security, pages 122–131, 1998.

[35] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permutations. In
Proceedings of the 21st ACM Symposium on the Theory of Computing, pages 44–61, 1989.

[36] D.P. Jablon. Strong Password-Only Authenticated Key Exchange. SIGCOMM Computer Communica-
tions Review, 26(5):5–26, 1996.

[37] J. Katz, R. Ostrovsky and M. Yung. Practical Password-Authenticated Key Exchange Provably Secure
under Standard Assumptions. In EUROCRYPT ’01, pages 475–494. Springer-Verlag (LNCS 2045),
Berlin, 2001.

[38] C. Kaufman, R. Perlman and M. Speciner. Network Security. Prentice-Hall, Englewood Cliffs, NJ,
1997.

[39] J. Kilian. Basing Cryptography on Oblivious Transfer. In Proceedings of the 20th ACM Symposium on
the Theory of Computing, pages 20–31, 1988.

[40] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In CRYPTO
’01, pages 171–189. Springer-Verlag (LNCS 2139), Berlin, 2001.

[41] S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks without Encrypting Public Keys. In
Security Protocols, 5th International Workshop, pages 79–90. Springer-Verlag (LNCS 1361), Berlin,
1998.

[42] A. Menezes, P. Van Oorschot and S. Vanstone. Handbook of Applied Cryptography. CRC Press, Boca
Raton, FL, 1997.

[43] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary version
in CRYPTO ’91, pages 392–404, Springer-Verlag (LNCS 576), Berlin, 1991.

[44] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP Can Be Based
on General Assumptions. Journal of Cryptology, 11(2):87–108, 1998.

[45] M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In Proceedings of the 31st ACM
Symposium on the Theory of Computing, pages 245–254, 1999.

[46] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large Networks of Com-
puters. Communications of the ACM, 21(12):993–999, 1978.

[47] S. Patel. Number Theoretic Attacks on Secure Password Schemes. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 236–247, 1997.

[48] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EURO-
CRYPT ’99, pages 415–431. Springer-Verlag (LNCS 1592), Berlin, 1999.

[49] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key
Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[50] V. Shoup. On Formal Models for Secure Key Exchange. Cryptology ePrint Archive, Report 1999/012,
http://eprint.iacr.org/.

[51] M. Steiner, G. Tsudik and M. Waidner. Refinement and extension of encrypted key exchange. ACM
SIGOPS Operating Systems Review, 29(3):22–30, 1995.

[52] T. Wu. The Secure Remote Password Protocol. In Proceedings of the 1998 Internet Society Symposium
on Network and Distributed System Security, pages 97–111, 1998.

[53] A.C. Yao. Theory and Application of Trapdoor Functions. In Proceedings of the 23rd IEEE Symposium
on the Foundations of Computer Science, pages 80–91, 1982.

[54] A.C. Yao. How to Generate and Exchange Secrets. In Proceedings of the 27th IEEE Symposium on the
Foundations of Computer Science, pages 162–167, 1986.

