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Abstract. The TLS 1.3 0-RTT mode enables a client reconnecting to a server to send

encrypted application-layer data in “0-RTT” (“zero round-trip time”), without the need

for a prior interactive handshake. This fundamentally requires the server to reconstruct

the previous session’s encryption secrets upon receipt of the client’s first message. The

standard techniques to achieve this are session caches or, alternatively, session tickets.

The former provides forward security and resistance against replay attacks, but requires

a large amount of server-side storage. The latter requires negligible storage, but provides

no forward security and is known to be vulnerable to replay attacks. In this paper, we first

formally define session resumption protocols as an abstract perspective on mechanisms

like session caches and session tickets. We give a new generic construction that provably

provides forward security and replay resilience, based on puncturable pseudorandom

functions (PPRFs). We show that our construction can immediately be used in TLS 1.3

0-RTT and deployed unilaterally by servers, without requiring any changes to clients

or the protocol. To this end, we present a generic composition of our new construction

with TLS 1.3 and prove its security. This yields the first construction that achieves

forward security for all messages, including the 0-RTT data. We then describe two new

constructions of PPRFs, which are particularly suitable for use for forward-secure and

replay-resilient session resumption in TLS 1.3. The first construction is based on the

strong RSA assumption. Compared to standard session caches, for “128-bit security”

it reduces the required server storage by a factor of almost 20, when instantiated in a

∗Supported by the German Research Foundation (DFG), project JA 2445/2-1, the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant

agreement 802823, scholarships from The Israeli Ministry of Science and Technology, The Check Point

Institute for Information Security, and The Yitzhak and Chaya Weinstein Research Institute for Signal

Processing. We thank Colin Boyd, Sven Hebrok, Nick Sullivan, and all anonymous reviewers for their valuable

comments. We also thank Felix Günther and Matilda Backendal for spotting an issue in the proof of Theorem 3

and for suggesting a fix

© The Author(s) 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-021-09385-0&domain=pdf


20 Page 2 of 57 N. Aviram et al.

way such that key derivation and puncturing together are cheaper on average than one

full exponentiation in an RSA group. Hence, a 1 GB session cache can be replaced

with only about 51 MBs of storage, which significantly reduces the amount of secure

memory required. For larger security parameters or in exchange for more expensive

computations, even larger storage reductions are achieved. The second construction

combines a standard binary tree PPRF with a new “domain extension” technique. For

a reasonable choice of parameters, this reduces the required storage by a factor of up

to 5 compared to a standard session cache. It employs only symmetric cryptography, is

suitable for high-traffic scenarios, and can serve thousands of tickets per second.

Keywords. TLS 1.3, Session Resumption, 0-RTT, Forward Security, Puncturable

PRF.

1. Introduction

0-RTT Protocols A major innovation of TLS 1.3 [51] is its 0-RTT (zero round-trip

time) mode, which enables the resumption of sessions with minimal latency and without

the need for an interactive handshake. A 0-RTT protocol allows the establishment of

a secure connection in “one-shot”, that is, with a single message sent from a client to

a server, such that cryptographically protected payload data can be sent immediately

(“in 0-RTT”) along with the key establishment message, without the need for a latency-

incurring prior handshake protocol. This significant speedup of connection establishment

yields a smoother Web browsing experience and, more generally, better performance for

applications with low-latency requirements. This is particularly noticeable in networks

with relatively high latency, such as mobile networks.

The huge practical demand for 0-RTT is exemplified by the fact that many large

Internet companies have developed and experimented with such protocols in the recent

past, for example Google’s QUIC [16] and Facebook’s Zero [35] protocols. The content

distribution provider Cloudflare has deployed the 0-RTT mode of TLS 1.3 as early as

March 2017 at large scale, long before the finalization of the standard [57]. Google and

Facebook declared that the cryptography in QUIC and Zero will soon be replaced by

TLS 1.3 0-RTT [5,35].

The TLS 1.3 0-RTT Handshake A full TLS 1.3 handshake (not 0-RTT) is always used

in the very first connection between a client and a server. If the server supports 0-RTT,

then both the client and server can derive a resumption secret from their shared key and

session parameters. The client will simply store this secret. Naturally, the server then

needs to retrieve the resumption secret during a subsequent handshake. There are two

standard approaches for this, session caches and session tickets, which have different

advantages and drawbacks. During the first handshake, the server sends to the client

either a lookup key pointing to an entry in the session cache of the server, or a session

ticket—depending on the configuration of the server. These approaches essentially work

as follows:

Session caches: The server stores all resumption secrets of recent sessions in a local

database and issues each client a unique lookup key. When a client re-

connects, it includes that lookup key in its 0-RTT messages, enabling

the server to retrieve and use the matching resumption secret.
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Session tickets: The server uses a long-term symmetric encryption key, called the

session ticket encryption key (STEK). Instead of storing the resump-

tion secret in a local database, the server encrypts it with the STEK

to create a session ticket. The session ticket is stored by the client.

When a client reconnects, it includes that session ticket in its 0-RTT

messages, which enables the server to decrypt it and recover the re-

sumption secret. Note that the same STEK is used for many sessions

and clients.

On a subsequent 0-RTT handshake, the client will include in its first message either the

lookup key or the encrypted session ticket, in addition to a Diffie–Hellman key exchange

message. The client can also send, in the same message, encrypted application-layer data,

termed 0-RTT data. This data will be encrypted with a key derived from the resumption

secret and a public client random value, without any input from the server.

In its reply, the server will typically include a Diffie–Hellman key exchange message,

and further messages (in either direction) will be encrypted with a key derived also from

the DH secret, not only the resumption secret. Hence, the only data protected by the

resumption secret alone is the 0-RTT data. We note that the use of DH is not mandatory,

and it is possible to rely only on the resumption secret for the security of the entire

session; we expect most traffic will use DH as described above.

We stress that the use of session caches or session tickets is opaque to clients. That

is, in either case the server sends a NewSessionTicket message containing an

opaque sequence of bytes, which may be either a lookup key for the session cache, or

an encrypted session ticket, without specifying which is the case. This property ensures

that our proposed techniques are compatible with the final TLS 1.3 standard [51] and

can be implemented on the server-side without requiring modifications to the protocol

or to clients.

Confusingly, the message containing this opaque sequence of bytes is always termed

a “NewSessionTicket message”, for both session caches and encrypted self-con-

tained session tickets. To our knowledge there is no standard nomenclature, in [51] or

elsewhere, for these two different approaches when used in TLS 1.3; see e.g. [51, §8.1].

TLS 1.2 referred to “Session ID Resumption" and “Session Ticket Resumption", but

these terms are not used in TLS 1.3.

Forward Security and Replay Resilience of 0-RTT Protocols Forward security essentially

means that the protocol provides security of sessions, even if an attacker is able to corrupt

one party after the session has terminated (e.g., by breaking into a Web server and learning

the long-term secret key). Resilience to replay attacks is a fundamental, classical design

goal of cryptographic protocols, which prevents an attacker from replaying the same

payload data to a server repeatedly.

Both forward security and replay resilience are standard design goals of modern se-

curity protocols. However, achieving these properties is well-known to be difficult for

0-RTT protocols. This is because classical (“non-0-RTT”) protocols include fresh input

from the server (e.g., a Diffie–Hellman message) generated using ephemeral random-

ness, which provides a leverage to achieve forward security. However, there is no such

interactivity in 0-RTT protocols. Furthermore, an attacker is able to replay the 0-RTT
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key establishment message along with the 0-RTT payload data over and over again to a

server, which is not detectable without additional server-side countermeasures.

For a more general treatment of the notion of “forward security” and “forward secrecy”

in non-interactive contexts (such as 0-RTT protocols or instant messaging), we refer to

a work by Boyd and Gellert [13].

Forward Security and Replay Resilience of TLS 1.3 0-RTT With session caches the server

stores a “unique” resumption secret in a local database for each client. In most cases,

it is able to delete the resumption secret immediately after retrieving it. This provides

forward security, as an attacker obtaining the server state cannot decrypt past sessions.

It also provides resilience against replay attacks, as the server is not able to decrypt

replayed messages.

If session tickets are used, then an attacker that obtains access to the server can learn

the STEK, and thus decrypt all tickets encrypted with this key to learn the resumption

keys. Hence, servers using session tickets do not provide forward security. They are also

generally vulnerable to replay attacks, as explained below. Since an attacker learning the

STEK has catastrophic implications for security, large server operators usually rotate

the STEK. Such deployments typically generate a new STEK roughly once per hour,

and limit the STEK lifetime to roughly a day [46]. An attacker that learns one STEK

can therefore decrypt approximately one hour’s worth of traffic. However, most current

TLS implementations do not provide out-of-the-box support for STEK rotation, and this

(welcome) defensive measure is usually limited to large operators who can afford to

modify TLS implementations [43,46]. Long-lived STEKs are unfortunately prevalent,

and even among high-profile websites, some reuse the same STEK for many weeks, or

even for many months [56].

STEK-based deployments are also generally vulnerable to replay attacks. When using

resumption, the client must include in its first message the ticket’s age, i.e. the time

elapsed between receiving the ticket from the server in a previous session. The server

expects this time interval to be precise up to a small window of error allowing for

propagation delay, typically on the order of 10 seconds. An attacker can perform replay

attacks within this time window (unless there is additional server-side logging of tickets

that have already been used, which is rare).

To summarize, session caches are generally forward-secure and replay-resistant, while

session tickets are not. Naïvely, it would therefore appear that session caches are the

superior solution. However, session caches require the server to store the session state

for each (recent) connection. This is often infeasible, in particular for high-traffic server

operators. Such server operators often reluctantly use session tickets, knowingly forgoing

forward secrecy. Additionally, even if forward security is not prioritized by a particular

server operator and thus session tickets are used, the prevention of replay attacks may

still require additional storage at the server, since the only way to prevent replay attacks

in this case is to log used tickets.

In this context it is sometimes claimed that so-called idempotent requests, that is,

requests that have the same effect on the server state whether they are served once

or several times, are safe to use with TLS 1.3 0-RTT. However, it is well-known [48]

and also discussed in the TLS 1.3 specification [51] that even replays of idempotent
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requests may give rise to attacks that, e.g., reveal the target URL of HTTP requests. See

Appendix A for an example.

All of these issues are well-known to apply to TLS 1.3 0-RTT and have raised sig-

nificant concerns about its secure deployability in practice [48]. Eric Rescorla, the main

author of the TLS 1.3 RFC draft, acknowledges that this poses a “difficult application

integration issue” [50]. However, due to the huge practical demand, 0-RTT is also con-

sidered “too big a win not to do” [50]. At EUROCRYPT 2017 [33] and 2018 [19,20],

the first 0-RTT protocols that simultaneously achieve forward security and replay re-

silience were proposed, but these require relatively heavy cryptographic machinery, such

as hierarchical or broadcast identity-based encryption, and thus are not yet suitable for

large-scale deployment in TLS 1.3.

Our Contributions We give the first formal definition for secure 0-RTT session resump-

tion protocols, as an abstraction of the constructions currently used in practice in TLS

1.3. We propose new techniques to achieve forward security and replay resilience that

are ready-to-use with TLS 1.3 as it is standardized, without any changes to the protocol.

Our proposal is based on session tickets, and thus requires minimal storage at the server

side, but we extend this approach with efficient puncturable pseudorandom functions

(PPRFs) that enable us to achieve forward security and replay resilience for session

tickets. We provide new constructions of PPRFs with short keys and formal security

proofs based on standard hardness assumptions. We propose two variants:

1. The first variant is based on the strong RSA assumption. It reduces the server

storage by a factor of at least 11 compared to a session cache, increases ticket size

by a negligible length, and requires the server to perform two exponentiations (one

per issuance and one per resumption).

2. The second variant reduces server storage by a factor of up to 5 compared to a

session cache, while using tickets that are roughly 400 bytes longer than standard

tickets. It extends a standard GGM-style [30] binary tree-based PPRF, as described

in [12,14,38], with a new domain extension idea. It employs only symmetric cryp-

tography, is suitable for very-high-traffic scenarios, and can serve thousands of

tickets per second, at the cost of hundreds of megabytes in server storage.

Our Approach At the base of our approach is the concept of puncturing a pseudorandom

function (PRF) to obtain a puncturable symmetric-key encryption scheme. Puncturable

PRFs are a special case of constrained PRFs [12,14,38], which make it possible to derive

constrained keys that allow computation of PRF output only for certain inputs.

In our approach, a server initially maintains a STEK k that allows decryption of any

session ticket; when receiving ticket t , the server uses k to decrypt t in order to recover

the resumption secret. Using the puncturing feature of the PPRF, it then derives from k a

new key, k′, that can decrypt any ticket except for t . The server then discards k and stores

only k′. It repeats this process for every ticket received. This yields forward secrecy and

replay-resistance: an attacker that compromises the server learns a key that is not capable

of decrypting past tickets. Similarly, an attacker cannot successfully replay a message,

since the server is only able to decrypt each ticket once.

The naïve way to employ this approach in TLS 1.3 0-RTT would be to use public-key

puncturable encryption, as in [19,20,33]. However, this approach results in impractically



20 Page 6 of 57 N. Aviram et al.

long puncturing times or very long secret keys. Moreover, the most practical construc-

tions require relatively expensive pairing-based cryptography by both the client and the

server, thereby obviating the efficiency benefit of TLS 1.3 0-RTT. To be precise, since

the puncturing times are in the order of hundreds of milliseconds, they introduce ad-

ditional latency that is larger/comparable to the additional RTT they save. Rather than

using public-key puncturable encryption, we observe that in TLS 1.3 0-RTT, the server

itself generates the tickets it would later need to decrypt. It therefore suffices to use

symmetric cryptography, and to maintain a key that allows decryption of only a limited

set of ciphertexts, generated by the server itself. To achieve this, we use PPRFs to derive

keys for standard TLS 1.3 tickets. Concretely, we describe two new PPRF constructions

that are particularly suitable for our application:

– The first builds a new PPRF from the Strong RSA Assumption. The PPRF has a

polynomially-bounded input size, but this is sufficient for our application (and prob-

ably for certain other PPRF applications as well). Its main distinguishing feature is

that its secret key size is independent of the number of puncturings. It consists of

an RSA modulus N , a number g ∈ ZN , and a bitfield, indicating positions where

the PPRF was punctured. Due to the short secret key, our construction may find

other applications in applied and theoretical cryptography. Since our primary ob-

jective is to provide an as-efficient-as-possible solution for practical protocols such

as TLS 1.3 0-RTT, we describe a construction with security proof in the random

oracle model [7]. It seems likely that our construction can be lifted to the standard

model in a straightforward way, via standard techniques like hardcore predicates

[8,10,31], but this would yield less efficient constructions and is therefore outside

the scope of this paper.

– The second construction is based on a standard tree-based PPRF [12,14,38], in-

stantiated with a cryptographic hash function, such as SHA-3.

The size of punctured keys depends linearly on the depth of the tree, which in

turn depends on the size of the domain of the PPRF. We describe a new domain

extension technique that reduces the size of punctured keys by trading secret key

size for ticket size, while preserving the puncturing functionality. Domain extension

makes it possible to use a PPRF with a smaller domain (and thus smaller punctured

keys). To save a factor of up to n in server-side storage, the ticket size rises roughly

as (n − 1)!. Thus, this is only useful for small values of n, but choosing e.g. n = 5

can yield significant savings with a modest increase in ticket size on the wire.

Concretely, for n = 5 and “128-bit security”, ticket size is increased by 384 bytes.

As discussed in Sect. 7.1, experiments done by Google estimate that this will impose

only a small impact on latency [44].

Integration in TLS 1.3 We show how to generically integrate any 0-RTT session re-

sumption protocol in the TLS 1.3 resumption handshake. In particular, we can show

that the security of the 0-RTT session resumption protocol allows achieving forward se-

crecy for all messages (including the 0-RTT data) of the resumption handshake without

modifications to any client implementations. This yields the first variant of the TLS 1.3

resumption handshake with full forward secrecy, whereas current implementations are

unable to provide this for the client’s first flight of messages.
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We note that our protocol is incompatible with ticket re-use. That is, a client reusing

tickets may undesirably fail to resume its session, which is unavoidable if the server

wants to provide forward secrecy for 0-RTT data. As forward secrecy of 0-RTT data

is desirable, we hope that client implementations will not reuse tickets when sending

0-RTT data, minimizing failed session resumption attempts. We note that the TLS 1.3

standard explicitly discourages, but does not outright forbid, ticket reuse by clients [51,

§C.4].

The security of the new TLS 1.3 resumption handshake variant is proven in the multi-

stage key exchange model by Fischlin and Günther [27,28]. Their model was used in

several proofs of key exchange protocols with similar levels of complexity, such as

Google’s QUIC protocol [27], and several drafts and handshake modes of the TLS 1.3

protocol [23,24,28]. We adopt and extend the proof of the TLS 1.3 draft-14 resumption

handshake in [28]. Namely, we model the TLS 1.3 resumption handshake in its finalized

version, which follows a different key derivation schedule as considered in previous

works, and generically integrate a 0-RTT session resumption protocol to immediately

achieve forward secrecy.

Large-Scale Server Clusters and Load Balancing Large TLS server deployments typ-

ically consist of many servers that share the same public key. This complicates any

logic that relies on the server storing some state, since these servers will typically not

share a globally-consistent state. Such discussion is beyond the scope of this paper, and

we will assume a single server with consistent storage throughout. When many servers

share a session cache, the cache is likely to be distributed, and any logic relying on

an atomic retrieve-and-delete operation becomes more complex. Therefore, distributed

session caches are not necessarily replay-resistant nor forward-secure, as this requires

synchronous deletion of resumption secrets at all servers, and thus synchronized state.

When using session tickets, the same holds for mechanisms that store used tickets,

which are likely to be distributed as well. See [51, §2.3, §8, §E.5], [48,49] for more

in-depth discussion. However, in large-scale settings it is highly desirable to minimize

the amount of memory that must be consistently synchronized across different servers.

Our techniques are therefore useful to that end as well.

Further Applications to Devices with Restricted Resources Our techniques may also be

useful for devices with very restricted resources, such as battery-powered IoT devices

with a wireless network connection. For such devices, it is usually extremely expensive

to send data, because each transmitted bit costs energy, which limits the battery lifetime

and thus the range of possible applications. In order to maximize the battery lifetime, it

is useful to avoid expensive interactive handshakes and use a 0-RTT protocol whenever

data is sent to such devices. Note that here the main gain from using 0-RTT is not minimal

latency, but rather that no key exchange messages must be sent by the receiver. Ideally,

transmitted data should be forward-secure, but such devices have low storage capacity

and we cannot use large amounts of storage to achieve forward security.

For such devices, it is reasonable to relax the requirement for very efficient computa-

tion, since adding unnecessary transmissions to even a fraction of connections is likely

more costly than using moderately more expensive computations. By instantiating our

session resumption protocol in a way that puncturing is more expensive (say, five full
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RSA exponentiations, which may still be reasonable for most IoT devices), we achieve

reductions in storage by factors close to 100. Thus, our techniques make it possible to

use forward-secure 0-RTT protocols even on such devices. Instead of requiring, say, 1

GB of memory for a session cache, we need only about 10 MBs of memory.

Related Work Puncturable encryption [32] was used to construct forward-secure instant

messaging [32] and 0-RTT protocols [19,20,33,45], for instance. Green and Miers [32]

first proposed puncturable encryption as a practical building block for the case of asyn-

chronous messaging. They used pairing-based puncturable encryption, and as a result

observed impractically long processing times for their construction. Günther et al. [33]

proposed using puncturable encryption for 0-RTT protocols, again proposing concrete

constructions based on pairings that are also impractical for high-traffic scenarios. Der-

ler et al. [19,20] proposed trading off space in exchange for processing time, with the

use of their proposed Bloom filter encryption. Their construction essentially precom-

putes many already-punctured keys, and these keys are used only once, so puncturing

becomes simply key deletion. Bloom Filter Encryption may be considered practical for

low-traffic scenarios, but supporting a large number of puncturings per key requires

precomputation and storage of keys on the order of many gigabytes. A proof-of-concept

0-RTT key exchange based on Bloom filter encryption was implemented and analyzed

by Dallmeier et al. [18]. However, their approach is incompatible with the standardized

TLS protocol, which only allows a 0-RTT mode for session resumption.

Over the past years there have been several papers formally analyzing the security

of TLS 1.2 [9,36,42] and TLS 1.3 [21–23,28]. Particularly noteworthy are the analyses

of the 0-RTT mode of TLS 1.3 [28] and QUIC [27] by Fischlin and Günther, who

analyze both protocols in a multi-stage key exchange model [27]. Lychev et al. [47]

further formally analyzed QUIC in a security model that additionally captures the secure

composition of authenticated encryption and key exchange. A security definition and

construction for QUIC-like 0-RTT protocols were given in [34]. However, all these

publications do not consider forward secrecy for the very first message in their security

models. Hence, we believe that our techniques may also influence the design of protocols

providing a 0-RTT key exchange, such as TLS 1.3 and QUIC, in order to achieve forward

secrecy for all messages.

Differences to the Eurocrypt 2019 Version This work is the full version of a paper, which

appeared in Advances in Cryptology—Eurocrypt 2019—38th Annual International

Conference on the Theory and Applications of Cryptographic Techniques [1]. The full

version discusses how our construction and its benefits can be composed with the TLS

1.3 protocol, without modifying client side implementations or the TLS 1.3 standard. In

Sect. 4 we provide the composed protocol and prove its security in the multi-stage key

exchange model by Fischlin and Günther [27,28]. In contrast to previous security proofs

of TLS 1.3 resumption handshake drafts [23,24,28], we incorporate the finalized key

derivation schedule of TLS 1.3, and are able to achieve forward secrecy for all messages

by utilizing the techniques described in this work. This contribution resolves an open

problem stated in a previous version of this work.

Outline The rest of this paper is organized as follows. In Sect. 2 we provide formal

definitions for secure 0-RTT Session Resumption Protocols. In Sect. 3 we describe a
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generic construction, based on abstract PPRFs, and formally prove forward security and

replay resilience. In Sect. 4 we show how our generic construction can be composed

with TLS 1.3 and prove the composition’s security. Section 5 describes the Strong-RSA-

based PPRF and an analysis of the efficiency when used in the protocol construction

in Sect. 3. Section 6 describes the tree-based PPRF and a novel “domain extension”

technique for standard binary tree PPRFs, along with an efficiency analysis.

Notation We denote the security parameter as λ. For any n ∈ N let 1n be the unary

representation of n and let [n] = {1, . . . , n} be the set of numbers between 1 and n.

Moreover, |x | denotes the length of a bitstring x , while |S| denotes the size of a set S.

We write x $←− S to indicate that we choose element x uniformly at random from set S.

For a probabilistic polynomial-time algorithm A we define y $←− A(a1, . . . , an) as the

execution of A (with fresh random coins) on input a1, . . . , an and assigning the output

to y.

2. 0-RTT Session Resumption Protocols and Their Security

In this section we provide formal definitions for secure 0-RTT session resumption pro-

tocols. These definitions capture both our new techniques and the existing solutions

already standardized in TLS 1.3. We later show that the techniques used to formally an-

alyze and verify TLS 1.3 0-RTT [17,24,28] can be extended to use our abstraction of a

session resumption protocol within TLS 1.3. This leads us to believe that our definitions

capture a reasonable abstraction of the cryptographic core of the TLS 1.3 0-RTT mode

(and likely also of similar protocols that may be devised in the future).

For simplicity, in the following we will refer to pre-shared values as session keys, as

they are either previously established session keys, or a resumption secret derived from

a session key, as e.g. in TLS 1.3. The details of how to establish a shared secret and

potentially derive a session key from it are left to the individual protocol and are outside

the scope of our abstraction. Session keys are elements of a keyspace S.

Definition 1. A 0-RTT session resumption protocol consists of three probabilistic poly-

nomial-time algorithms Resumption = (Setup, TicketGen, ServerRes) with the fol-

lowing properties.

– Setup(1λ) takes as input the security parameter λ and outputs the server’s long-term

key k.

– TicketGen(k, s) takes as input a long-term key k and a session key s, and outputs

a ticket t and a potentially modified long-term key k′.

– ServerRes(k, t) takes as input the server’s long-term key k and the ticket t , and

outputs a session key s and a potentially modified key k′, or a tuple (⊥, k) where

⊥ is a failure symbol.

Using a Session Resumption Protocol A 0-RTT session resumption scheme is used by a

set of clients C and a set of servers S. If a client and a server share a session key s, the

session resumption is executed as follows (cf. Fig. 1).
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Fig. 1. Execution of a generic 0-RTT session resumption protocol based on session tickets with early data m,

where client and server initially are in possession of a shared secret s. The procedures Enc and Dec are sym-

metric encryption and decryption procedures respectively. Note that procedures TicketGen and ServerRes

both potentially modify the server’s key k.

1. The server uses its long-term key k and the session key s to generate a ticket t by

running (t, k′)
$←− TicketGen(k, s). The ticket is sent to the client. Additionally,

the server replaces its long-term key k by k′ and deletes the session key s and ticket

t , i.e. it is not required to keep any session state.

2. For session resumption at a later point in time, the client sends the ticket t to the

server.

3. Upon receiving the ticket t , the server runs (s, k′) := ServerRes(k, t) to retrieve

the session key s. Additionally, k is deleted and replaced by the updated key k′.

Compatibility with TLS 1.3 As explained in Sect. 1, using either session tickets or session

caches in TLS 1.3 is transparent to clients, i.e. clients are generally unaware of which

is used. In either case, the client stores a sequence of bytes which is opaque from the

client’s point of view. Since all algorithms of a session resumption protocol are executed

on the server, while a client just has to store the ticket t (encoded as a sequence of bytes),

this generic approach of TLS 1.3 is immediately compatible with our notion of session

resumption protocols. Thus, a session resumption protocol can be used immediately in

TLS 1.3, without requiring changes to clients or to the protocol. Furthermore, session

tickets and session caches are specific examples of such protocols.

2.1. Security in the Single-Server Setting

We define the security of a 0-RTT session resumption protocol Resumption by a security

game G0-RTT-SR
A,Resumption(λ) between a challenger C and an adversary A. For simplicity, we

will start with a single-server setting and argue below that security in the single-server

setting implies security in a multi-server setting. Let μ be the number of sessions.

1. C runs k $←− Setup(1λ), samples a random bit b $←− {0, 1} and generates session

keys si
$←− S for all sessions i ∈ [μ]. Furthermore, it generates tickets ti and
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updates key k by running (ti , k)
$←− TicketGen(k, si ) for all sessions i ∈ [μ]. The

sequence of tickets (ti )i∈[μ] is sent to A.

2. The adversary gets access to oracles it may query.

(a) ODec(t) takes as input a ticket t . It computes (s, k′) := ServerRes(k, t) and

outputs ⊥ if ServerRes failed. Otherwise, it returns the session key s and

replaces k := k′. Note that ticket t can either be a ticket of the initial sequence

of tickets (ti )i∈[μ] or an arbitrary ticket chosen by the adversary.

(b) OTest(t) takes as input a ticket t . It computes (s, k′) := ServerRes(k, t)

and outputs ⊥ if the output of ServerRes was (⊥, k). Otherwise, it updates

k := k′. If b = 1, then it returns the session key s. Otherwise, a random r $←− S

is returned. Note that ticket t can either be a ticket of the initial sequence of

tickets (ti )i∈[μ] or an arbitrary ticket chosen by the adversary.

The adversary is allowed to query OTest only once.

(c) OCorr returns the current long-term key k of the server. The adversary must

not query OTest after OCorr, as this would lead to a trivial attack.

3. Eventually, adversary A outputs a guess b∗. Challenger C outputs 1 if b = b∗ and

0 otherwise.

Note that this security model reflects both forward secrecy and replay protection.

Forward secrecy is ensured, as an adversary may corrupt the challenger after issuing the

OTest-query. If the protocol did not ensure forward secrecy, an attacker could corrupt its

long-term key and trivially decrypt the challenge ticket. Replay protection is ensured, as

an adversary is allowed to issue ODec(ti ) after already testing OTest(ti ) and vice versa

(as both queries invoke the ServerRes algorithm). If the protocol did not ensure replay

protection, an attacker could use the decryption oracle to distinguish a real or random

session key of the OTest-query.

Definition 2. We define the advantage of an adversary A in the above security game

G0-RTT-SR
A,Resumption(λ) as

Adv0-RTT-SR
A,Resumption(λ) =

∣

∣

∣

∣

Pr
[

G0-RTT-SR
A,Resumption(λ) = 1

]

−
1

2

∣

∣

∣

∣

.

We say a 0-RTT session resumption protocol is secure in a single-server environment

if the advantage Adv0-RTT-SR
A,Resumption(λ) is a negligible function in λ for all probabilistic

polynomial-time adversaries A.

2.2. Security in the Multi-server Setting

A 0-RTT session resumption protocol that is secure in our model, only guarantees se-

curity in a single-server setting. However, session resumption protocols are meant to

be executed in a multi-server environment. In this section, we provide the respective

security model and a proof that single-server security implies multi-server security with

a standard polynomial loss in the number of servers, provided each server has a different

long-term key.
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We define the security of a 0-RTT session resumption protocol Resumption with

multiple servers in the following security game between a challenger C and an adversary

A. Let μ be the number of sessions and d be the number of servers.

1. To simulate the server, C runs k j
$←− Setup(1λ) for j ∈ [d], samples a random

bit b $←− {0, 1} and generates session keys si, j
$←− S for all (i, j) ∈ [μ] × [d].

Furthermore it generates tickets (ti, j , k j )
$←− TicketGen(k j , si, j ) for all (i, j) ∈

[μ] × [d]. The sequence of tickets (ti, j )(i, j)∈[μ]×[d] is sent to A.

2. The adversary gets access to oracles it may query.

(a) ODec(t, j) takes as input a ticket t and an identifier j . It computes (s, k′
j ) :=

ServerRes(k j , t) and outputs ⊥ if ServerRes failed. Otherwise, it returns

the session key s and replaces k j := k′
j . Note that ticket t can either be a ticket

of the initial sequence of tickets (ti )i∈[μ] or an arbitrary ticket chosen by the

adversary.

(b) OTest(t, j) takes as input a ticket t and a server identifier j . It computes s :=

ServerRes(k j , t) and outputs ⊥ if the output of ServerRes was (⊥, k j ).

Otherwise it replaces k j := k′
j and returns either the session key s if b = 1 or

a random r $←− S if b = 0. Note that ticket t can either be a ticket of the initial

sequence of tickets (ti )i∈[μ] or an arbitrary ticket chosen by the adversary.

The adversary is only allowed to query OTest once and only for tickets t which

have not been queried using ODec(t) before.

(c) OCorr( j) takes as input a server identity j ∈ [d]. It returns the server’s long-

term key k j . The adversary is not allowed to query OTest(t, j) after OCorr( j),

as this would lead to trivial attacks.

3. Eventually, A outputs a guess b∗. Challenger C outputs 1 if b = b∗ and 0 otherwise.

Definition 3. We define the advantage of an adversary A in the above security game

GM0-RTT-SR
A,Resumption(λ) as

AdvM0-RTT-SR
A,Resumption(λ) =

∣

∣

∣

∣

Pr
[

GM0-RTT-SR
A,Resumption(λ) = 1

]

−
1

2

∣

∣

∣

∣

.

We say a 0-RTT session resumption protocol is secure in a multi-server environment

if the advantage AdvM0-RTT-SR
A,Resumption(λ) is a negligible function in λ for all probabilistic

polynomial-time adversaries A.

Theorem 1. From each probabilistic polynomial-time adversaryAagainst the security

of a 0-RTT session resumption protocol Resumption in a multi-server environment with

advantage AdvM0-RTT-SR
A,Resumption(λ), we can construct an adversary B against the security

of Resumption in the single-server environment with advantage Adv0-RTT-SR
A,Resumption(λ),

such that

AdvM0-RTT-SR
A,Resumption(λ) ≤ d·Adv0-RTT-SR

A,Resumption(λ).
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Proof. Let A be an adversary against the M0-RTT-SR security of Resumption. We

will use this adversary to construct an adversary B against the 0-RTT-SR security of

Resumption. The 0-RTT-SR challenger C starts its security game by sending a tuple

of tickets (ti )i∈[μ].

In order to initialize A we need to prepare a tuple of tickets (ti, j )(i, j)∈[μ]×[d]. We

generate μ·(d−1) tickets by ourselves and use tickets (ti )i∈[μ] the 0-RTT-SR challenger

sent us for the leftover μ tickets. At first we guess an index ν
$←− [d] and hope that A

queries OTest(ti,ν, ν) for some i ∈ [μ]. Let δ = [d] \ {ν}. We generate μ · |δ| tickets

honestly by running k j
$←− Setup(1λ) for j ∈ δ, generating si, j

$←− S and invoking

(ti, j , k j )
$←− TicketGen(k j , si, j ) for all (i, j) ∈ [μ] × δ. We embed our challenge as

ti,ν = ti for i ∈ [μ]. We send (ti, j )(i, j)∈[μ]×[d] to A.

We need to distinguish two possible cases. We can simulate all queries A can ask for

server identities j ∈ δ by ourselves, as we know all secret values for those servers. In

the case of j = ν we forward all queries to the challenger C and send the answers back

to A.

If A queries OTest(ti, j , j) we behave in the following way. If j = ν we continue the

security game and forward the final bit output of A as our solution of the challenge to

C. If j �= ν we abort the security game and output a random bit to C.

In the case of j = ν we win the security game with the advantage Adv0-RTT-SR
A,Resumption(λ).

This happens with a probability of 1/d as ν
$←− [d] is drawn at random. If j �= ν, we

have no advantage compared to guessing. In conclusion, we have

AdvM0-RTT-SR
A,Resumption(λ) ≤ d·Adv0-RTT-SR

A,Resumption(λ).

�

On Theoretically-Sound Instantiation Tight security in a multi-server setting is a major

issue for classical AKE-like protocols. First tightly-secure protocols were described

by Bader et al. [2], and by Gjøsteen–Jager [29]). Similar to classical AKE protocols,

our extension to the multi-server setting is non-tight as we have a security loss in the

number of protocol participants (which is the “standard security loss” for many AKE-like

protocols). So, if parameters are chosen in a theoretically-sound way (which is currently

rather uncommon in practice, but would be a desirable goal in our opinion), then this

factor needs to be compensated with larger parameters.

3. Constructing Secure Session Resumption Protocols

In this section we will show how session resumption protocols providing full forward se-

curity and replay resilience can be constructed. We will start with a generic construction,

based on authenticated encryption with associated data and any puncturable pseudoran-

dom function that is invariant to puncturing. Later we describe new constructions of

PPRFs, which are particularly suitable for use in session resumption protocols.
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3.1. Building Blocks

We briefly recall the basic definition of puncturable pseudorandom functions and au-

thenticated encryption with associated data.

Puncturable PRFs A puncturable pseudorandom function is a special case of a pseu-

dorandom function (PRF), where it is possible to compute punctured keys which do

not allow evaluation on inputs that have been punctured. We recall the definition of

puncturable pseudorandom functions and its security from [54].

Definition 4. A puncturable pseudorandom function (PPRF) with keyspace K, domain

X and range Y consists of three probabilistic polynomial-time algorithms PPRF =

(Setup, Eval, Punct), which are described as follows.

– Setup(1λ): This algorithm takes as input the security parameter λ and outputs an

evaluation key k ∈ K.

– Eval(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and

outputs a value y ∈ Y , or a failure symbol ⊥.

– Punct(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and

returns a punctured key k′ ∈ K.

Definition 5. A PPRF is correct if for every subset {x1, . . . , xn} = S ⊆ X and all

x ∈ X \ S, we have that

Pr

[

Eval(k0, x) = Eval(kn, x) :
k0

$←− Setup(1λ);

ki = Punct(ki−1, xi ) for i ∈ [n];

]

= 1.

A new property of PPRFs that we will need is that puncturing be “commutative”, i.e.

the order of puncturing operations does not affect the resulting secret key. That is, for

any x0, x1 ∈ X , x0 �= x1, if we first puncture on input x0 and then on x1, the resulting

key is identical to the key obtained from first puncturing on x1 and then on x0. This

implies that puncturing by any set of inputs always gives the same result, regardless of

the order of puncturing. Formally:

Definition 6. A PPRF is invariant to puncturing if for all keys k ∈ K and all elements

x0, x1 ∈ X , x0 �= x1 it holds that

Punct(Punct(k, x0), x1) = Punct(Punct(k, x1), x0).

We define two notions of PPRF security. The first notion represents the typical pseudo-

randomness security experiment with adaptive evaluation queries by an adversary. The

second notion is a weaker, non-adaptive security experiment. We show that it suffices

to prove security in the non-adaptive experiment if the PPRF is invariant to puncturing

and has a polynomial-size domain.
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Fig. 2. Security experiments for PPRFs. The na-rand security experiment for PPRF is left and the rand

security experiment is right .

Definition 7. We define the advantage of an adversary A in the rand (resp. na-rand)

security experiment Grand
A,PPRF(λ) (resp. Gna-rand

A,PPRF(λ)) defined in Fig. 2 as

Advrand
A,PPRF(λ) :=

∣

∣

∣

∣

Pr
[

Grand
A,PPRF(λ) = 1

]

−
1

2

∣

∣

∣

∣

,

Advna-rand
A,PPRF(λ) :=

∣

∣

∣

∣

Pr
[

Gna-rand
A,PPRF(λ) = 1

]

−
1

2

∣

∣

∣

∣

.

We say a puncturable pseudorandom function PPRF is rand -secure (resp. na-rand

-secure), if the advantage Advrand
A,PPRF(λ) (resp. Advna-rand

A,PPRF(λ)) is a negligible function

in λ for all probabilistic polynomial-time adversaries A.

It is relatively easy to prove that na-rand-security and rand-security are equivalent,

up to a linear security loss in the size of the domain of the PPRF if the PPRF is invariant

to puncturing. In particular, if the PPRF has a polynomially-bounded domain size, then

both are polynomially equivalent.

Theorem 2. Let PPRF be a na-rand-secure PPRF with domain X . If PPRF is in-

variant to puncturing, then it is also rand-secure with advantage

Advrand
A,PPRF(λ) ≤ |X |·Advna-rand

A,PPRF(λ).

Proof. The proof is based on a straightforward reduction. We give a sketch. Let A

be an adversary against the rand security of PPRF. We guess A’s challenge value in

advance by sampling ν
$←− X uniformly at random. We initialize the na-rand challenger

by sending it ν. In return we receive a challenge y (either computed via Eval or random)

and a punctured key k that cannot be evaluated on input ν.

The punctured key k allows us to correctly answer all of A’s OEval queries, except

for ν. When the adversary outputs its challenge x∗ we will abort if x∗ �= ν. Otherwise,

we forward y and a punctured key k′ that has been punctured on all values of the OEval
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queries. Note that the key has a correct distribution, as we require that the PPRF is

invariant to puncturing.

Eventually, A outputs a bit b∗ which we forward to the na-rand challenger.

The simulation is perfect unless we abort it, which happens with polynomially-

bounded probability 1/|X |, due to the fact that |X | is polynomially bounded. �

Authenticated Encryption with Associated Data We will furthermore need authenticated

encryption with associated data (AEAD) [52], along with the standard notions of confi-

dentiality and integrity.

Definition 8. An authenticated encryption scheme with associated data is a tuple

AEAD = (KGen, Enc, Dec) of three probabilistic polynomial-time algorithms:

– KGen(1λ) takes as input a security parameter λ and outputs a secret key k.

– Enc(k, m, ad) takes as input a key k, a message m, associated data ad and outputs

a ciphertext c.

– Dec(k, c, ad) takes as input a key k, a ciphertext c, associated data ad and outputs

a message m or a failure symbol ⊥.

An AEAD scheme is called correct if for any key k $←− KGen(1λ), any message m ∈

{0, 1}∗, any associated data ad ∈ {0, 1}∗ it holds that Dec(k, Enc(k, m, ad), ad) = m.

Definition 9. We define the advantage of an adversary A in the IND-CPA experiment

GIND-CPA
A,AEAD(λ) defined in Fig. 3 as

AdvIND-CPA
A,AEAD(λ) :=

∣

∣

∣

∣

Pr
[

GIND-CPA
A,AEAD(λ) = 1

]

−
1

2

∣

∣

∣

∣

.

We say an AEAD scheme AEAD is indistinguishable under chosen-plaintext attacks

(IND-CPA -secure), if the advantage AdvIND-CPA
A,AEAD(λ) is a negligible function in λ for all

probabilistic polynomial-time adversaries A.

Definition 10. We define the advantage of an adversary A in the INT-CTXT experi-

ment GINT-CTXT
A,AEAD (λ) defined in Fig. 3 as

AdvINT-CTXT
A,AEAD (λ) :=

∣

∣

∣
Pr

[

GINT-CTXT
A,AEAD (λ) = 1

]
∣

∣

∣
.

We say an AEAD scheme AEAD provides integrity of ciphertexts (INT-CTXT -secure),

if the advantage AdvINT-CTXT
A,AEAD (λ) is a negligible function in λ for all probabilistic

polynomial-time adversaries A.

3.2. Generic Construction

Now we are ready to describe our generic construction of a 0-RTT session resumption

protocol, based on a PPRF and an AEAD scheme, and to prove its security.
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Fig. 3. The IND-CPA and INT-CTXT security experiment for AEAD [52].

Construction 1. Let AEAD = (KGen, Enc, Dec) be an authenticated encryption

scheme with associated data and let PPRF = (Setup, Eval, Punct) be a PPRF with

range Y . Then we can construct a 0-RTT session resumption protocol Resumption =

(Setup, TicketGen, ServerRes) in the following way.

– Setup(1λ) runs kPPRF = PPRF.Setup(1λ), and outputs k := (kPPRF, 0), where

“0” is a counter initialized to zero.

– TicketGen(k, s) takes a key k = (kPPRF, n). It computesκ = PPRF.Eval(kPPRF, n).

Then it encrypts the ticket as t ′ $←− AEAD.Enc(κ, s, n). Finally, it defines t = (t ′, n)

and k := (kPPRF, n + 1), and outputs (t, k).

– ServerRes(k, t) takes k = (kPPRF, n) and t = (t ′, n′). It computes a key κ :=

PPRF.Eval(kPPRF, n′). If κ = ⊥, then it returns (⊥, k). Otherwise it computes a

session key s := AEAD.Dec(κ, t ′, n′). If s = ⊥, it returns (⊥, k). Else it punctures

kPPRF := PPRF.Punct(kPPRF, n′), and returns (s, (kPPRF, n)).

Note that the associated data n is sent in plaintext when the client resumes the session,

posing a potential privacy leak: Assume an attacker that observes all communication to

and from the server. When the attacker observes a client resuming using a ticket with

associated data n, the attacker learns that it is the same client that first connected when

the server issued the n-th ticket. Newly-generated tickets are first sent encrypted from

the server to the client, but it is feasible for the attacker to identify sessions where the

server issued tickets by performing traffic analysis (and then identifying the n-th such

session). In essence, using the above construction as-is, sessions are linkable.

This can be circumvented by additionally encrypting n under a dedicated symmetric

key. Compromise of this key would only allow an attacker to link sessions by the same

returning client, not to decrypt past traffic, therefore this symmetric key needs not be

punctured to achieve forward security.

We remark that the natural solution would be to encrypt n using public-key punc-

turable encryption, but this would be costly, and obviate most of the efficiency benefits

described in this work. We are unfortunately unaware of a good solution that achieves

session unlinkability in the event of server compromise. We further note that TLS 1.3
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0-RTT includes a mechanism named “obfuscated ticket age” that solves a similar session

linkability concern; that mechanism as well is not applicable here.

Theorem 3. If PPRF is invariant to puncturing, then from each probabilistic polynomial-

time adversary A against the security of Resumption in a single-server environment

with advantage Adv0-RTT-SR
A,Resumption(λ), we can construct five adversaries BPPRF1, BPPRF2,

BAEAD1, BAEAD2, and BAEAD3 such that

Adv0-RTT-SR
A,Resumption(λ)

≤ (qDec + 1)·
(

Advrand
BPPRF1,PPRF(λ) + AdvINT-CTXT

BAEAD1,AEAD(λ)

)

+ μ ·
(

Advna-rand
BPPRF2,PPRF(λ) + AdvINT-CTXT

BAEAD2,AEAD(λ)

+ AdvIND-CPA
BAEAD3,AEAD(λ)

)

,

where qDec is the number of decryption queries and μ is the number of sessions.

Proof. We will conduct this proof in a sequence of games between a challenger C and

an adversary A. We start with an adversary playing the 0-RTT-SR security game. Over

a sequence of hybrid arguments, we will stepwise transform the security game to a game

where the OTest-query is independent of the challenge bit b. The claim then follows

from bounding the probability of distinguishing any two consecutive games. By Advi

we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original 0-RTT-SR security game. By definition

we have

Adv0 = Adv0-RTT-SR
A,Resumption(λ).

Game 1. In this game, we want to bound the probability that an adversary is able to

forge a new ticket with n > μ. Formally, this game is identical to Game 0, but we change

how ODec and OTest queries are answered. That is, whenever the adversary queries ODec

or OTest for a ticket t = (t ′, n) with n > μ, we always reply with ⊥. This change is only

detectable by the adversary if it forges a ticket t such that ODec(t) �= ⊥ or OTest(t) �= ⊥.

Let X be the event that the adversary produces such a forgery t = (t ′, n) with n > μ.

Hence, we have

|Adv1 − Adv0| ≤ Pr[X ].

We bound the probability of X occurring by using the following lemma:

Lemma 1. Let qDec be the number of decryption queries by the adversary. Then we

have

Pr[X ] ≤ (qDec + 1) ·
(

Advrand
BPPRF1,PPRF(λ) + AdvINT-CTXT

BAEAD1,AEAD(λ)

)

.
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Proof. Intuitively, in order to make even X happen, the adversary would have to break

INT-CTXT security. But the reduction to show this is not completely straightforward,

since we have to use both the security of the PPRF and the INT-CTXT security to show

this. This is done by the short “branch sequence of games” considered in this lemma.

For the sake of clarity, we emphasize that the lemma only claims a bound on the

probability that the event X occurs. Therefore, we bound only the probability of this

event, and not the probability that an adversary wins. That is, as soon as the event X

has happened, the adversary does not require a consistent simulation anymore, as the

occurrence of X cannot be reverted.

We prove the lemma by following a sequence of games. By Pr[X i ] we denote prob-

ability of X occurring in the i-th game. We define Game 0.0 to be Game 0 of the main

proof. By definition we have

Pr[X0.0] = Pr[X ].

Game 0.1 This game is identical to Game 0.0 but we guess which ODec or OTest query

the adversary uses for its first forgery t = (t ′, n) with n > μ such that ODec(t) �= ⊥

or OTest(t) �= ⊥. Formally, let j $←− [qDec + 1] where qDec is the number of ODec

queries made by the adversary. Since the choice of j is oblivious to the adversary, we

can bound the probability of guessing correctly by 1/(qDec + 1). Let X0.1 be the event

that X0 occurs and j was guessed correctly. We can then bound

Pr[X0.1] ≥
1

qDec + 1
· Pr[X0.0]

and subsequently assume that j was guessed correctly.

Game 0.2 The difference between Games 0.1 and 0.2 is whether we use the “real” or

a “random” PPRF key in the j-th query. If this changes the probability of event X0.1

significantly, then we can construct a successful PPRF distinguisher BPPRF1.

Formally, this game is identical to Game 0.1 but we change how the j-th query in

the sequence of ODec and OTest queries is computed. Let ρ
$←− Y be a value chosen

by the experiment. Normally, the j-th query would need to compute PPRF.Eval(k, n∗)

for some ticket t∗ = (t ′, n∗). However, we will now replace the result this computation

with the independent and precomputed value ρ.

Everything else works exactly as before. We will show that any adversary that is able

to distinguish Game 0.1 from Game 0.2, can be used to construct an adversary against

the security of the underlying PPRF. Concretely, we have

|Pr[X0.2] − Pr[X0.1]| ≤ Advrand
BPPRF1,PPRF(λ).

Construction of BPPRF1 BPPRF1 simulates Game 0.1 for A by utilizing the PPRF chal-

lenger. That is, the initial sequence of tickets is computed via the Eval query of the PPRF

challenger. Likewise, we can answer all ODec and OTest queries up until the j − 1-th

query with aid of the Eval oracle. However, for every query to ODec or OTest with

t = (t ′, n) with n > μ, we always return ⊥. Note that the change in Game 0.1 ensures
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that this is a valid behavior as the correct guess of j ensures that all previous calls to

ODec or OTest with t = (t ′, n) and n > μ are ⊥ by definition.

As soon as the adversary uses its j-th ODec or OTest query with t = (t ′, n∗) and

n∗ > μ, we relay n∗ as challenge to the PPRF challenger. Note that we have never used

n∗ > μ as input to the Eval oracle, making n∗ an admissible challenge. The challenger

responds with a punctured key k′ := PPRF.Punct(k, n∗) and a value γ , where either

γ := ρ
$←− Y or γ := PPRF.Eval(k, n∗).

We use γ to check whether the ticket t ′ is a valid AEAD ciphertext. That is, if

AEAD.Dec(γ, t ′, n∗) �= ⊥, the adversary forges for a real key and invokes event X0.1. In

this case, we return 1 to the challenger. If, on the other hand, AEAD.Dec(γ, t ′, n∗) = ⊥,

the adversary forges for a random key and invokes event X0.2. In this case, we return 0

to the challenger. This implies that any adversary that can distinguish Game 0.1 from

Game 0.2, can be transformed into a successful adversary BPPRF1 breaking the security

of the PPRF.

Bounding Pr[X0.2] We conclude the proof of the lemma by showing that any adversary

invoking event X0.2 in Game 0.2 breaks the INT-CTXT security of AEAD. To this end,

consider the following adversary BAEAD1.

Construction of BAEAD1 BAEAD1 proceeds exactly like the challenger in Game 0.2 but

we use the AEAD challenger as the encryption/decryption procedure with respect to

the ticket associated to the j-th query. As soon as the adversary issues the j-th ODec

or OTest query for some ticket t , BAEAD1 outputs t to its AEAD challenger. Note that

t is the first valid forgery with n > μ by A due to our changes in Game 0.1 and note

that t is encrypted under a uniformly random key ρ (which is perfectly hidden from the

adversary) due to our changes in Game 0.2. Hence the AEAD challenger accepts t as a

valid forgery, and we have

Pr[X0.2] ≤ AdvINT-CTXT
BAEAD1,AEAD(λ).

Summing up all probabilities proves the lemma. �

Continuing with our proof, we now have that

|Adv1 − Adv0| = Pr[X ] ≤ (qDec + 1) ·
(

Advrand
BPPRF1,PPRF(λ) + AdvINT-CTXT

BAEAD1,AEAD(λ)

)

.

Now, after proving the above lemma, we return to our original sequence of games.

Using Lemma 1, we can now assume that the adversary never forges a ticket t = (t ′, n)

with n > μ such that ODec(t) �= ⊥ or OTest(t) �= ⊥.

Game 2. This game is identical to Game 1, except for the following changes. At the

beginning of the experiment the challenger picks an index ν
$←− [μ]. It aborts the security

experiment and outputs a random bit b∗ $←− {0, 1}, if the adversary queries OTest(t) with

t = (t ′, i) such that i �= ν. Since the choice of ν
$←− [μ] is oblivious to A until an abort

occurs, we have

Adv2 ≥
1

μ
· Adv1.
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Game 3. This game is identical to Game 2, except that at the beginning of the game

we compute κν = PPRF.Eval(k, ν) and then k := PPRF.Punct(k, ν). Furthermore,

we replace algorithm PPRF.Eval with the following algorithm F3:

F3(k, i) :=

{

PPRF.Eval(k, i) if i �= ν

κν if i = ν

Everything else works exactly as before. Note that we have simply implemented algo-

rithm PPRF.Eval in a slightly different way. Since PPRF is invariant to puncturing, the

fact that κν was computed early, immediately followed by k := PPRF.Punct(k, ν), is

invisible to A. Hence, Game 3 is perfectly indistinguishable from Game 2, and we have

Adv3 = Adv2.

Game 4. This game is identical to Game 3, except that the challenger now additionally

picks a random key ρ
$←− Y from the range of the PPRF. Furthermore, we replace

algorithm F4 with the following algorithm F4:

F4(k, i) :=

{

PPRF.Eval(k, i) if i �= ν

ρ if i = ν

Everything else works exactly as before. We will now show that any adversary that is

able to distinguish Game 3 from Game 4 can be used to construct an adversary BPPRF2

against the na-rand-security of the PPRF. Concretely, we have

|Adv4 − Adv3| ≤ Advna-rand
BPPRF2,PPRF(λ).

Construction of BPPRF2 BPPRF2 initially picks ν
$←− [μ] and outputs ν to its PPRF-

challenger, which will respond with a punctured key k := PPRF.Punct(k, ν) and

a value γ , where either γ = PPRF.Eval(k, ν) or γ
$←− Y . Now BPPRF2 simulates

Game 4, except that it uses the following function F in place of F4.

F(k, i) :=

{

PPRF.Eval(k, i) if i �= ν

γ if i = ν

Eventually, A will output a guess b∗. BPPRF2 forwards this bit to the PPRF-challenger.

Note that if γ = Eval(k, ν), then function F is identical to F3, while if γ = ρ then it is

identical to F4. This proves the claim.

Game 5. This game is identical to Game 4, except that we raise an event abortAEAD2,

abort the game, and output a random bit b∗ $←− {0, 1}, if the adversary A ever queries

OTest(t) for a ticket t = (t ′, ν) �= tν (i.e., t differs from the ν-th ticket in the first

position), but AEAD.Dec(ρ, t ′, ν) �= ⊥, where ρ = F4(k, ν). We have

|Adv5 − Adv4| ≤ Pr[abortAEAD2]
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and we claim that we can construct an adversary BAEAD2 on the INT-CTXT-security of

the AEAD with advantage at least Pr[abortAEAD2].

Construction of BAEAD2 BAEAD2 proceeds exactly like the challenger in Game 5, except

that it uses its challenger from the AEAD security experiment to create ticket tν . To this

end, it outputs the tuple (sν, ν) for some sν
$←− S to the AEAD challenger. The AEAD

challenger responds with t ′ν := AEAD.Enc(ρ, sν, ν), computed with an independent

AEAD key ρ. Finally, BAEAD2 defines the ticket as tν = (t ′ν, ν). Apart from this, BAEAD2

proceeds exactly like the challenger in Game 5.

Whenever the adversary A makes a query OTest(t) with a ticket t = (t ′, i) with

i �= ν, then we abort, due to the changes introduced in Game 2. If it queries OTest(t)

with t = (t ′, ν) such that t �= tν , then BAEAD1 responds with ⊥ and outputs the tuple

(t ′, ν) to its AEAD challenger. With probability Pr[abortAEAD2] this ticket is valid,

which yields

AdvINT-CTXT
BAEAD2,AEAD(λ) ≥ Pr[abortAEAD2].

Game 6. This game is identical to Game 5, except that when the adversary queries

OTest(tν), then we will always answer with a random value, independent of the bit b.

More precisely, recall that we abort if the adversary queries OTest(t), t = (t ′, ν) such

that t �= tν , due to the changes introduced in Game 5. If the adversary queries OTest(tν),

then the challenger in Game 5 uses the bit b $←− {0, 1} sampled at the beginning of the

experiment as follows. If b = 1, then it returns the session key sν . Otherwise, a random

rν
$←− S is returned.

In Game 6, the challenger samples another random value s′
ν

$←− S at the beginning

of the game. When the adversary queries OTest(tν), then if b = 1 the challenger returns

s′
ν . Otherwise, it returns a random rν

$←− S. Note that in either case the response of

the OTest(tν)-query is a random value, independent of b. Therefore, the view of A in

Game 6 is independent of b. Obviously, we have

Adv6 = 0.

We will now show that any adversary who is able to distinguish Game 5 from Game 6

can be used to construct an adversary BAEAD3 against the IND-CPA-security of AEAD.

Construction of BAEAD3 Recall that the key used to generate ticket tν is ρ = F4(k, ν).

By definition of F4, ρ is an independent random string chosen at the beginning of the

security experiment. This enables a straightforward reduction to the IND-CPA-security

of the AEAD.

BAEAD3 proceeds exactly like the challenger in Game 6, except for the way the ticket tν
is created. BAEAD3 computes ρν = F4(k, ν). Then it outputs (sν, s′

ν, ν) to its challenger,

which returns

tν :=

{

AEAD.Enc(ρ, sν, ν) if b′ = 0

AEAD.Enc(ρ, s′
ν, ν) if b′ = 1
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where ρ is distributed identically to ρν and b′ is the hidden bit used by the challenger

of the AEAD. Apart from this, BAEAD3 proceeds exactly like the challenger in Game 6.

Eventually, A will output a guess b∗. BAEAD3 forwards this bit to its challenger.

Note that if b′ = 0, then the view of A is perfectly indistinguishable from Game 5,

while if b′ = 1 then it is identical to Game 6. Thus, we have

|Adv6 − Adv5| ≤ AdvIND-CPA
BAEAD3,AEAD(λ).

By summing up probabilities from Game 0 to Game 6, we obtain

Adv0-RTT-SR
A,Resumption(λ) ≤ (qDec + 1)·

(

Advrand
BPPRF1,PPRF(λ) + AdvINT-CTXT

BAEAD1,AEAD(λ)

)

+ μ ·
(

Advna-rand
BPPRF2,PPRF(λ) + AdvINT-CTXT

BAEAD2,AEAD(λ)

+ AdvIND-CPA
BAEAD3,AEAD(λ)

)

,

�

4. Composition with the TLS 1.3 Resumption Handshake

In this section we show how to compose a 0-RTT session resumption protocol with

the TLS 1.3 resumption handshake, also called pre-shared key (PSK) mode. We start

with a brief section on building blocks used in TLS. Next we recap the multi-stage key

exchange model, and finally we describe our protocol composition and prove its security.

4.1. Building Blocks and Security Assumptions

Before we can describe our construction, we need to introduce a few more primitives

and their respective security notions. The first two notions cover collision resistant hash

functions and pseudorandom functions.

Unkeyed hash functions H : {0, 1}∗ → {0, 1}λ, as deployed in practice, always

imply the existence of collisions, as the range of H is smaller than the domain. Instead

of assuming that no efficient adversary is able to find collisions, we follow the approach

by Rogaway [53] and assume that it is hard to efficiently construct an adversary that can

efficiently find collisions.

Definition 11. A hash function H : {0, 1}∗ → {0, 1}λ that maps arbitrary finite-length

bit strings to strings of fixed length λ is called collision resistant if we cannot efficiently

construct an efficient adversary A whose advantage

Advcollision
A,H (λ) := Pr[(m, m′)

$←− A(1λ) : m �= m′ ∧ H(m) = H(m′)]

is non-negligible.
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Definition 12. Let PRF : {0, 1}∗ × {0, 1}i(λ) → {0, 1}o(λ) be an efficient keyed func-

tion with input length i(λ) and output length o(λ). We call f pseudorandom if for all

probabilistic polynomial-time adversaries A the advantage

Advrand
A,PRF(λ) :=

∣

∣

∣
Pr

[

APRF(k,·)(1λ) = 1
]

− Pr
[

A f (·)(1λ) = 1
]∣

∣

∣

is negligible in λ, where k $←− {0, 1}∗ and f is randomly chosen from the set of all

functions mapping {0, 1}i(λ) → {0, 1}o(λ).

TLS 1.3 additionally relies on the hash-based key derivation function (HKDF) [40,41]

which utilizes the HMAC construction [6,39] as a core building block. The HKDF

follows the extract-then-expand paradigm, that is, it employs special functions to extract

and expand keys. The extract function Ext(salt, src) takes a (potentially fixed) salt salt

and a source key material src as input and computes a pseudorandom key as output.

The expand function Exp(key, ctxt) takes a pseudorandom key key and a context ctxt as

input and computes a new pseudorandom key. Formally, the expand function also takes

an additional length parameter, determining the length of the computed key, as input.

We omit this parameter for simplicity and assume that the length is equal to the security

parameter λ unless stated otherwise.

For our security proof in Sect. 4.3, we rely on the assumption that both functions Ext

and Exp are pseudorandom functions [41]. Additionally, we rely on the HMAC(0, $)-$

assumption introduced in [28]. This assumption states that HMAC(0, x) is computa-

tionally indistinguishable from y $←− {0, 1}λ if x $←− {0, 1}λ and was used to prove the

security of draft-14 of TLS 1.3 in [28].

Definition 13. Let HMAC be the function defined in [6]. We say the HMAC(0, $)-$

assumption holds for HMAC if for all probabilistic polynomial-time adversaries A the

advantage

Adv
HMAC(0,$)-$
A,HMAC (λ)

:=

∣

∣

∣

∣

∣

Pr
x

$←−{0,1}λ

[

A(1λ, HMAC(0, x)) = 1
]

− Pr
y

$←−{0,1}λ

[

A(1λ, y) = 1
]

∣

∣

∣

∣

∣

is negligible in λ.

4.2. Multi-stage Key Exchange

The TLS 1.3 protocol establishes multiple keys during execution. Some of these keys are

used to encrypt parts of the communication during protocol execution, while others are

used for external (application layer) purposes only. To formally analyze such a multi-key

protocol, we use an extension [28] of the multi-stage key exchange model introduced

by Fischlin and Günther [27], which has been used to prove security of various drafts

of the TLS 1.3 protocol. Their model allows dividing the key exchange protocols into

so-called stages, where each stage yields a key that supports a certain level of security.
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Since we only consider session resumption protocols in this work, we will only briefly

describe the relevant parts of the model. See [28] for a more comprehensive description

of the model.

Changes to the Model The model is taken verbatim from [28], except for the following

minor changes.

– We removed all model features that are unnecessary for proving TLS 1.3 in its pre-

shared key mode, composed with our generic 0-RTT session resumption protocol.

Namely, we removed key dependent aspects (TLS 1.3 supports key independence),

authentication levels other than mutual authentication (our protocol provides mutual

authentication), and replayable stages (our protocol is non-replayable across all

stages).

– We modified the corruption query. Instead of revealing the pre-shared keys of a

server, we equip each server with a long-term key k which is used to issue and open

tickets. Corruption of a server will leak the current state of the server’s secret key

k. Due to the nature of our 0-RTT session resumption protocol introduced earlier,

the server’s secret key will change with each protocol execution.

Protocol-Specific and Session-Specific Properties The multi-stage key exchange model

separates protocol-specific and session-specific properties. Protocol-specific properties

capture, for example, the number of stages and whether established keys are used exter-

nally only, while session-specific properties capture, for example, the state of a running

session. We begin by listing the protocol-specific properties which are represented by a

vector (M, USE) holding the following information:

– M ∈ N: The number of stages, that is, the number of keys derived.

– USE = {internal, external}M: The set of key usage indicators for each stage,

indicating how a stage-i key is used. We call a key internal if it used within (and

possibly outside of) the key exchange protocol, and external if it is only used outside

of the key exchange protocol.

We denote the set of users by U , where each user is associated with a unique identity

U ∈ U . Sessions are identified by a unique label label ∈ U × U × N, where label =

(U, V, d) denotes the d-th local session of user (and owner of the session) U with the

intended communication partner V .

Each session is associated with a key index d for the pre-shared secret pss and its

unique identifier psid. The challenger maintains vectors pssU,V and psidU,V of created

pre-shared secrets, where the d-th entry is the d-th pre-shared secret (resp. d-th identifier)

shared between users U and V . We write pssU,V,d (resp. psidU,V,d ) as shorthand for

the d-th entry of pssU,V (resp. psidU,V ).

A session is represented by a tuple σ and comprises of the following information:

– label ∈ U × U × N: The unique session label.

– id ∈ U : The identity of the session owner.

– pid ∈ U : The identity of the intended communication partner.

– role ∈ {initiator, responder}: The role of the session owner.
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– execstate ∈ {RUNNING ∪ ACCEPTED ∪ REJECTED}: The state of execution

where

RUNNING = {runningi | i ∈ N ∪ {0}},

ACCEPTED = {acceptedi | i ∈ N}, and

REJECTED = {rejectedi | i ∈ N}.

The state is set to acceptedi if the session accepts the i-th key. It is set to runningi

if the session proceeds with the protocol after accepting the i-th key. It is set to

rejectedi if the session rejects the i-th key (we assume that a session does not

continue in this case). The default value is running0.

– stage ∈ [M]: The session’s current stage, where the value stage is incremented

to i after the state execstate accepts or rejects the i-th key. The default value is

stage = 0.

– sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi is the session identifier in stage i . It is set once after

the i-th key has been accepted. The default value is sid = (⊥, . . . ,⊥).

– cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi is the contributive identifier in stage i . It may be set

multiple times until the i-th key has been accepted. The default value is cid =

(⊥, . . . ,⊥).

– key ∈ ({0, 1}∗ ∪ {⊥})M: keyi is the established session key in stage i . It set once

after the i-th key has been accepted. The default value is key = (⊥, . . . ,⊥).

– keystate ∈ {fresh, revealed}M: keystatei is the state of the key in stage i .

The state fresh indicates that the key is fresh and the state revealed indicates

that the key has been revealed to the adversary. The default value is keystate =

(fresh, . . . , fresh).

– tested ∈ {true, false}M: testedi is a boolean value indicating whether the session

key of stage i has been tested. The default value is tested = (false, . . . , false).

– d ∈ N: The index of the pre-shared secret used in a protocol execution.

– pss ∈ {0, 1}∗ ∪ {⊥}: The pre-shared secret to be used in the session.

– psid ∈ {0, 1}∗∪{⊥}: The identifier of the pre-shared secret to be used in the session.

Each session is stored and maintained in a session list SList. If an incomplete session

tuple σ is added to the session list SList, we set all empty values to their defined default

values. For a more convenient notation, we write label.sid to denote the entry sid in the

tuple σ with the unique label label in SList.

Following Günther et al. [28], we define two distinct sessions label, label′ to be

partnered if the session’s session identifiers are equal (i.e., label.sid = label′.sid′ �= ⊥).

Additionally, we require for correctness that two sessions are partnered if the sessions

have a non-tampered joint execution and both parties have reached an acceptance state.

This means that a protocol is correct if, in the absence of an adversary, any two sessions

executing the protocol are partnered upon acceptance.

Adversary Model We consider a probabilistic polynomial-time adversary A that controls

the communication between all parties, and is capable of intercepting, injecting, and

dropping messages. We capture adversarial behavior where the adversary trivially loses
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via a flag lost initialized to lost := false. The adversary has access to the following

queries:

– NewSecret(U, V, d, psid): This query generates a new pre-shared secret pss with

identifier psid. The secret pss is the d-th secret shared between users U and V . If

psid is a used identifier for an already registered secret or if the d-th secret between

U and V has already been set, return ⊥. Otherwise, sample the secret pss uniformly

at random from the pre-shared secret space and store pss in pssU,V and pssV,U

(as well as psid in psidU,V and psidV,U ) as the d-th entry.

– NewSession(U, V, role, d): Creates a new session with a unique new label label

for session owner identity id = U with role role, having pid = V as intended

partner. The value d indicates the key index of the pre-shared secret pss between

U and V .

If the d-th pre-shared secret pss = pssU,V,d does not exist, return ⊥. Otherwise, set

label.pss := pss and label.psid := psidU,V,d . Add σ = (label, U, V, role, d,

pss, psid) to SList and return label.

– Send(label, m): Sends a message m to the session with label label. If there is

no tuple σ with label label in SList, return ⊥. Otherwise run the protocol as the

session owner of label when receiving message m and return the output and the

updated state of execution label.execstate. If label.role = initiator and m = init,

the protocol is initiated without any input message.

If the state of execution changes to an accepted state for stage i , the protocol

execution is suspended and acceptedi is send to the adversary. The adversary can

later resume execution by issuing a Send(label, continue) query, receiving the

next protocol message and the next state of execution.

If the state of execution changes to acceptedi for some i ∈ [M] and there is a

partnered session label′ �= label in SList with label′.keystatei = revealed, then

label.keystatei is set to revealed as well.

If the state of execution changes to acceptedi for some i ∈ [M] and there is

a partnered session label′ �= label in SList with label′.testedi = true, then

set label.testedi := true and also set set label.keyi := label.keyi if USEi =

internal. If the state of execution changes to acceptedi for some i ∈ [M] and the

intended partner pid is corrupted, then set label.keystatei := revealed.

– Reveal(label, i): Reveals the i-th key of session label. If there is no session with

label label in SList or if label.stage < i (i.e., the session key has not yet been

established), then return⊥. Otherwise, set label.keystatei := revealed and if there

exists a partnered session label′ in SList with label.stage ≥ i , then additionally

set label.keystatei := revealed. Finally, send the session key label.keyi to the

adversary.

– Corrupt(U ): This query provides the adversary with the long-term secret k of

participant U ∈ U . For stage- j forward secrecy we additionally set keystatei to

revealed if i < j (i.e., revelation of non-forward-secret keys) or if i > stage (i.e.,

revelation of future keys).

– Test(label, i): Tests the i-th key in the session label. If there is no session with

the label label in SList or label.testedi = true, return ⊥. If label.execstate �=

acceptedi or if there is a partnered session label′ in SList with label.execstate �=
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acceptedi , set lost := true (i.e., only allow testing if the key has not been used

yet). Otherwise, set label.testedi := true.

The Test oracle maintains a global bit btest
$←− {0, 1}. If btest = 0, sample a random

session key K $←− D. Else set K := label.keyi to the real session key.

If USEi = internal, set label.keyi := K (i.e., we replace the internally used ses-

sion key with the random and independent test key K ). Additionally, if a partnered

session label′ exists, we set label′.tested := true if the i-th key was accepted.

Furthermore, we also set label′.keyi := label.keyi if USEi = internal.

Finally, return K .

Match Security The notion of Match security ensures that session identifiers properly

identify partnered sessions in the following sense:

1. Sessions with the same session identifier for some stage hold the same key at that

stage.

2. Sessions with the same session identifier for some stage share the same contributive

identifier at that stage.

3. Sessions are partnered with the intended participant, and share the same key index.

4. Session identifiers do not match across different stages.

5. At most two sessions have the same session identifier at any stage.

Formally, we define the Match security game GMatch
A,KE (λ) as follows:

Definition 14. Let KE be a multi-stage key exchange protocol with properties (M,

USE) and A a probabilistic polynomial-time adversary interacting with KE in the fol-

lowing game GMatch
A,KE (λ):

1. The challenger generates a long-term k key for each participant U ∈ U .

2. The adversary gets access to the queries NewSecret, NewSession, Send, Reveal,

Corrupt, Test.

3. Eventually, A stops with no output.

We say that A wins the game, denoted by GMatch
A,KE (λ) = 1, if at least one of the following

events occurs:

1. Different session keys in some stage of partnered sessions. More formally, if there

exist two distinct labels label, label′ such that label = label′ �= ⊥ for some stage

i ∈ [M] and label.execstate �= rejectedi and label′.execstate �= rejectedi , but

label.keyi �= label′.keyi .

2. Different or unset contributive identifiers in some stage of partnered sessions.

More formally, if there exist two distinct labels label, label′ such that label =

label′ �= ⊥ for some stage i ∈ [M], but label.cidi �= label′.cidi or label.cidi =

label′.cidi = ⊥.

3. Different stages share the same session identifier. More formally, if there exist two

(not necessarily distinct) labels label, label′ such that label.sidi = label′.sid j �=

⊥ for some stages i, j ∈ [M] with i �= j .

4. More than two sessions share the same session identifier in any stage. More for-

mally, if there exist three distinct labels label, label′, label′′ such that label.sidi =

label′.sidi = label′′.sidi for some stage i ∈ [M].
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We say KE is Match-secure if for all probabilistic polynomial-time adversaries A the

advantage

AdvMatch
A,KE (λ) := Pr

[

GMatch
A,KE (λ) = 1

]

is negligible in λ.

Multi-stage Security The notion of MultiStage security ensures that, for each stage, keys

are indistinguishable from randomly sampled keys in the multi-stage setting.

Definition 15. Let KE be a multi-stage key exchange protocol with key distribution D

and properties (M, USE) and A a probabilistic polynomial-time adversary interacting

with KE in the following game G
MultiStage,D

A,KE (λ):

1. The challenger generates a long-term key k for each participant U ∈ U . Addition-

ally, the challenger samples a random test bit btest
$←− {0, 1} and sets lost := false.

2. The adversary gets access to the queries NewSecret, NewSession, Send, Reveal,

Corrupt, Test. Note that such queries may set the flag lost to true.

3. Eventually, A stops and outputs a guess b.

4. The challenger C sets the flag lost := true if there exist two (not necessarily

distinct) session labels label, label′ and some stage i ∈ [M] such that label.sidi =

label′.sidi and label.keystatei = revealed and label′.testedi = true (i.e., if the

adversary has tested and revealed the key of some stage in a single session or in

two partnered sessions).

We say that A wins the game, denoted by G
MultiStage,D

A,KE (λ) = 1, if b = btest and

lost = false. We say KE is MultiStage-secure, providing stage- j forward-secrecy,

with key usage USE if KE is Match-secure and for all probabilistic polynomial-time

adversaries A the advantage

Adv
MultiStage,D

A,KE (λ) :=

∣

∣

∣

∣

Pr
[

G
MultiStage,D

A,KE (λ) = 1
]

−
1

2

∣

∣

∣

∣

is negligible in λ.

4.3. Composition and Security

In this section we show how to generically compose a 0-RTT session resumption protocol

with the TLS 1.3 resumption handshake and prove the composition’s security in the multi-

stage key exchange model, achieving a stage-1-forward-secret resumption handshake.

In contrast, without such a session resumption protocol it is only possible to show that the

TLS 1.3 resumption handshake only achieves stage-3 forward-secrecy via an additional

execution of a Diffie–Hellman key exchange [28].

Integrating a 0-RTT Session Resumption Protocol into TLS 1.3 As explained in the Intro-

duction, the TLS 1.3 standard allows the server to unilaterally choose a mechanism for

issuing tickets and serving resumption handshakes. The only interoperability require-
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ment is correctness, i.e. when resuming a session, the server should correctly compute

the relevant resumption secret and use it as prescribed by the key schedule. The client is

generally not aware of the resumption mechanism in use by the server; the client merely

receives an opaque ticket, and sends it to the server when resuming.

In our construction, tickets are computed using a 0-RTT session resumption protocol.

Let Resumption = (Setup, TicketGen, ServerRes) be a 0-RTT session resumption

protocol. The server uses k $←− Setup(1λ) to compute its long-term key k for ticket

encryption. Tickets are computed as ticket = TicketGen(k, RMS||NT ) and can be

opened using the ServerRes algorithm.

Note that by computing (RMS||NT , k′) := ServerRes(k, ticket) a modified se-

cret key of the server k′ is produced. Replacing k := k′ guarantees forward secrecy if

Resumption is a 0-RTT-SR-secure protocol. That is, forward secrecy is invoked im-

mediately after the ticket has been processed on the server side. Should k leak at a later

point in time, the resumption master secret RMS (and all keys derived from it) will not

be compromised.

On Sending Multiple PSKs TLS 1.3 allows the client to send multiple pre-shared key

identifiers in its first message if no 0-RTT data is sent. If, however, 0-RTT data is sent, the

standard explicitly states that the handshake will be aborted unless the server picks the

first pre-shared key identifier from the client’s list [51, §4.2.10, §4.2.11]. This restriction

exists to ensure that the early data only has to be encrypted under one pre-shared key

chosen by the client. In this work we only allow the client to send one pre-shared key

identifier, as we are specifically interested in the 0-RTT mode. Should a client choose

not to send 0-RTT data, then previous analyses of the TLS 1.3 handshake protocol apply

[28]. Hence, our change leads to a cleaner protocol and is purely cosmetic.

Protocol Description In the following, we describe our modified version of the TLS

1.3 resumption handshake. We assume that client and server have performed a prior

full handshake, allowing them to agree on a pre-shared secret. The pre-shared secret is

denoted as resumption master secret RMS. The client stores RMS (and an associated

nonce NT ) alongside a server-issued ticket ticket. The ticket ticket was computed by

the server using its secret key k and holds RMS and NT as contents.

We provide an illustration of the protocol in Fig. 4. For readability, the figure slightly

deviates from the message format in the TLS 1.3 specification. In the figure we separated

the binder value Fin0 and the ticket message from the ClientHello message, while in

the standard both are included in the ClientHello message. Outside of the figure, we

consider Fin0 and ticket as a part of the ClientHello.

The following messages are exchanged during protocol execution:

ClientHello: The ClientHello message is the first message sent by the client. It contains

the protocol version, a random nonce NC chosen by the client, a list of

supported cryptographic primitives and extensions, and a pre-shared key

identifier. Additionally, it contains ticket which is an encryption of the

resumption master secret RMS and the ticket nonce NT .

Fin0: The binder value Fin0 comprises of an HMAC over a (partial) ClientHello

message to ensure integrity.

ServerHello: The ServerHello message contains a server nonce NS , a selected protocol

version, extensions, and supported cryptographic primitives.
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FinS : The FinS message comprises of an HMAC over the protocol transcript

up to this point and is encrypted under the server handshake traffic key.

FinC : The FinC message comprises of an HMAC over the protocol transcript

up to the FinS message and is encrypted under the client handshake traffic

key.

More information on the computation of the hashed finished messages is given in Ap-

pendix B.

Security Analysis Preliminaries In the following, we will analyze the security of our mod-

ified TLS 1.3 protocol in the multi-stage key exchange model in its pre-shared secret

mode. That is, we will show that our protocol satisfies both Match and MultiStage secu-

rity. We start by discussing some preliminaries for both proofs. The vector of protocol-

specific properties (M, USE) looks as follows:

– M = 5: The number of stages is equal to five (cf. Fig. 4), deriving traffic keys tkets,

(tkchts, tkshts), (tkcats, tksats), the exporter master secret EMS, and the resumption

master secret RMS.

– USE = (external, internal, internal, external, external): The handshake traffic

keys (tkchts, tkshts) are used to protect internal protocol messages, while all other

keys are only used outside of the protocol.

We define session matching with the following session identifiers (implicitly) consisting

of all messages sent in each stage:

sid1 = (ClientHello)

sid2 = (sid1, ServerHello)

sid3 = (sid2, FinS)

sid4 = (sid3, “ems”)

sid5 = (sid4, “rms”)

Note that neither “ems,” nor “rms” contributes to the established key and they are instead

included to ensure distinct session identifiers across stages. We set the contributive

identifier of Stage 2 to cid2 = (ClientHello) after the client has sent (resp. after the

server has received) the ClientHello message and set, on sending (resp. receiving) the

ServerHello message the contributive identifier to cid2 = sid2. The other contributive

identifiers are set to cidi = sidi (for stages i ∈ {1, 3, 4, 5}) after the respective stage’s

session identifier was set.

MatchSecurity We start by proving Match security of our construction. Our proof fol-

lows the proof by Fischlin and Günther [28, Theorem 5.1] as the constructions are very

similar.

Theorem 4. The protocol TLS13wRES is Match-secure with the above properties

(M, USE). For any probabilistic polynomial-time adversary we have

AdvMatch
A,TLS13wRES(λ) ≤ ns · 2−λ,
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Fig. 4. The TLS13wRES protocol executed between a client and a server. The client possesses a pre-shared

secret RMS and a ticket ticket (encrypted under the server’s secret key k) issued by the server. All values ℓi

are publicly known labels and all hash values Hi are computable from the communication’s transcript. We

provide a technical overview of label values and hash values in Appendix B.
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where ns is the maximum number of sessions.

Proof. In order to prove the Match security of TLS13wRES we need to show that the

five properties of Match security hold for TLS13wRES.

1. Sessions with the same session identifier for some stage hold the same key at

that stage. This property holds, as all session identifiers contain the ClientHello

message which fixes the ticket and thus the resumption master secret RMS. The

RMS in turn determines all following keys, guaranteeing that sessions with the

same identifier hold the same key at each stage.

2. Sessions with the same session identifier for some stage share the same contributive

identifier at that stage. This property holds trivially for Stage 1 as sid1 = cid1. For

all other stages i ∈ {2, 3, 4, 5}, the contributive identifier is set to its final value

cidi := sid2 as soon as the sender and receiver set the session identifier.

3. Sessions are partnered with the intended participant, and share the same key index.

This property holds as honest senders only use a legitimate ticket ticket (included

in the ClientHello message), which ensures that both parties agree on the same

partner and key index.

4. Session identifiers do not match across different stages. This property holds triv-

ially, as sid1, sid2, sid3 include distinct non-optional messages and sid4, sid5 in-

clude separating identifier strings.

5. At most two sessions have the same session identifier at any stage. Note that each

session identifier includes the ClientHello message and hence the client nonce NC

of bit length λ. The first session identifier is only set after the sever has processed

the ClientHello (and thus the ticket ticket), implying that the server’s secret key

has been replaced before accepting the Stage 1 session key. Hence, replaying the

ClientHello message to the server cannot lead to an accepting stage in a different

session, but will incur protocol abortion. A collision can hence only occur if a

third party picks the same random nonce NC . We can upper-bound the collision

probability by ns · 2−λ, where ns is the maximum number of sessions.

�

MultiStageSecurity We proceed with proving MultiStage security of our construction.

Our proof follows the proof of TLS 1.3 draft-14 by Fischlin and Günther [28, Theo-

rem 5.2] as the constructions are very similar, but is different in two main aspects.

1. The proof by Fischlin and Günther only considers TLS 1.3 resumption handshake

in draft-14. We adopted and extended their proof to the finalized TLS 1.3 key

schedule.

2. The resumption master secret is derived from a 0-RTT session resumption protocol

Resumption, requiring an additional reduction to the security of Resumption.

This way we can achieve forward secrecy for all messages in the very first stage of

the resumption handshake, by only modifying the key management on the server

side and without any changes to clients or the standardized TLS 1.3 protocol flow.
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Theorem 5. The protocol TLS13wRES is MultiStage-secure in a key-independent

and stage-1-forward-secret manner with the above properties (M, USE) and key dis-

tribution D if Resumption is invariant to puncturing. That is, for any probabilistic

polynomial-time adversary A against the MultiStage security, we can construct adver-

saries B1, . . . ,B15 such that

Adv
MultiStage,D

A,TLS13wRES(λ) ≤ 5ns ·
(

Advcollision
B1,H (λ) + n p ·

(

Adv0-RTT-SR
B2,Resumption(λ)

+ Advrand
B3,Exp(λ) + Adv

HMAC(0,$)-$
B4,Ext (λ) + Advrand

B5,Exp(λ)

+ Advrand
B6,Exp(λ) + Advrand

B7,Exp(λ) + Advrand
B8,Ext(λ) + Advrand

B9,Exp(λ)

+ Advrand
B10,Exp(λ) + Advrand

B11,Exp(λ) + Advrand
B12,Ext(λ) + Advrand

B13,Exp(λ)

+ Advrand
B14,Exp(λ) + Advrand

B15,Exp(λ)
))

,

where ns is the maximum number of sessions.

Proof. We will conduct this proof in a sequence of games between a challenger C and

an adversary A. We start with an adversary playing the MultiStage security game. Over

a sequence of hybrid arguments, we will stepwise transform the security game to a game

where the Test-query is independent of the challenge bit btest. The claim then follows

from bounding the probability of distinguishing any two consecutive games. By Advi

we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original MultiStage security game. By definition

we have

Adv0 = Adv
MultiStage,D

A,TLS13wRES(λ).

Game 1. This game is identical to Game 0, except that we restrict the adversary to a

single Test query. We can apply the hybrid argument by Dowling et al. [23, Appendix A]

which reduces the adversary’s advantage in a five stage protocol by a factor of at most

5ns , where ns is the number of sessions. The hybrid argument essentially consists of 5ns

hybrids (ns possible Test queries in each of the five stages) where the first j ∈ [5ns]

tested keys are replaced with random keys. This allows implicitly guessing the session

to be tested by the adversary. This argument also implicitly guesses which session label

(which can be either a client or a server session) will be tested by the adversary, allowing

us to identify it in advance. In conclusion, we now have

Adv1 ≥
1

5ns

· Adv0.

Game 2. This game is identical to Game 1, except that we abort if during protocol

execution the same hash value is computed for two distinct inputs. Should this happen,

we can construct an adversary B1 that breaks the collision resistance of the hash function

H by outputting the two distinct input values to the challenger of the collision resistance
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game. We can thus bound the probability of aborting as

|Adv2 − Adv1| ≤ Advcollision
B1,H (λ).

Game 3. This game is identical to Game 2, except that we now guess the index of

the pre-shared secret used within the tested session amongst the maximum number of

pre-shared secrets. If the tested session uses a different pre-shared secret, we abort the

game. As the guess is oblivious to the adversary until an abort occurs, we have

Adv3 ≥
1

n p

· Adv2,

where n p is the maximum number of pre-shared secrets. Note that a correct guess allows

us to identify the pre-shared secret pssU,V,d in the tested session and hence the intended

partner of the tested session. Without loss of generality let us assume that U is the client

session and V is the server session.

Game 4. In this game, we modify the output of the ServerRes function. To be precise,

we proceed as in Game 3, but replace the output of ServerRes for both the owner of

the tested session and its intended partner with a random value RMS||NT . We will now

show that any adversary that is able to distinguish Game 3 from Game 4 can be used to

construct an adversary against the 0-RTT-SR security of Resumption. Concretely, we

have

|Adv4 − Adv3| ≤ Adv0-RTT-SR
B2,Resumption(λ).

Construction of B2 against Resumption The adversary behaves like the challenger in

Game 3, except for all interactions involving the server V associated to the tested ses-

sion, which we simulate as follows. At first, the adversary initializes the 0-RTT-SR

challenger and receives a sequence of tickets t1, . . . , tμ. It tests the first ticket by invok-

ing OTest(t1) → γ ∈ {s1, r1} and immediately corrupts the challenger to receive the

challenger’s secret key k. Note that this secret key k has been modified by the challenger

and thus cannot be used to open ticket t1.

As we are now in possession of the secret key k, we are able to simulate all sessions

but the one using ticket t1. We utilize ticket t1 as the ticket sent within the ClientHello

message of the tested session between client U to server V . Note that we can perfectly

simulate all queries of A, since it is not allowed to query Reveal for the tested session or

its partner. Likewise, it can query Corrupt only after the keys have been accepted by U

and V , implying replacement of the server’s secret key k. If the adversary issues a corrupt

query on the tested server, we are able to puncture the server’s secret key in accordance

with all queries issued in other sessions of the server. The invariance to puncturing of

Resumption guarantees us, that this (possibly wrong order of) key replacements cannot

be efficiently detected by the adversary.

Eventually, the adversary will output a guess b′ which we forward to the challenger.

If the challenger bit b = 0, we perfectly simulate Game 3 (i.e., s1 is the actual expected
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output) and if b = 1, we perfectly simulate Game 4 (i.e., r1 is a uniformly random

output). This proves the claim.

Note that the security of Resumption ensures that the adversary cannot learn the value

RMS for the tested session or its partner, even when corrupting immediately after the

ClientHello message and the ticket have been processed. This ensures the achievement

of forward secrecy in Stage 1.

The next sequence of games aims to replace all traffic keys with random values. That

is, we will step by step replace the outputs of the functions Ext and Exp with random

values.

Game 5. This game is identical to Game 4, other than replacing Exp(RMS, ·) with

a lazily-sampled random function, such that the pre-shared key PSK is replaced by a

random value PSK in the tested session. Any adversary that is able to distinguish this

replacement can be used to construct an adversary that breaks the pseudorandomness of

the HKDF. We have

|Adv5 − Adv4| ≤ Advrand
B3,Exp(λ).

Construction of B3 against Exp The adversary B3 behaves exactly like in Game 4, but

evaluates Exp(RMS, ·) via the PRF evaluation oracle provided by the PRF challenger.

Since the adversary A is not able to learn the real resumption master secret RMS by

corrupting the tested session (cf. Game 4), it is only known to be a uniformly random

value. Hence, B3 perfectly simulates Game 4 if the PRF oracle computes Exp and

perfectly simulates Game 5 if the PRF oracle is a random function, which proves the

claim.

Game 6. This game is identical to Game 5, other than replacing Ext(0, PSK)with a ran-

dom value ES in the tested and partnered session. Recall that Ext(x, y) = HMAC(x, y).

Any adversary that is able to distinguish this replacement can be used to break the

HMAC(0, $)-$ assumption of Ext.

Construction of B4 against Ext The HMAC assumption states that no probabilistic

polynomial-time adversary is able to distinguish HMAC(0, x) from y $←− {0, 1}λ, for

uniformly chosen inputs x $←− {0, 1}λ. B4 behaves exactly like the challenger in Game 5,

but uses the value Ext(0, PSK) as challenge. If Ext(0, PSK) = HMAC(0, x) for x ∈

{0, 1}λ it perfectly simulates Game 5 and if Ext(0, PSK) = y for y ∈ {0, 1}λ, it perfectly

simulates Game 6. In conclusion, we have

|Adv6 − Adv5| ≤ Adv
HMAC(0,$)-$
B4,Ext (λ).

Game 7. This game is identical to Game 6, except that we replace all evaluations

Exp(ES, ·) by a lazily-sampled random function. In particular, this yields a random

early traffic secret ets, a random binder key bk, and a random expanded early secret

dES.

Note that the hash value for deriving the early traffic secret is dependent on the

session identifier. The changes introduced in Game 2 guarantee that the hash value does
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not collide across non-partnered users. Furthermore, all three values for the second input

of the Exp function are distinct labels, ensuring distinct outputs.

Any adversary that is able to recognize this change can be used to construct an adver-

sary against the pseudorandomness of the HKDF in the same fashion as done in Game 5,

leading to a bound

|Adv7 − Adv6| ≤ Advrand
B5,Exp(λ).

Game 8. This game is identical to Game 7, other than replacing Exp(ets, ·) with a

lazily-sampled random function, yielding a random value tkets for the early traffic key

in the tested and partnered session. Following the same arguments as in Game 5, we can

bound

|Adv8 − Adv7| ≤ Advrand
B6,Exp(λ).

Game 9. This game is identical to Game 8, other than replacing Exp(bk, ·) with a

lazily-sampled random function, yielding a random value fk0 for the early finished key

in the tested and partnered session. Following the same arguments as in Game 5, we can

bound

|Adv9 − Adv8| ≤ Advrand
B7,Exp(λ).

Game 10. This game is identical to Game 9, other than replacing Ext(ES, 0) with

a lazily-sampled random function, yielding a random HS in the tested and partnered

session. Following the same arguments as in Game 5, we can bound

|Adv10 − Adv9| ≤ Advrand
B8,Ext(λ).

Game 11. This game is identical to Game 10, except that we replace all evaluations

Exp(HS, ·) by a lazily-sampled random function. In particular, this yields a random

client handshake traffic secret chts (resp. server handshake traffic secret shts), and a

random expanded handshake secret dHS.

Note that the hash value for deriving the handshake traffic secrets is dependent on

the session identifier. The changes introduced in Game 2 guarantee that the hash value

does not collide across non-partnered users. Furthermore, all three values for the second

input of the Exp function are distinct labels, ensuring distinct outputs.

Following the same arguments as in Game 5, we can bound

|Adv11 − Adv10| ≤ Advrand
B9,Exp(λ).

Game 12. This game is identical to Game 11, other than replacing Exp(chts, ·) with

a lazily-sampled random function, yielding a random client handshake traffic key tkchts

and a random client finished key fkC in the tested and partnered session. Following the
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same arguments as in Game 5, we can bound

|Adv12 − Adv11| ≤ Advrand
B10,Exp(λ).

Game 13. This game is identical to Game 12, other than replacing Exp(shts, ·) with a

lazily-sampled random function, yielding a random server handshake traffic key tkshts

and a random server finished key fkS in the tested and partnered session. Following the

same arguments as in Game 5, we can bound

|Adv13 − Adv12| ≤ Advrand
B11,Exp(λ).

Game 14. This game is identical to Game 13, other than replacing Ext(MS, 0) with

a lazily-sampled random function, yielding a random MS in the tested and partnered

session. Following the same arguments as in Game 5, we can bound

|Adv14 − Adv13| ≤ Advrand
B12,Ext(λ).

Game 15. This game is identical to Game 14, except that we replace all evaluations

Exp(MS, ·) by a lazily-sampled random function. In particular, this yields a random

client application traffic secret cats (resp. server application traffic secret sats), a random

exporter master secret EMS, and a random new resumption master secret RMS′.

Note that the hash value for deriving the application traffic secrets is dependent on

the session identifier. The changes introduced in Game 2 guarantee that the hash value

does not collide across non-partnered users. Furthermore, all four values for the second

input of the Exp function are distinct labels, ensuring distinct outputs.

Following the same arguments as in Game 5, we can bound

|Adv15 − Adv14| ≤ Advrand
B13,Exp(λ).

Game 16. This game is identical to Game 15, other than replacing Exp(cats, ·) with a

lazily-sampled random function, yielding a random client application traffic key tkcats

in the tested and partnered session. Following the same arguments as in Game 5, we can

bound

|Adv16 − Adv15| ≤ Advrand
B14,Exp(λ).

Game 17. This game is identical to Game 16, other than replacing Exp(sats, ·) with a

lazily-sampled random function, yielding a random server application traffic key tksats

in the tested and partnered session. Following the same arguments as in Game 5, we can

bound

|Adv17 − Adv16| ≤ Advrand
B15,Exp(λ).

In Game 17, all keys tkets, tkchts, tkshts, tkcats, tksats, EMS, and RMS′ derived in the

tested session are chosen uniformly at random. Observe that (contrary to standard TLS
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session resumption) the security of the Resumption protocol ensures that replaying the

ClientHello message to multiple server sessions does not cause multiple sessions to be

partnered to the original client session. We hence achieve replay protection across all

stages of the protocol. All sessions that are not partnered with the tested session derive

different traffic keys as explained in Games 7, 11, and 15. Therefore, the view of A in

Game 17 is independent of btest. Obviously, we have

Adv17 = 0.

By summing up probabilities from Game 0 to Game 17, we conclude the proof. �

Remark on the Optional Diffie–Hellman Key Exchange TLS 1.3 allows including an

optional Diffie–Hellman Key Exchange (DHKE) in its resumption handshake. This ad-

ditional key exchange has an important function in the TLS 1.3 Resumption Handshake.

Namely, including the Diffie–Hellman key into the derivation of the handshake key,

will achieve stage-3-forward-secrecy as shown by [28, Theorem 5.4]. We deliberately

excluded this optional key exchange from our analysis, as the multi-stage key exchange

model does not capture any property of the DHKE beyond the forward secrecy aspect,

which we already obtain through other means. Hence, including the DHKE as com-

putational step does not offer any security benefits (within this model). We stress that

the optional DHKE can be added to the resumption handshake (as done in TLS 1.3) if

wanted, without any loss of security.

5. A PPRF with Short Secret Keys from Strong RSA

In order to instantiate our generic construction of forward-secure and replay-resilient ses-

sion resumption protocol with minimal storage requirements, which is the main objective

of this paper, it remains to construct suitable PPRFs with minimal storage requirements

and good computational efficiency. Note that a computationally expensive PPRF may

void all efficiency gains obtained from the 0-RTT protocol.

In this section we describe a PPRF based on the Strong RSA (sRSA) assumption

with secret keys that only consist of three elements, even after an arbitrary number of

puncturings. More precisely, a secret key consists of an RSA modulus N , an element

g ∈ ZN and a bitfield r , indicating positions where the PPRF was punctured. The secret

key size is linear in the size of the PPRF’s domain, since the bitfield needs to be of the

same size as the domain (which is determined at initialization, and does not change over

time). Hence, the PPRF’s secret key size is independent of the number of puncturings.

Moreover, for any reasonable choice of parameters, the bitfield is only several hundred

bits long, yielding a short key in practice. Servers can use many instances in parallel with

the instances sharing a single modulus, so it is only necessary to generate (and store)

the modulus once, at initialization.

Since our primary objective is to provide an efficient practical solution for protocols

such as TLS 1.3 0-RTT, the PPRF construction described below is analyzed in the ran-

dom oracle model [7]. However, we note that we use the random oracle only to turn a

“search problem” (sRSA) into a “decisional problem” (as required for a pseudorandom



20 Page 40 of 57 N. Aviram et al.

function). Therefore, we believe that our construction can be lifted to the standard-model

via standard techniques, such as hardcore predicates [8,10,31]. All of these approaches

would yield less efficient constructions, and therefore are outside the scope of our work.

Alternatively, one could formulate an appropriate “hashed sRSA” assumption, which

would essentially boil down to assuming that our scheme is secure. Therefore, we con-

sider a random oracle analysis based on the standard sRSA problem as the cleanest and

most insightful approach to describe our ideas.

Idea Behind the Construction The construction is inspired by the RSA accumulator of

Camenisch and Lysyanskaya [15]. The main idea is the following. Given a modulus

N = pq, a value g ∈ ZN , and a prime number P , it is easy to compute g �→ gP

mod N , but hard to compute gP �→ g mod N without knowing the factorization of N .

In the following let pi be the i-th odd prime. That is, we have (p1, p2, p3, p4, . . .) =

(3, 5, 7, 11, . . .). Let n be the size of the domain of the PPRF. Our PPRF on input ℓ

produces an output of the form H(g p1·...·pn/pℓ), where H is a hash function that will be

modeled as a random oracle in the security proof. Note that g is raised to a sequence of

prime numbers except for the ℓ-th prime number. As long as we have access to g, this

is easy to compute. However, if we only have access to g pℓ instead of g, we are unable

to compute the PPRF output without knowledge of the factorization of N . This implies

that by raising the generator to certain powers, we prevent the computation of specific

outputs. We will use this property to puncture values of the PPRF’s domain.

5.1. Formal Description of the Construction

Definition 16. Let p, q be two random safe primes of bitlength λ/2 and let N = pq.

Let y $←− ZN . We define the advantage of algorithm B against the Strong RSA Assumption

[3] as

AdvsRSA
B (λ) := Pr

[

(x, e) ← A(N , y) : xe = y mod N
]

.

The following lemma, which is due to Shamir [55], is useful for the security proof of

our construction.

Lemma 2. There exists an efficient algorithm that, on input Y, Z ∈ ZN and integers

e, f ∈ Z such that gcd(e, f ) = 1 and Z e ≡ Y f mod N, computes X ∈ ZN satisfying

X e = Y mod N.

Construction 2. Let H : ZN → {0, 1}λ be a hash function and let pi be the i-th

odd prime number. Then we construct a PPRF PPRF = (Setup, Eval, Punct) with

polynomial-size X = [n] in the following way.

– Setup(1λ) computes an RSA modulus N = pq, where p, q are safe primes. Next,

it samples a value g $←− ZN \{0, 1} and defines r := 0n and k = (N , g, r). The

primes p, q are discarded. Output is k.

– Eval(k, x) parses k = (N , g, (r1, . . . , rn)). If rx = 1, then it outputs ⊥. Otherwise

it computes and returns
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y := H
(

gPx mod N
)

.

where pi is the i-th odd prime and

Px :=
∏

i∈[n],i �=x,ri �=1

pi

is the product of the first n odd primes, except for px and previously “punctured

primes” (indicated by ri �= 1).

– Punct(k, x) parses k = (N , g, (r1, . . . , rn)). If rx = 1, then it returns k. If rx = 0,

it computes g′ := g px and r ′ = (r1, . . . , rx−1, 1, rx+1, . . . , rn) and returns k′ =

(N , g′, r ′).

It is straightforward to verify the correctness of Construction 2 and that it is invariant

to puncturing in the sense of Definition 6.

5.2. Security Analysis

In the following we will prove that Construction 2 is pseudorandom at punctured points,

if H is modeled as a random oracle [7] and the Strong RSA assumption holds.

Theorem 6. Let PPRF = (Setup, Eval, Punct) be as above with polynomial-size

input space X = [n]. From each probabilistic polynomial-time adversary A with ad-

vantage Advna-rand
A,PPRF(λ) against the na-rand-security (cf. Definition 7) we can construct

an efficient adversary B with advantage AdvsRSA
B (λ) against the Strong RSA problem,

such that

AdvsRSA
B (λ) ≥ Advna-rand

A,PPRF(λ).

Proof. B receives as input a Strong RSA challenge (N , y). It starts A, which outputs

a set X ′ = {x1, . . . , xℓ} ⊆ [n] of values. B responds as follows to A. We write Pj :=
∏

i∈[n],i �= j pi for the product of the first n odd primes except for p j , and

P ′ :=
∏

i∈[n]\X ′

pi

to be the product of the first n odd primes, except for those contained in X ′.

B defines r = (r1, . . . , rn) as

ri :=

{

1, if i ∈ X ′

0, else

for i ∈ [n], and then sets k := (N , y, r).

Let P∗ :=
∏

i∈X ′ pi be the product of the first n odd primes contained in X ′. To

show that this is a properly distributed punctured key, we have to show that there exists
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g ∈ ZN such that gP∗
= y mod N , and that y is distributed as if g was uniform over

ZN . To this end, note that N = pq is a product of two safe primes p = 2p′ + 1 and

q = 2q ′ + 1 with p′, q ′ prime. Furthermore, we have p′, q ′ ≫ pn , because pn is the

n-th odd prime for polynomially-bounded n, which implies gcd(ϕ(N ), gP∗
) = 1, where

ϕ is Euler’s Phi-function. Hence, the map y �→ y1/gP∗

is a permutation over ZN , and

therefore there exists an element g ∈ ZN such that

g = y1/P ′

mod N .

Since y is uniformly random, g is uniformly distributed, too. Hence, k := (N , y, r) is a

properly distributed punctured key.

B picks ℓ random strings h1, . . . , hℓ
$←− {0, 1}λ and outputs (k, (h1, . . . , hℓ)) to A.

A now has to distinguish whether

hi = H(gPxi mod N )

for all xi ∈ X ′, or whether the hi are uniformly random. Since H is a random oracle, this

is perfectly indistinguishable for A, unless at some point it queries the random oracle

on input a ∈ ZN such that there exists i ∈ [ℓ] with a = gPxi mod N . Since A has

advantage Advna-rand
A,PPRF(λ), this must happen with probability at least Advna-rand

A,PPRF(λ) at

some point throughout the security experiment.

Whenever A outputs a value a ∈ ZN in order to query for H(a), B checks whether

a = gPxi mod N

holds for any i ∈ ℓ. Since B does not know g explicitly, it cannot check this directly.

However, it can equivalently check whether

a pxi = y P ′

mod N (1)

holds for any i ∈ [ℓ]. If (1) indeed holds for some i ∈ [ℓ], then B applies Lemma 2

to solve the Strong RSA instance. Concretely, since gcd(pxi
, P ′) = 1, it can run the

algorithm on input

(e, f, Z , Y ) := (pxi
, P ′, a, y).

The algorithm returns X such that X e = Y mod N . Thus, (X, e) = (X, pxi
) is a valid

solution to the Strong RSA instance (N , y). Note that if A is efficient, then so is B, and

that the reduction is tight. �

5.3. Efficiency Analysis

Note that a server is able to create multiple instances of our construction to serve more

tickets than one instance is able to. Using multiple instances allows using smaller expo-

nents, but in return, the storage cost grows linearly in the number of instances.
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Serving a ticket requires two exponentiations, one for computing the key and one

for puncturing. Computing the key requires raising the state g to the power of
∏

p∈S p

for some subset of primes S. Puncturing requires exponentiating by a single prime.

Therefore, all exponentiations feature exponents smaller than
∏n

i=1 pi . We start by

comparing to 2048-bit RSA, which according to the NIST key size recommendations

[4] corresponds to “112-bit security”, before comparing to larger RSA key sizes.

Worst-Case Analysis We compare to standard exponentiation in the group, i.e. raising to

the power of d ∈ N, where log d ≈ 2048. For puncturing to be comparable in the worst-

case, we require log
(
∏n

i=1 pi

)

≤ 2048. Choosing pi to be the i-th odd prime yields

n ≤ 232. An economic server may store only one 2048-bit group element for the current

state, and a bitfield indicating which of the 232 primes have been punctured, requiring

2280 bits in total. This allows serving 232 tickets, resulting in a storage cost of 1.22 bytes

per ticket. Alternatively, a standard session cache would require 112·232 = 25984 bits to

serve those 232 tickets, assuming symmetric keys of 112 bits. Therefore, our construction

decreases storage size compared to a Session Cache by a factor of 25984/2280 = 11.4.

Averaged Analysis Note that in the above worst-case analysis we consider an upper

bound on the exponentiation cost. That is, we guarantee that a puncturing and key

derivation operation is never more expensive than a full exponentiation. Indeed, the

first key computation raises to the power of p1 · . . . · pn/pℓ, i.e. to the product of n − 1

primes. However, subsequent key calculations raise to smaller powers, i.e. to the product

of n − 2 primes, then n − 3, and so on. Therefore, serving tickets arriving later is much

cheaper than serving the first. In particular in settings where a server uses many PPRF

instances in parallel, in order to deal with potentially thousands of simultaneously issued

tickets, an alternative and more reasonable efficiency analysis considers the average cost

of serving a ticket to be comparable to exponentiation in the group. In the worst-case,

primes are punctured in order, so pn is included in the exponent in all key derivations,

pn−1 in all derivations except the last, etc. Each prime is also used once for puncturing.

Requiring
∑n

i=1 i · log(pi ) ≤ n · 2048 yields a maximum n = 387, and a savings factor

of 112 · 387/(2048 + 387) = 17.8. The required storage is therefore 0.79 bytes per

ticket.

Considering Other Security Parameters and Efficiency Requirements Generalizing the

above calculations, Table 1 gives concrete parameters for various security levels, fol-

lowing the NIST recommendations for key sizes [4]. Larger key sizes result in larger

reductions in storage, especially when requiring average cost similar to exponentiation

in the RSA group. We also show the improvement factor in storage when relaxing the

above heuristic choice that serving a ticket must not cost more than one full RSA-

exponentiation, by considering the case where serving a ticket is cheaper on average

than 5 group exponentiations. This demonstrates that the proposed PPRF can yield very

significant storage savings in general cryptographic settings, while keeping computation

costs on the same order of magnitude as common public key operations. In the context

of TLS, however, we expect most server operators would prefer parameters that keep

processing time comparable to a single exponentiation. We emphasize that the improve-

ment factor in storage is determined at initialization time, and is deterministic rather than

probabilistic. The largest prime used in exponentiations determines how many tickets
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Table 1. Savings factors for various key sizes. Symmetric and asymmetric key sizes are matched according

to the NIST recommendations [4]. Both savings factors denote the reduction in server-side storage required

when using Construction 3. Column 3 denotes the reduction in storage achieved under the requirement that

serving a single ticket is always cheaper than an exponentiation in the RSA group of respective key size.

Column 4 denotes the reduction in storage achieved under the requirement that the average cost for serving a

ticket is cheaper than a single exponentiation. Column 5 denotes the reduction in storage achieved under the

requirement that the average cost for serving a ticket is cheaper than 5 group exponentiations.

Storage Savings Factor

Symmetric Modulus W.C. cheaper than Average cheaper Average cheaper than

Key Size Size exponentiation than exponentiation 5 exponentiations

112 2048 11.40 17.80 48.92

128 3072 12.28 19.47 54.49

192 7680 16.37 26.52 77.36

256 15360 20.10 33.05 99.12

are served using a single group element. The worst-case and average-case refer to the

processing time, not to the savings in storage.

Additional Storage for the Primes The server will also need to store the first n primes,

but this requires negligible additional storage. Storing the primes requires on the order

of magnitude of ten kilobytes, where we expect typical caches to use many megabytes.

For the minimal storage requirement, we consider 2048-bit RSA while requiring that the

worst case puncturing time is cheaper than group exponentiation. In this case n = 232

and pn = 1471, therefore all primes fit in 32-bit integers. Storing all the primes would

require at most 4 · 232 = 928 bytes.

The largest value of n for the parameter choices presented in this work is n = 9704, for

the “average cheaper than 5 exponentiations” case with 15360-bit RSA. p9704 = 101341.

The required additional storage is therefore 4 · 9704 = 38,816 bytes. To reiterate, we

expect typical caches to use many megabytes.

Concrete Benchmarks We now give concrete performance estimates for this construc-

tion, using OpenSSL [58]. OpenSSL is a well-known production-grade library that im-

plements the TLS and SSL protocols, as well as low-level cryptographic primitives.

For each key size, we measure the computation time of exponentiating by all primes
∏n

i=1 pi , by calling the OpenSSL “BigNum” exponentiating function. This is analogous

to the computation required to serve the first ticket and then puncture the key: Serving re-

quires exponentiating to the power of all primes except one, pi , and puncturing requires

exponentiating to the power of pi . This is the worst-case, since serving later tickets is

cheaper.

We measure the performance of this calculation for two of the above cases, which

determine the value of n: (1) Worst-case is cheaper than exponentiation, and (2) The

average case is cheaper than exponentiation. We note the latter case is slightly unintuitive:

we measure the worst-case performance, under the requirement that the average case

is comparable to one exponentiation in the group.

Table 2 gives our results. We observe that performance is comparable to, but slower

than, RSA decryption. In typical cases, it requires only a few additional milliseconds
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Table 2. Worst-case running time for serving a single ticket using our construction, compared to RSA de-

cryption .

Our construction: Decryption + Puncturing

Modulus W.C. cheaper than Average cheaper RSA

Size exponentiation than exponentiation Decryption

2048 2.6 4.7 0.5

3072 8.3 15.2 2.5

4096 19.4 35.8 5.6

All times are measured in milliseconds. Measurements were performed on a standard workstation, with a

3.60GHz Intel i7 CPU. All measurements used code from OpenSSL 1.0.2q, released in November 2018. To

benchmark our construction we used a short piece of custom code, based on [11], to repeatedly call the OpenSSL

exponentiating function. For each parameter choice, we generated 100 random moduli, and performed 100

exponentiations of random group elements to the power of
∏n

i=1 pi . To benchmark RSA decryption, we used

a built-in OpenSSL benchmarking command, “openssl speed” (after applying a small patch that adds support

for 3072-bit RSA to the command [37])

compared to RSA decryption. We argue the additional latency and computation re-

quirement are small enough to allow the construction to be deployed as-is, in current

large scale TLS deployments. It is unsurprising that RSA decryption is faster than our

construction, since OpenSSL performs RSA decryption using the Chinese Remainder

Theorem.

6. Tree-Based PPRFs

This section will consider a different approach to instantiating Construction 1 based on

PPRFs using trees. At first we will recap the idea behind tree-based PPRFs and explain

how we utilize tree-based PPRFs as an instantiation of our session resumption proto-

col and highlight implications. Finally, we will describe our new “domain extension”

technique for PPRFs and analyze its efficiency.

6.1. Tree-Based PPRFs

We will briefly recap the main idea behind tree-based PPRFs. It is well known that

the GGM tree-based construction of pseudorandom functions (PRFs) from one-way

functions [30] can be modified to construct a puncturable PRF, as noted in [12,14,38].

It works as follows.

Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator (PRG) and let G0(k),

G1(k) be the first and second half of string G(k), where k is a random seed. The GGM

construction defines a binary tree on the PRF’s domain, where each leaf represents an

evaluation of the PRF. We label each edge with 0 if it connects to a left child, and 1

if it connects to a right child. We label each node with the binary string determined

by the path from the root to the node. The PRF value of x = x1 . . . xn ∈ {0, 1}n is

(Gxn ◦ . . . ◦ Gx1)(k) ∈ {0, 1}λ, i.e. we compose G according to the path from root to

leaf x .
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We briefly describe how this construction can be transformed into a PPRF. In order

to puncture the PPRF at input x = x1 . . . xn we compute a tuple of n intermediate

node evaluations for prefixes x1, x1x2, . . . , x1x2 . . . xn and discard the initial seed k.

The intermediate evaluations enable us to still compute evaluations on all inputs but x .

Successive puncturing is possible if we apply the above computations to an intermediate

evaluation. Note that we have to compute at most n ·m intermediate values if we puncture

at random, where m is the number of puncturing operations performed.

The PPRF is secure if an adversary is not able to distinguish between a punctured point

and a truly random value, even when given the values of all computed “neighbor nodes”.

This holds as long as the underlying PRG is indistinguishable from random [12,14,38].

Furthermore, note that the PPRF is also invariant to puncturing as puncturing always

deletes all nodes from a leaf up to the root without leaving any trace which leaf is

“responsible” for the deletion. Hence, if an adversary is given a punctured key, it cannot

deduce in which order it has been punctured.

6.2. Combining Tree-Based PPRFs with Tickets

In our session resumption scenario the tree-based PPRF will act as a puncturable STEK.

That is, evaluating the PPRF returns a ticket encryption key. Upon resumption with a

ticket we will retrieve the ticket encryption key from the PPRF by evaluating it and

puncture the PPRF at that very value to ensure the ticket encryption key cannot be

computed twice. Note that each ticket encryption key essentially corresponds to a leaf

of the tree. Thus we will subsequently use the terms leaf and ticket (encryption key)

interchangeably depending on the context.

For simplicity, we consider tickets which consist of a ticket number i and a ticket

lifetime t . Following Construction 1 we will issue the tickets one after another while

incrementing the ticket number for each. Note that the ticket number i corresponds to

the i-th leftmost leaf of the tree. The ticket lifetime t determines how long an issued

ticket is valid for resumption. That is, if t ′ > t time has passed, the server will reject the

ticket.

We assume that the rate at which tickets are issued is roughly the same as the rate

tickets are used for session resumption. This holds as for each session resumption we will

issue a new ticket to again resume the session at a later point in time. Similarly, we argue

that tickets are roughly used in the same order for resumption as we issued them. Again,

if we consider multiple users, repeatedly requesting tickets and resuming sessions, we

are able to average the time a user takes until a session is resumed (Cloudflare have

suggested that these assumptions seem reasonable; unfortunately, they cannot provide

data on returning clients’ behavior yet). This yields an implicit window of tickets in

usage. The window is bounded left by the ticket lifetime and bounded right by the last

ticket the server issued. Within the lifetime of the tree-based PPRF this implicit window

will shift from left to right over the tree’s leaves. It immediately follows that tickets are

also roughly used in that order.
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6.3. Efficiency Analysis of the Tree-Based PPRF

We will now discuss how the performance of tree-based PPRFs depends on the ticket

lifetime. We consider a scenario where the ticket lifetime t equals the number of leaves

ℓ. It is also possible to consider a scenario where the ticket lifetime is smaller than the

number of leaves. If both number of leaves ℓ and ticket lifetime t are powers of 2, we can

divide the leaves in ℓ/t windows, which span a subtree each. The subtrees are all linked

with the “upper part” of the tree. A different approach would be to instantiate a new tree

when a tree runs out of tickets. We stress that this does not affect our analysis. As soon

as one subtree runs out of tickets, the next subtree is used. If the rate at which we issue

tickets stays the same, we are able to delete parts of the former tree when issuing tickets

of the next one. Hence, for analysis, it is sufficient to consider a single tree.

If we were to puncture leaves strictly from left to right, we would need to store at most

log(ℓ) leaves (one leaf per layer). Note that if we puncture leaves at random, we would

need to store at most p · log(ℓ) nodes, where p is the number of punctures performed.

We can also bound the number of nodes we need to store by p · log(ℓ) ≤ ℓ/2. This is due

to the tree being binary. Essentially each node (except for the lowest layer) represents

at least two leaves. To be more precise, in a tree with L layers, storing a node on layer

i allows evaluating its 2L−i children. Thus it is preferable to store those nodes instead

of storing leaves in order to save memory. In the worst-case only every second leaf is

punctured. This results in precomputation of all other leaves without being able to save

memory by only storing an intermediary node. Note that this would actually resemble

a session cache, where all issued tickets are stored. However, note that a session cache

needs to store each ticket when it has been issued, whereas our construction only needs to

increase its storage if a ticket is used for resumption. Thus, our tree-based construction

performs (memory-wise) at least as well as a session cache. In practice, where user

behavior is much more random, our approach is always better than session caches.

The tree-based PPRF performs more computations compared to a session cache. When

issuing tickets we need to compute all nodes from the closest computed node to a leaf. For

puncturing we need to compute the same, plus computation of some additional sibling

nodes. However, when instantiating the construction with a cryptographic hash function,

such as SHA-3, evaluation and puncturing of the PPRF consists only of several hash

function evaluations. This makes our construction especially suitable for high-traffic

scenarios.

Table 3 gives worst-case secret key sizes based on the above analysis. However, we

expect the secret key size to be much smaller in practice. Unfortunately, we are not

able to estimate the average key size as this would depend on the exact distribution of

returning clients’ arrival times.

7. Generic Domain Extension for PPRFs

Most forward-secure and replay-resilient 0-RTT schemes come with large secret keys

(possibly several hundred megabytes) when instantiated in a real-world environment

[19,20,33]. This is especially problematic if the secret key needs to be synchronized
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Table 3. Worst-case size of secret key depending on the rate of tickets per second and the ticket lifetime

assuming 128 bit ticket size.

Tickets per second r Ticket lifetime t Worst-case secret key size |k|

16 1 hour 461 kB

16 1 day 11.06 MB

128 1 hour 3.69 MB

128 1 day 88.47 MB

1024 1 hour 29.49 MB

1024 1 day 707.79 MB

The worst-case secret key size is computed as |k| = 128r t/2

across multiple server instances. Therefore, it is often desirable to minimize the secret

key size.

In this section we will describe a generic domain extension. In the context of our

work, the domain extension reduces the size of punctured keys by trading secret key size

for ticket size, while preserving the puncturing functionality.

Idea Behind the Construction Our session resumption protocol uses the output of the

PPRF as a ticket encryption key. Normally, a PPRF only allows one output per input as it

is designed to be a function. Our protocol, however, does not rely on this property. Instead

of only using one ticket encryption key we could generate multiple ticket encryption keys.

Ticket issuing would work as follows. First, we generate an intermediary symmetric key

to encrypt the resumption secret. The intermediary symmetric key is then encrypted

under each of the ticket encryption keys. The ticket will consist of one encryption of the

resumption secret and several (redundant) encryptions of the intermediary symmetric

key. We note that typically a ticket contains not only the resumption secret but also

the chosen cipher suite and other additional session parameters, and is thus larger than

just the resumption secret. It is therefore desirable to encrypt this data only once, while

encrypting the shorter intermediary symmetric key multiple times. This makes the ticket

as short as possible.

As long as the PPRF is able to recompute at least one of those ticket encryption keys,

the server will still be able to resume the session. This allows us to construct a wrapper

around the PPRF that extends the PPRF’s domain by relaxing the requirement that every

input has only a single output.

Before formally describing our construction, we will provide an example to illustrate

the idea. Let X be the PPRF’s domain. We will extend the domain to X × [n] with a

domain extension factor of n. That is, we will allow (x, i), i ∈ [n] for any x ∈ X as

input. Let G : {0, 1}λ → {0, 1}nλ be a pseudorandom generator and let G j (x) be the

j-th bitstring of size λ of G on input x . We define the evaluation of (x, i) as all possible

compositions of G j which end with Gi . That is, for any input (x, i) there will be (n −1)!

different outputs, as there are (n − 1)! ways to compose G j with j �= i . The possible

compositions of PRGs can be illustrated as a tree as shown in Fig. 5.

After puncturing the PPRF’s key for a value (x, i), it must not be possible to evaluate

the value anymore. This requires a mechanism to ensure that composing the PRGs

which end with Gi is no longer possible. We achieve this by forcing an evaluation of
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Fig. 5. Possible composition of PRGs for n = 3 illustrated as a tree. Each path from parent to child illustrates

an evaluation of the PRG shown next to the path. Upon puncturing (x, 3), the value y3 is computed and stored

and y is discarded. Thus, only the white nodes are computable, whereas the gray nodes cannot be computed

without inverting G3.

yi := Gi (y), where y is the evaluation of the underlying PPRF on input x . In order to

render recomputation of y impossible, we additionally need to puncture the PPRF’s key

on value x and delete the computed y. Formally, the construction is defined as follows.

Construction 3. Let G : {0, 1}λ → {0, 1}nλ be a PRG and let Gi (k) be the i-th

bitstring of size λ of G. Let PPRF′ = (Setup′, Eval′, Punct′) be a PPRF with domain

X . We construct a domain extended PPRF DE = (Setup, Eval, Punct) with domain

X × [n] for n ∈ N as follows.

– Setup(1λ) computes kPPRF := Setup′(1λ). Next, it defines an empty list L = ∅.

Output is k = (kPPRF,L)

– Eval(k, x) parses x = (xPPRF, xext) ∈ X × [n] and k = (kPPRF,L). It computes

y := Eval′(kPPRF, xPPRF). If y = ⊥, it checks whether there exists a value xPPRF

with

(xPPRF, y′, (r1, . . . , rn)) ∈ L.

If it exists, assign y := y′. Otherwise it outputs ⊥.

Furthermore, it defines a set R = {i ∈ [n] | ri = 1}. If ri are undefined, set R is

empty. Next, it computes

Y = {(Gin−|R|−1 ◦ . . . ◦ Gi1)(y)},

where (i1, . . . , in−|R|−1) are all (n − |R| − 1)! possible permutations of elements

in [n] \ (R ∪ {xext}). Output is Y .

– Punct(k, x) parses k = (kPPRF,L) and x = (xPPRF, xext) ∈ X ×[n]. It computes

y := Eval(kPPRF, xPPRF). If y �= ⊥, it appends L := L∪{xPPRF, y, (r1, . . . , rn)},

whereri = 0, but rxext = 1. Additionally, it punctures k′
PPRF := Punct′(kPPRF, xPPRF).

If y = ⊥ and no value xext with (xext, y′, r) ∈ L exists, it outputs k.
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Otherwise it retrieves ℓ = (xPPRF, y′, (r1, . . . , rn)) ∈ L. If ri = 1 for all i ∈

[n] \ {xPPRF}, remove ℓ from L. Else it sets

y′′ = Gxext(y′) and r ′
i :=

{

1, if i = xext

ri , else,

and updates ℓ ∈ L by computing L := (L \ {ℓ}) ∪ {(xPPRF, y′′, (r ′
1, . . . , r ′

n)}.

Output is k = (k′
PPRF,L).

7.1. Efficiency Analysis of the Generic Domain Extension

Increased Ticket Size Note that a ticket is longer than a standard ticket by (n − 1)!

encrypted blocks. Assuming 128-bit AES, and choosing n = 5, this translates to 4! ·

16 = 384 additional bytes. This is likely to be insignificant on the modern Internet.

For example, Google has pushed for increasing the maximum initial flight from 4 TCP

packets to 10 [25], as most server responses span several packets already (a typical full

packet is about 1500 bytes). A basic experiment performed by Google and Cloudflare in

2018 measured a similar scenario: It added 400 bytes for both the client’s and server’s

first flights [44]. They observed relatively small additional latencies: 2–4 milliseconds

in the median, and less than 20 milliseconds for the 95th percentile. However, choosing

n = 6 or larger is likely to be not cost-effective. This would translate to 5! · 16 = 1920

additional bytes, larger than a standard TCP packet.

Storage Requirements Comparing the storage requirements of the tree-based construc-

tion to standard session caches depends on the specific distribution of returning clients.

In the best case, tickets arrive in large contiguous blocks. In this case, a tree-based

construction uses negligible storage (logarithmic in the number of tickets), making the

savings factor in storage huge. However, this is unrealistic in practice. In the worst-case,

tickets arrive in blocks of n − 1 tickets of the form (xPPRF, i) for i ∈ [n − 1], adversar-

ially rendering the domain extension technique useless as each subtree is reduced to a

single node. As before, this is unrealistic in practice.

We have therefore resorted to simulations in order to assess the improvement in storage

requirements. Our simulation constructs two trees: a standard binary tree with ℓ layers,

and a domain-extended tree with n = 4. For the domain-extended tree, the first ℓ − 2

layers are constructed as a standard binary tree, and the last log(4) = 2 layers are

represented by the domain extension.

We simulated the storage requirements for trees of 10,000 tickets. We note that results

for trees of 10,000 tickets should closely follow results for larger tree sizes. Trees are

quickly split into smaller sub-trees when puncturing, regardless of the initial tree size.

In the first puncturing operation we delete the root and (implicitly) store smaller sub-

trees with at most half the nodes in each, and so forth. We focused on the relationship

between ticket puncturing rate and savings in storage. The ticket puncturing rate denotes

the percentage of tickets that are punctured, out of the 10,000 outstanding tickets. This

can also be thought of as the percentage of returning clients. After fixing the puncturing

rate to r , we simulate the arrival of r% of clients according to two distributions: Gaussian
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and uniform. With the uniform distribution, the next ticket to be punctured is sampled

uniformly out of the outstanding tickets. With the Gaussian distribution, the next ticket

to be punctured is sampled using a discrete Gaussian distribution with mean μ = 5000

and standard deviation σ (for varying values of σ ). We then simulate the state of both

trees after puncturing the sampled ticket. We repeatedly sample tickets and puncture

them, until we reach the desired puncturing rate. We then report the ratio between the

storage for the standard binary tree and the storage for the domain-extended tree, in their

final states.

Intuitively, the Gaussian distribution aims to simulate the assumption where tickets

arrive in some periodic manner. For example, assume the tickets most likely to arrive

are the tickets issued roughly one hour ago. Then the distribution of arriving tickets

will exhibit a noticeable mode (“peak”), where tickets close to the mode are much more

likely to arrive than tickets far from it. The Gaussian distribution is a natural fit for this

description. On the other hand, the uniform distribution makes no assumptions on which

ticket is likely to arrive next. In personal communication, Cloudflare have advised us

that it is reasonable to assume tickets are redeemed roughly in order of issuance (they do

not have readily-available data on returning clients’ behavior). This motivated our use

of Gaussian distributions. We hope to see additional research in this area. In particular, it

would be helpful if large server operators could release anonymized datasets that allow

simulating the behavior of returning clients in practice.

Using our domain extension technique with n = 4 results in a typical factor of 1.4

(or more) reduction in storage compared to a tree-based PPRF. Figure 6 plots the results

when using the uniform distribution and a Gaussian distribution with σ = 2000. We

encountered similar results when using other values for σ . We estimate ticket redeeming

rates in large-scale deployments are roughly 50%. We therefore focus on cases where

the puncturing rate is at least 40% and at most 60%. We note that in the worst-case, the

domain extension performs as well as the binary tree.

8. Comparison of Solutions and Conclusion

Comparison of Solutions To summarize this work, Table 4 compares our two construc-

tions with the standard solutions of session tickets and session caches. Note that we

decided to exclude implementation-specific costs (such as database access) from our

“dominant cost” column and only focus on cryptographically expensive factors.

Conclusion In most facets, TLS 1.3 offers significant improvements in security compared

to earlier TLS versions. However, when 0-RTT mode is used, it surprisingly weakens

standard security guarantees, namely forward security and replay resilience. This was

noted as the protocol was standardized, but the latency reduction from 0-RTT was con-

sidered “too big a win not to do” [50].

This paper presented formal definitions for secure 0-RTT session resumption pro-

tocols, and two new constructions that allow achieving the aforementioned security

guarantees at a practical cost. We expect continued research in the coming years in this

area, of achieving secure 0-RTT traffic as cheaply as possible. Currently, many large
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Fig. 6. Average storage improvement factor of the domain-extended binary tree (with n = 4) compared to a

standard binary tree, depending on the ticket puncturing rate. All simulations used trees of 10,000 tickets. The

dashed blue line (resp. continuous red line) shows the storage improvement when modeling client’s arrivals

with a uniform distribution (resp. discrete Gaussian distribution with mean μ = 5000 and standard deviation

σ = 2000).

Table 4. Comparison of security guarantees and dominant cost for session tickets, session caches, and our

two constructions.

Solution Forward

security

Replay

protection

Storage

per ticket

Dominant

cost

See sections

session tickets After ≈ 1 day No Negligible Symmetric encryption 1

session caches Yes Yes ≈ 20–30 bytes – 1

sRSA-based PPRF Yes Yes ≈ 0.8–1.2 bytes Group exponentiation 5.3

Tree-based PPRF Yes Yes ≤ 20–30 bytes Symmetric encryption 6.3

For session tickets, we assume a deployment that rotates STEKs, as in [46]. For session caches, we assume

each key is 128 bits (16 bytes) long. The unique ticket identifier, and other storage overhead, will typically

require a few more bytes. We therefore estimate total storage per key as 20–30 bytes. For the Tree-based PPRF,

actual storage per ticket highly depends on returning clients behavior. However, this solution always requires

at most as much storage as a session cache

server operators serve 0-RTT traffic using STEK-encrypted session tickets. As more

Internet traffic becomes 0-RTT traffic, this solution rolls back the security guarantees

offered to everyday secure sessions.

The Eurocrypt 2019 version of this paper does not show if TLS 1.3 can be se-

curely composed with the presented 0-RTT session resumption protocol. In this work

we resolved this open problem and showed that any secure 0-RTT session resumption

protocol can be generically composed with the TLS 1.3 resumption handshake. In par-

ticular, this yields the first variant of the TLS 1.3 resumption handshake that achieves

forward secrecy for all messages (including the 0-RTT data) without modifying client

implementations of TLS 1.3.



Session Resumption Protocols Page 53 of 57 20

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included in the

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Accepting Replay Attacks and Idempotent Requests

When using session tickets, one option is to simply allow replay attacks, in cases where the server can be

certain they do not harm security. This was proposed primarily in the case of HTTPS, where TLS encapsulates

HTTP requests. Theoretically, HTTP GET requests only retrieve an HTTP resource located on the server,

without changing server state. The argument then goes that an attacker replaying an HTTP GET request can

only cause a resource to be retrieved several times instead of one, and this is harmless [51, §E.5]. It then

follows that it is “safe” to allow replayable HTTP GET requests, and disallow other request types, such as

HTTP POST, to be sent such that they can be replayed. This logic can be generalized to allow replay of any

idempotent [51] request: a request that has the same effect on the server state whether it is served once or

several times.

Furthermore, an attacker is able to cause most modern web browsers to replay any request, idempotent or not

[26]. Therefore, the naïve conclusion is that investing resources defending against replay attacks, either in the

standard or in deployment practices, is futile.

Colm MacCárthaigh [48] describes several convincing counterarguments against this reasoning. As a simple

example, consider the following attack. An HTTP server provides two different medical documents, say

DiseaseA.pdf and DiseaseB.pdf. A user downloads one of these documents with TLS 1.3 0-RTT,

and doesn’t want the attacker to learn which one. An attacker records the encrypted HTTP GET requests, and

wants to learn which file was downloaded.

At some later point in time, document DiseaseA.pdf is deleted from the server (or moved to a different

URL, which is equivalent for this attack). The attacker then replays the encrypted HTTP GET request. If the

user has downloaded DiseaseA.pdf, then an encrypted HTTP 404 error will be returned, resulting in a

relatively “short” response. If the user downloaded DiseaseB.pdf, the server responds with an encrypted

pdf document, which is typically much longer.

B Detailed Description of Protocol Values

In this section we provide additional technical details of our modified protocol, introduced in Sect. 4. The

details include a table of labels and their values (cf. Table 5) and a short description of how the transcript

hashes are computed.

Computation of Transcript Hashes TLS 1.3 includes hash values in the derivation of traffic secrets and the

computation of finished messages. In most cases the hashes are computed over the concatenation of all

previously-sent and -received messages. The only exception is the computation of the binder value Fin0,

which only includes a partial transcript of the client’s first flight of messages, ignoring the “binder value”

(which is technically part of the client’s first messages) [51, §4.2.11.2]. All other hash values are computed

as described in [51, §4.4.1].

http://creativecommons.org/licenses/by/4.0/
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Table 5. An overview of labels and their usage (including references) used in the TLS 1.3 protocol.

Label String Used for References

ℓ1 resumption Deriving the pre-shared key [51, §4.6.1]

ℓ2 c e traffic Deriving the early traffic secret [51, §7.1]

ℓ3 key Traffic key calculation [51, §7.2]

ℓ4 ext/rs binder Binder key derivation [51, §7.1]

ℓ5 finished Finish key derivation [51, §4.4.4]

ℓ6 derived Preparation of secret extraction [51, §7.1]

ℓ7 c hs traffic Deriving the client handshake traffic secret [51, §7.1]

ℓ8 s hs traffic Deriving the server handshake traffic secret [51, §7.1]

ℓ9 c ap traffic Deriving the client application traffic secret [51, §7.1]

ℓ10 s ap traffic Deriving the server application traffic secret [51, §7.1]

ℓ11 exp master Deriving the export master secret [51, §7.1]

ℓ12 res master Deriving the resumption master secret [51, §7.1]
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