
Sessions, from types to programming

languages

Vasco T. Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

Abstract

We discuss session types independently of any programming language.

We then embody the notion in languages from three different paradigms: the

pi calculus, a functional language, and an object-oriented language.

1 Introduction

Session types allow a concise description of a continuum of interactions among

different partners. The notion was originally introduced with the aim of speci-

fying and disciplining interactions between two partners running in parallel and

communicating via message passing [8, 12]; the setting was then a mild vari-

ation of the pi-calculus [10]. Since then, session types were incorporated in

different paradigms, including functional languages, object-oriented languages

and service-oriented computing, to name a few. Reference [2] presents a recent

overview of the field. What once looked like a notion of types tuned for a particu-

lar paradigm of computation, turned out to be a quite rich, language-independent

idea.

Traditionally, session types have been used to describe linear interactions only,

that is, interactions between exactly two partners (or two threads). But linearity

alone is not enough to express the rich computational structures one might be in-

terested in. As such, (linear) session types are often complemented with some

other sort of (shared) types, resulting in two disjoint categories for types incorpo-

rating a certain dose of redundancy. Inspired on a formulation of linear types for

functional programming [15], where types (pre-types, more precisely) are anno-

tated with qualifiers, we have formulated an elegant theory of session types for

the pi-calculus [14]. A pre-type equipped with a linear qualifier plays the role of

a traditional session type; when annotated with an unrestricted qualifier, the type

describes an entity shared by multiple partners.

In the vast majority of applications, sessions types are associated to message

passing, describing the messages flowing on communication channels, regardless

1

of the host programming language (pi calculus, functional, or object-oriented).

But this need not be the case. Session types have been used to describe the behav-

ior of objects in component models [13], as well as attached to class definitions

where they specify possible sequences of method calls [5].

This paper presents a version of session types equipped with lin/un quali-

fiers [14], meant as descriptions for communication media in general. It then

incorporates the notion into three different programming paradigms: a purely con-

current message passing system (embodied by the pi calculus), a multithreaded

functional language equipped with message passing, and a multithreaded object-

based language. The communication medium is instantiated as communication

channels in the first two languages; and as object references in the last. The tone

is left informal, references point to detailed descriptions.

2 Session Types

This section introduces the notion of lin/un qualified session types as well as our

running example.

The running example. Our running example is that of an online petition ser-

vice. Petition writers start by providing the title of the petition, a piece of text

describing the situation and what is needed, and the deadline for signature col-

lection. In order to make life easier to petition writers, the service allows this

information to be added with no particular order; writers can even resubmit infor-

mation if needed.

Once writers are happy with the provided petition details, time comes for sub-

mission. This is the point where writers commit to the uploaded data and seek ap-

proval for starting the petition. If accepted, meaning for example that the deadline

for signature collection is not in the past or that there is no other running petition

under the same name, then writers may start promoting the petition. Promoting

a petition means two things: signing and disseminating. The petition writer may

sign the petition, and must get people to sign it, by letting them know of the newly

created petition. Hopefully the writer’s acquaintances will further sign and dis-

seminate the petition, thus contributing to the success of the campaign.

We formalise the protocol that runs amongst the petition service, the petition

writer, and the signatories. The protocol can be divided in two phases—setup

and promotion—separated by a submit operation. During the setup phase, if an

unbounded number of data (titles, descriptions, and dates) is reaching the server

by an arbitrary order, then it must be tagged, for otherwise servers would face

difficulties in distinguishing, say, two consecutive titles from a description fol-

lowed by a title. Therefore writers start by selecting one particular operation:

2

setTitle for setting the title, setDate for setting the deadline, submit for moving

to the promotion phase, or even setting the description of the situation (omitted

henceforth). Selecting one particular operation is described by a type of the form

⊕{setTitle: ..., setDate:... , submit :...}, where the dots replace the protocol descrip-

tion after the selection operation.

Following a setTitle operation, writers are supposed to send the actual ti-

tle (a string); similarly a date is supposed to follow a setDate selection. Out-

put of a string is denoted by ! string , so that our protocol now looks like this:

⊕{setTitle: !string..., setDate: !date..., submit : ...}. After successful uploading the ti-

tle or the date, writers are given the chance to revise their data or to submit the

proposal, so that the protocol returns to the starting point. This requires a recursive

type, which we write in the form of an equation.1

Petition = ⊕{setTitle: !string.Petition, setDate: !date.Petition, submit : ...}

As discussed above, a submission operation may result in acceptance or rejec-

tion. We could model such an outcome with a boolean value, but the ensuing pro-

tocol crucially depends on this outcome: move to the promotion phase or halt. As

such the writer must expect the selection of an operation—accepted or denied—

coming from the server. Dually, the writer must offer the server a menu composed

of the two operations; we write such a type as &{accepted: ..., denied: ...}.

If denied then the writer receives a reason in the form of a string and the proto-

col terminates (the writer may try again, but on a different run of the protocol). If

accepted then the protocol moves to the promotion phase. Input is denoted by ?,

so that receiving a string becomes ?string; we represent protocol termination by

end. Here is our type so far:

Petition = ⊕{setTitle: !string.Petition, setDate: !date.Petition,

submit : &{accepted: Promotion, denied: ?string.end}}

During the promotion phase all one can do is to sign the petition by sending a

signature (in the form of a string), so that we have

Promotion = !string .Promotion

We have hinted above that the protocol is to be run amongst the petition ser-

vice, the petition writer, and the signatories. If we assume that no two consecutive

operations (input, output, branch, or select) in a protocol are atomic by default,

then some care must be exerted on how many partners may know the protocol

medium at each time. If this medium is disseminated in the setup phase, then

1The attentive reader certainly noticed that writers may submit without first uploading the peti-

tion details. We assume that there is a default title (“Save me”) and a default deadline (1/1/1970).

We leave it as an exercise to refine the type in such a way that a) the submit button is pressed only

after the setTitle and the setDate have been pressed at least once each, and b) each of these two

last buttons may be pressed more than once.

3

race conditions may arise when, e.g., the server receives a commit operation from

one partner, followed by a setDate from a different, unsynchronized partner. On

the other hand, during the promotion phase, the success of the petition crucially

depends on dissemination, so that we want the protocol medium shared by an

unbounded number of potential promoters (signatories and disseminators).

Towards this end we qualify each operation in a type with one of two qualifiers:

lin denotes a linear operation; un denotes an unrestricted, or shared, operation.

When the protocol is in a lin state then the programming language must guarantee

that exactly two partners (server and writer) know the protocol medium; when in

an un state then an unbounded number of partners (potentially zero) may have

access to the medium. Our fully qualified type is thus:

Petition = lin⊕{setTitle: lin!string.Petition, setDate: lin!date.Petition,

submit : lin&{accepted: Promotion, denied: lin?string.lin end}}

Promotion = un!string.Promotion

There is one last question that we must answer. How do petition writers and

petition servers initiate a particular run of the protocol? Petition servers are usu-

ally installed on well-known names. It is on one such name that writers and servers

agree on initiating a new run of the petition protocol. The protocol is itself started

from a small bootstrap protocol, where the server provides the writer with a fresh

Petition . If the only thing the server does is to start new Petition protocols, then

its type is Server = un!Petition .Server which we abbreviate to ∗! Petition .

So far we have been looking at the protocol from the point of view of writers

and promoters. How do things look like when seen from the server side? In

order to comply with the writer’s expectations, servers must start by offering a

menu composed of operations setTitle, setDate, and submit , which we write as

lin&{setTitle: ..., setDate: ..., submit : ...}. After a setTitle operation the server must

input a string (?string); after setDate, it is time to input a date (?date). After

submit , the server must select one of the two operations—accepted or denied—on

the client, which we write as lin⊕{accepted: ..., denied: ...}. When denied, then

the service must output a string and terminate with lin end; the server and the

client terminate the protocol together. It should by now be clear that, in order

for communication to run smoothly among the various partners involved, when

one says output (!), the other says input (?), when one says select (⊕), the other

says branch (&), and when one says terminate (end) so does the other. The un/lin

qualifiers must match in each case. The types constructed in this way are said to

be dual.

Session types. The types that describe our protocols are generated by the gram-

mar in Figure 1, where we use letter p to denote an unqualified (or pre-) type, and

letter T to describe a type. Recursive types are required to be contractive, that is,

4

q ::= Qualifiers: !T.T send

lin linear ⊕{li : Ti}i∈I select

un unrestricted &{li : Ti}i∈I branch

p ::= Pretypes: T ::= Types:

unit unit q p qualified pretype

end termination a type variable

?T.T receive µa.T recursive type

Figure 1: The syntax of types

q ?T.U = q !T.U q !T.U = q ?T.U q end = q end

q ⊕{li : Ti}i∈I = q &{li : Ti}i∈I q &{li : Ti}i∈I = q ⊕ {li : Ti}i∈I

µa.T = µa.T a = a

Figure 2: The dual function on types

containing no subexpression of the form µ a1 . . . µ an.a1. The equations introduced

above are transformed into recursive types in the standard way:

Petition = rec a. lin⊕{setTitle: !string.a, setDate: !date.a, submit : ...}

In the presence of recursive types, we define type equality as the equality of

the regular infinite trees obtained by the infinite unfolding of recursive types. The

formal definition, which we omit, is co-inductive. In this way we can use types

un!string .rec a.un!string .a and rec a.un!string .un!string .a interchangeably, in any

mathematical context. This allows us never to consider a type µa.T explicitly (or

a for that matter). Instead, we pick another type in the same equivalence class,

namely the type obtained by replacing in T occurrences of type variable a by type

µa.T , usually written T [µa.T/a]. If the result of the process turns out to start

with µ, we repeat the procedure. Contractiveness ensures the termination of the

unfolding process. In other words, we take an equi-recursive view of types [11].

Rather than providing a co-inductive definition of duality, we start by defin-

ing a function from types to types as in Figure 2. Then, to check that a given

type T1 is dual of another type T2, we first build the dual of T1 and then check

that the thus obtained type is equivalent to T2. For example, to show that

type rec a.un!string .un!string .a is dual to rec b.un?string.b, we first build type

rec a.un?string.un?string.a, dual of the former and then check that it is equivalent

5

Context split

∅ = ∅ ◦ ∅
Γ1 ◦ Γ2 = Γ

Γ, x : un p = (Γ1, x : un p) ◦ (Γ2, x : un p)

Γ = Γ1 ◦ Γ2

Γ, x : lin p = (Γ1, x : lin p) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : lin p = Γ1 ◦ (Γ2, x : lin p)

Context update

Γ = Γ + ∅
Γ = Γ1 + Γ2

Γ, x : T = Γ1 + (Γ2, x : T)

Γ = Γ1 + Γ2

Γ, x : unp = (Γ1, x : unp) + (Γ2, x : un p)

Figure 3: Context split and context update

to the latter. Duality is defined on session types only; it does not apply to the

unit type. Would we require boolean or function types, say, duality would not be

defined on them either.

Programs are usually typed against a context describing the types for the free

identifiers. Typing contexts are finite maps Γ from identifiers (or variables, denoted

by x) to types. Symbol ∅ indicates an empty map. Given an arbitrary map Γ and

a variable not in the domain of Γ, we denote by Γ, x : T the map equal to Γ every-

where except at x where Γ(x) = T . We maintain the linearity invariant through the

standard linear context splitting operation. When type checking processes with

two sub-processes we pass the unrestricted part of the context to both processes,

while splitting the linear part in two and passing a different part to each process.

Figure 3 defines the context splitting relation Γ = Γ1 ◦ Γ2. Notice that in the third

rule, x is not in Γ2 otherwise it would be in Γ = Γ1 ◦ Γ2 and the result Γ, x : linp

would not be defined, and similarly for the last rule and Γ1.

Unlike conventional linear values that are consumed once they become used,

values that describe the medium on which protocols run are consumed piecewise:

an input on a medium of type q?T1.T2 renders the same medium at type T2. We

introduce a context update operation for the effect (Figure 3). If q is lin then, by

virtue of context splitting, reading the medium removes its type q?T1.T2 from the

context, while context update adds the continuation type T2 (second rule). If, on

the other hand, q is un then the type remains in the context, and we must add a

type T2 equivalent to q?T1.T2, according to the definition of context update (third

rule). Since we want to add the continuation T2, it must be the case that T2 is

equivalent to un?T1.T2, which can happen if, e.g., T2 is of the form µa.un?T1.a.

This form of type is so common that we introduce an abbreviation for it, ∗?T1, as

we have seen.

6

Linear type systems follow an invariant whereby unrestricted data structures

may not include linear data structures. This is usually accomplished by defining

two predicates un and lin that operate both on types and on contexts. The rules

state that linear data structures can hold objects of a linear or unrestricted nature,

but that unrestricted data structures can only contain unrestricted values. Making

q ⊑ q′ the smallest reflexive such that lin ⊑ un we define [15]:

• q(T) when T = q′p and q ⊑ q′

• q(Γ) when x : T ∈ Γ implies q(T)

Notice that in particular lin(T) is true for any T , and similarly for contexts.

3 Session types in the pi-calculus

We now embody the types as described in the previous section in a message pass-

ing concurrent language, the pi-calculus [10]. Our medium of communication (as

we put it in the previous section) is channels where messages flow. A channel at a

linear type is held by exactly two threads; a channel at an unrestricted type is held

by zero or more threads.

The running example in the pi calculus. We assume a petition server installed

at the well-known channel ps. Petition writers read from this channel a petition

channel p (line 3, Figure 4). Our writer starts by setting the deadline, then the

title2, and finally decides to adjust the deadline (lines 4–6). Once happy with

the information provided, the writer submits the request, and waits for an answer

(lines 7–8). If accepted, then the writer distributes the petition channel to its two

acquaintances (Signatory1 and Signatory2), and signs the petition himself (lines

9–11); if denied then the writer receives the reason for denial (in the form of a

string), closes the channel end point and terminates (lines 13–14).

The three acquaintances have different behaviours. The first gets channel p and

signs the petition (lines 17–18); the second further sends the petition to another

potential signatory (Signatory3) and signs (line 21). Finally, Signatory3 gets the

channel but decides neither to sign nor to further disseminate (lines 23–24).

Let us have a look at the server side. Our implementation is divided into three

components: the Server itself that creates and sends new channels on ps; the Setup

that gathers the information on a particular petition, and the Promotion that collects

the various signatures. Petition servers must provide (on well-known name ps)

fresh linear petition channels. This is accomplished in the pi-calculus with a new-

constructor that creates a fresh channel, different from all others (line 3). One end

2“Save the Iberian wolf”, Canis lupus signatus.

7

1 SaveTheWolf :: ∗?Petition

2 SaveTheWolf ps =

3 ps?p.

4 p⊳ setDate. p!(31,12,2010).

5 p⊳ setTitle. p!"Save the Wolf".

6 p⊳ setDate. p!(31,12,2100).

7 p⊳ submit .

8 p⊲ {accepted:

9 Signatory1 p |

10 Signatory2 p |

11 p!"me"

12 denied:

13 p?x.

14 close p

15 }

16 Signatory1 :: ∗! string

17 Signatory1 p =

18 p!"signatory1"

19 Signatory2 :: ∗! string

20 Signatory2 p =

21 Signatory3 p | p!"signatory2"

22 Signatory3 :: ∗! string

23 Signatory3 p =

24 inaction

1 Server :: ∗! Petition

2 Server ps =

3 (new p1 p2)

4 ps!p2.(

5 Setup (p1,(1,1,1970),"Save me") |

6 Server ps)

7 Setup :: Petition ∗ date ∗ string

8 Setup (p, d, t) =

9 p⊲ {setDate: p?d’.Setup (p, d’, t),

10 setTitle: p?t’.Setup (p, d, t’),

11 submit : p⊳ accepted.

12 Promotion (p, [])

13 }

14 Promotion :: ∗?string ∗ stringList

15 Promotion (p, l) =

16 p?s.Promotion (p, s :: l)

1 Main =

2 (new ps1 ps2)

3 Server ps1 |

4 SaveTheWolf ps2

Figure 4: Petition example in the pi-calculus

of this channel, denoted by p2, is passed to potential writers (line 4); the other

end, called p1, is passed to process Setup, together with the default deadline and

title (line 5).

Process Setup receives the petition channel, the default deadline, and the de-

fault title, and interactively updates the last two (lines 9–10). Our simplistic server

accepts each single petition (line 11). The protocol now passes to the promo-

tion phase, by providing the Promotion process with the petition channel p and an

empty list, where the signatory names are to be stored. In order to simplify the

example, we use a data type for lists, where [] denotes the empty list and s :: l

denotes a list composed of an element s at the head and a list l at the tail. Such a

data type would have to be encoded in the base language [9, page 106]. Process

Promotion receives a signature s on channel p, stores it in the list (s :: l) and recurs.3

Our Main process creates a channel and distributes one of its ends (ps1) to

process Server and the other end (ps2) to the petition writer, SaveTheWolf. In

3Notice that, in the example, we use symbol :: both as list concatenation and to introduce

types in processes.

8

Typing rules for values

un(Γ)

Γ ⊢ () : q unit

un(Γ)

Γ, x : T ⊢ x : T
(T-Unit,T-Var)

Typing rules for processes

un(Γ)

Γ ⊢ inaction

Γ ⊢ x : lin end

Γ ⊢ close x

Γ1 ⊢ P1 Γ2 ⊢ P2

Γ1 ◦ Γ2 ⊢ P1 | P2

Γ, x : T, y : T ⊢ P

Γ ⊢ (νxy)P

(T-Inact,T-Close,T-Par,T-Res)

Γ1 ⊢ x : q !T1.T2 Γ2 ⊢ v : T1 Γ3 + x : T2 ⊢ P

Γ1 ◦ Γ2 ◦ Γ3 ⊢ x!v.P
(T-Out)

Γ1 ⊢ x : q ?T1.T2 (Γ2, y : T1) + x : T2 ⊢ P q(Γ2)

Γ1 ◦ Γ2 ⊢ q x?y.P
(T-In)

Figure 5: Typing rules for the pi-calculus

the previous section we discussed the type of the well-known name where new

petitions are to be requested: ∗! Petition or ∗?Petition, depending on the point of

view; these are the types of the two ends of the newly created channel, ps1 and

ps2, respectively.

For the client, channel ps carries p typed at type Petition . The initial, linear,

part of the channel is consumed in lines 3–8 of process SaveTheWales. When

control reaches line 9, channel p is of type ∗! string , allowing it to be freely

passed around and used for signing (lines 9-11, as well as processes Signatory1,

Signatory2, and Signatory3). On the server side, the initial linear part of the type

dual of to Petition is consumed in process Setup, whereas the unrestricted part

(∗?string) is used in process Promotion.

Typing pi processes. The typing rules for the pi-calculus are in Figure 5. We

omit the grammar of values and processes, which can be easily inferred from the

rules. Typing judgements for values are of the form Γ ⊢ v : T , indicating that

value v has type T under context Γ, as usual. Judgements for processes are of the

form Γ ⊢ P, testifying that process P is well typed under context Γ.

We briefly comment on the rules. The rules for values and for process inaction

make sure that the unused typing context Γ is unrestricted, thus ensuring that lin-

ear values are completely consumed. The rule for closing channel ends, T-Close,

requires a channel ready to be closed: linear (no other process may know it) and

at end (the protocol on the channel is completed). The rule for parallel composi-

tion, T-Par, splits the incoming context in two and passes each part to a different

9

process. The rule for name restriction, T-Res, simply adds two dual types to the

context, each will type one end of the newly introduced channel. The rule for

output processes of the form x!v.P, T-Out, splits the context in three parts, one to

type each of the constituents of the process. The continuation P is typed at context

Γ3 updated with x at the continuation type T2. This means that either q = lin, and

hence x is not in Γ3, or q = un and in this case T2 must be equal to un!T1.T2.

The last rule in the figure, T-In, accounts for both simple (linear) or replicated

(unrestricted) input. In the pi-calculus one traditionally indicates a perennial pro-

cess by prefixing it with an exclamation mark. Since such a symbol was taken in

our language to designate output, we then take the chance to align the syntax of

the language with that of types. We write an ephemeral input process as linx?y.P

and a persistent (replicated) input process as unx?y.P. The q(Γ2) proviso in the

rule for input makes sure that the variables in the body of a replicated process are

unrestricted themselves.

In the presence of free output it is well-known [16] that we must differentiate

the two ends of a channel. Several techniques are known: annotating channel

ends with distinct, +,−, polarities [6], using type constructors that can talk about

the ends of a same channel [7], or work with a double binder that binds together

distinct identifiers for the two ends of a same channel [14]. Here we follow the

last method.

We have lived two decades without requiring a close operation for the pi-

calculus. Why now? The truth is we do not strictly need it. Session types that

start linearly may terminate as un end, but then the runtime has to run a potentially

expensive garbage collection procedure in order to deallocate the data-structures

necessary to implement channel operations. On the other hand, session types that

terminate in lin end allow a close operation to explicitly deallocate the supporting

data-structures. Channels of type un end, even though they cannot be used for

communication, can still be freely passed around (and stored in data structures)

but cannot be deallocated for there is an undetermined number of references to it.

We leave as an exercise the design of the rules for the branch and the selection

processes (the interested reader may want to check a solution in reference [14]).

Back to the example. The code in Figure 4 omits the lin qualifier in input pre-

fixes. The un input prefix qualifier cannot be found for we have used recursive

definitions in place of replication. The encoding of recursion into replication is

standard [9, page 94]. For example, the Promotion definition in lines 15–16 of the

server is transformed into un promotion?(p,l). lin p?s.promotion!(p,s:: l), whereas

the call in line 12 becomes promotion!(p ,[]) . Finally, a (new promotion) binder as

well as the replicated process itself must be placed at, say, the top level process,

line 2 of Main.

10

In the example we use polyadic messages, as opposed to the monadic mes-

sages proposed in the typing rules where messages can carry exactly one value.

This happens, for example, in the expansion of the Promotion process described

above. Once again the polyadic-to-monadic encoding is well-known [9, page 93]

(cf. [14]). To atomically send the two arguments, p and [] , on channel promotion,

we translate message promotion!(p ,[]) into a process that implements a simple

protocol: (new c1,c2)promotion!c2.c1!p.c1![].close c1. Such a process creates a

new channel; one end, c2, is sent to the client, the other, c1, is used to transmit

the two arguments. On the other hand, the receiving side, un promotion?(p,l).P

is translated into process un promotion?c.lin c?p.lin c?l .close c.P that receives a

fresh linear channel on which the two parameters may be received without risk of

interference.

The type of channel promotion can be precisely captured by our types. Be-

cause there is a replicated receptor installed at the channel, the type takes

the form ∗?T, as seen from the point of view of the receiver. Type T de-

scribes the little (linear) protocol used to receive the two parameters, namely

lin?(∗?string). lin? stringList . lin end.

4 Session types in a functional language

We now address the design of a call-by-value functional multi-threaded program-

ming language. We add to a linear functional programming language [15] a notion

of channels, akin to that described in the previous section for the pi-calculus. In

addition to the lambda-calculus constructors—basic values, variables, abstraction,

application and pairs—we rely on operations for channel creation, sending/receiv-

ing/selecting/branching on a channel, as well as for forking new threads. For the

new constructs, we stick as much as possible to the syntax of the previous section.

The running example in a functional language. Because we use the same

syntax for channel operations, the code for the client, Figure 6, should be easy to

follow. The main difference with respect to the pi-calculus code is that, once (and

if) the petition request is accepted by the server, the writer forks two threads, one

for each signer (lines 9–10). Rather than sending p on a channel (known to the

writer and to a signer), the channel is passed as a parameter to the function. To

align our language with the expectations imposed by functional programming, we

allow writing x? to receive a value on a channel x, without explicitly mentioning

the variable that will hold the value, nor the term that constitutes the continuation.

In our example, the petition writer simply discards the reason for denial (line 14).

11

1 saveTheWolf :: ∗?Petition → unit

2 saveTheWolf ps =

3 let p = ps? in

4 p⊳ setDate; p!(31,12,2010);

5 p⊳ setTitle; p!"Save the Wolf";

6 p⊳ setDate; p!(31,12,2100);

7 p⊳ submit ;

8 p⊲ {accepted:

9 fork (signer1 p);

10 fork (signer2 p);

11 p!"me"

12 denied:

13 p?;

14 close p

15 }

16 signer1:: ∗! string → unit

17 signer1 p =

18 p!"signer1"

19 signer2:: ∗! string → unit

20 signer2 p =

21 fork (signer3 p);

22 p!"signer2"

23 signer3:: ∗! string → unit

24 signer3 p = ()

1 petitionServer :: ∗! Petition → unit

2 petitionServer ps =

3 split new Petition as p1, p2 in

4 ps!p1;

5 fork (setup p2 (1,1,1970) "Save me");

6 petitionServer ps

7 setup :: dual(Petition) → date→

8 string → unit

9 setut p d t =

10 p⊲ {setDate: setup p (p?) t,

11 setTitle: setup p d (p?),

12 submit : p⊳ accepted;

13 promotion p []

14 }

15 promotion :: ∗?string →

16 stringList → unit

17 promotion p l =

18 promotion p ((p?):: l)

1 main :: unit → unit

2 main _ =

3 split new ∗!Petition as ps1, ps2 in

4 fork (petitionServer ps1);

5 fork (saveTheWolf ps2)

Figure 6: Petition example in a functional language

Typing functional terms. We need one more type for functions; more precisely

one pretype p→ p, which we add to those in Figure 1. As discussed in Section 2,

duality is not defined on this type. Figure 7 presents the typing rules for the

language. Once again, apologising for the inconvenience, rather than presenting

the syntax we ask the reader to read it from the terms in the conclusion of the

rules. Typing judgements are of the form Γ1 ⊢ M : T ;Γ2 conveying the idea that

term M has type T under context Γ1. The “continuation” context Γ2 describes the

residual types of the variables used in M for channel operations (input, output,

receive, select). If T is a type of the form lin?un unit.T ′, we have:

x : T ⊢ x? : un unit; x : T ′

x : T 0 () : un unit; x : T

The main challenge in the design of a type system for a functional language

with session types is typing input and output operations without explicitly men-

tioning the continuation. In other words, we want to type terms x? and x! alone. In

12

un(Γ)

Γ, x : T ⊢ x : T ; ∅

un(Γ)

Γ ⊢ () : q unit; ∅

un(Γ) q(T)

Γ ⊢ new T : q(T,T); ∅

(T-Var,T-Unit,T-New)

Γ1 ⊢ x : q?T1.T2; ∅ un(Γ2)

Γ1 ◦ Γ2 ⊢ x? : T1;Γ2 + x : T2

Γ1 ⊢ x : q!T1.T2; ∅ un(Γ2)

Γ1 ◦ Γ2 ⊢ x! : lin(T1 → un unit);Γ2 + x : T2

(T-In,T-Out)

Γ1, x : T1 ⊢ M : T2;Γ2 q(Γ1) un(Γ2)

Γ1 ⊢ qλx.M : q T1 → T2; ∅
(T-Abs)

Γ1 ⊢ M1 : q T1 → T2;Γ3 Γ2 ⊢ M2 : T1;Γ4

Γ1 ◦ Γ2 ⊢ M1M2 : T2;Γ3 + Γ4

(T-App)

Γ1 ⊢ M1 : T1;Γ3 Γ2 + Γ3, x : T1 ⊢ M2 : T2;Γ4

Γ1 ◦ Γ2 ⊢ let x = M1 in M2 : T2;Γ4

Γ1 ⊢ M : unp;Γ2 un(Γ2)

Γ1 ⊢ fork M : un unit; ∅
(T-Let,T-Fork)

Figure 7: Typing rules for the functional language

our language, the continuation, if present at all, comes in the form of an abstrac-

tion or of the second component of a pair, and we would not like to mention them

explicitly in the typing rules. We solve the problem by adding an extra context at

the right hand side of judgements.

Equipped with such judgements, the rule for the input expression (T-In) acts

effectively as an elimination rule for type q?T1.T2, where the type of expression

x? is T1 and the context available to the continuation contains x at type T2. Simi-

larly, the rule for the output process (T-Out) works as an elimination rule for type

q!T1.T2, where the type of expression x! is understood as a (linear) function re-

ceiving T1 (and delivering un unit) and where the continuation sees x at type T2. In

both rules the context available to the continuation is Γ2+x : T2, thus ensuring that,

when in presence of a unrestricted T2 (occurring both in Γ1 and Γ2), the type of

x available to the continuation is equal to the initial type (un?T1.T2 or un!T1.T2),

that is T2 is, e.g., of the form µa.un?T1.a (cf. rules T-In and T-Out in the type

system for the pi-calculus, Figure 5).

In the rule for abstraction (T-Abs), if the qualifier of the function is un (mean-

ing that the function can be used multiple times), then all free variables in the

body of the function (hence in Γ1) must equally be of unrestricted types (cf. the

situation of the replicated input in Figure 5). In any case, functions must consume

all their linear resources (unlike the system in reference [5]), as enforced by the

proviso un(Γ2). Being values, functions leave no linear values to be consumed

13

by the continuation, as witnessed by the final empty context.4 The rule for func-

tion application (T-App) splits the incoming context in two parts, Γ1 and Γ2, made

available to its two parts M1 and M2. If function M1 leaves linear values Γ3 to be

consumed by the continuation (as it happens in case x!), these are added to those

of the argument, Γ4, and made available to the continuation of the application.

What we do not know is how to type a general input or output expression, M!

or M?, for we need to get hold of the channel reference x in order to advance its

type. For both cases we provide a let construct: rather than writing M!, we write

let x = M in x!, and in place of M?, we write let x = M in x?. Very much like rule

T-App, rule T-Let splits the incoming context in two parts, one for each subterm.

The difference is that the linear values not completely consumed by M1 (present

in Γ3) are added to Γ2, in order to type the body M2, whereas in the case of rule

T-App they are added directly to the final context. The linear values not completely

consumed by M2 (in Γ4) are those provided to the continuation of the let. In

the same vein, we cannot directly type term (x!)(x?) since we would be typing

subterm x! first where we expect subterm x? to be evaluated first. Once again, the

let-construct allows to make explicit the evaluation order, let y = x? in (x!)y.

The fork construct can be intuitively described by a type of the form un(un p→

un unit), more precisely by a type schema, ranging over all pre-types p. The un(Γ2)

proviso together with the fork M unrestricted type, unp, makes sure that the forked

expression M consumes all its linear resources.

Semicolon is as usual a derived construct. But we must use let, rather than

abstraction. Expression (); x? cannot be translated as (pλ_.x?)() for it would not

be typable under context x : lin?unit.lin p (the function does not consume all its

linear resources). Instead we use let _ = () in x? which allows to leave x at type

lin p to the continuation.

We have seen that functions must consume all their linear resources. This

means that we cannot type a function of the form λx.x!5 with x of the type

lin?unit.lin p. The alternative is for the function to return all its unused linear

resources, as in λx.(x!5; x) which can be typed as lin(lin!nat.linp → linp). Sim-

ilarly, rather than writing λx.x?, we must write λx.(x?, x) which can be typed as

lin(lin?nat.linp→ (nat ∗ linp)), following the approach described in reference [4].

We leave as an exercise deriving the typing rules for pair construction and

deconstruction; they can be easily adapted from reference [15, page 10], as well

as adapting the rule for closing channel ends. We equally leave as an exercise the

rules for branch and selection. The reader may as well consider adding a fixed

point operator to the language, without which the server in Figure 6 would not be

typable.

4Context Γ2 would as well do since Γ1 + Γ2 = Γ1 when un(Γ2) and Γ1 ◦ Γ2 defined.

14

Back to the example. Following our convention, we have omitted all un qual-

ifiers in code in Figure 6. The functions that compose the client are used only

once, they could easily be typed at a lin type as well. Those for the server are re-

cursive; they must be unrestricted. In order to comply to the restriction on function

calls, whereby a channel cannot be used both in the function and in the argument,

code must be adapted. For example, the function call on server, line 18, becomes

let s = p? in promotion p (s :: l).

5 Session types in an object-based language

We now incorporate session types in a conventional class-based imperative pro-

gramming language. The language features multithreaded concurrency, where

different threads communicate solely by calling methods in remote objects. We

thus see that the communication medium, identified in Section 2 and embodied as

communication channels in the pi calculus and in our functional language (Sec-

tions 3 and 4), is instantiated here as object references. Whereas in channel-

based languages, processes communicate by exchanging messages on (session

governed) channels, in our object-oriented language threads communicate solely

by calling methods on (session governed) object references. This option clearly

contrasts with more conventional approaches that add communication channels to

an object-oriented language (e.g., [3, 5]).

The running example in a language of objects. The code for our running

example can be found in Figure 8. Composed of four classes: SaveTheWolf,

PetitionServer, Signatory, and Main, we try to follow as close as possible the ar-

chitecture of the solutions in previous sections.

While we could force, via a suitable encoding, the Petition session type as

identified in Session 2 into our language, we seek a natural incorporation of the

protocol into familiar OO concepts. With respect to session types, method calls

bring some restrictions as well facilities. A selection operation (previously iden-

tified with a left triangle, ⊳) can be identified with a method call, while an output

operation can only be identified with argument passing within a method call. An

input operation can only occur as the result of a method call. What about branch-

ing? How can a target object force a branch on a client? For a simple binary

branch, we could stipulate that boolean methods would force such a test, via con-

ditional expressions. For more general branching structures we use conventional

enumerations (enum) and a switch construct.

In object-oriented languages, method call and argument passing are usually

interpreted as a single atomic operation, this means that, in our setting, selection

followed by output is also atomic and we can take advantage of this situation to

15

1 enum Answer = {accepted, denied}

2 class SaveTheWolf {

3 usage lin&{init : lin&{run: un end}};

4 Petition p;

5 Signatory[Sign] signatory1;

6 Signatory[Sign] signatory2;

7 unit init(PetitionServer s,

8 Signatory[Sign] s1,

9 Signatory[Sign] s2) {

10 p = s.newPetition ();

11 signatory1 = s1;

12 signatory2 = s2;

13 }

14 unit run() {

15 p.setDate

16 (new Date(31, 12, 2010));

17 p.setTitle("Save the Wolf");

18 p.setDate

19 (new Date(31, 12, 2100));

20 switch (p.submit()) {

21 case Answer.accepted:

22 fork signatory1.signPlease(p);

23 fork signatory2.signPlease(p);

24 p.sign("me");

25 case Answer.denied:

26 free p;

27 }

28 }

29 }

30 class Signatory {

31 usage lin&{setName: Sign} where

32 Sign = un&{signPlease: Sign};

33 string name;

34 unit setName(string n) {

35 name = n;

36 }

37 unit signPlease

38 (Petition [Promotion] p) {

39 p.sign (name);

40 }

41 }

1 class PetitionServer {

2 Petition newPetition() {new Petition ();}

3 }

4 class Petition {

5 usage Setup where

6 Setup = lin&{setTitle: Setup,

7 setDate: Setup,

8 submit : lin⊕{accepted: Promotion,

9 denied: lin end}}

10 Promotion = un&{sign: Promotion,

11 howMany: Promotion};

12 string title = "Save me";

13 Date date = new Date(1,1,1970);

14 List signatures = new List();

15 unit setTitle(string t) { title = t; }

16 unit setDate(string d) { date = d; }

17 Answer submit() { Answer.accepted; }

18 sync unit sign(string name) {

19 signatures.add(name);

20 }

21 int howMany() { signatures.length(); }

22 }

1 class Main {

2 unit main() {

3 PetitionServer server =

4 new PetitionServer();

5 Signatory s1 = new Signatory();

6 s1.setName ("signatory1");

7 Signatory s2 = new Signatory();

8 s2.setName ("signatory2");

9 SaveTheWolf wolf =

10 new SaveTheWolf();

11 wolf . init(server, s1, s2);

12 fork wolf .run();

13 }

14 }

Figure 8: Petition example in an object-based language

16

simplify interaction in unrestricted mode (see below). Having mapped the four

main operations of session types into OO concepts, it remains to discuss how to

enforce protocols running on object references: we use for the effect a usage

annotation in classes.

Let us then analyse the code. In order to model the possible outcome of a

submit operation we setup an enumeration in line 1, Figure 8. This time we start

by describing the server side. Class PetitionServer has one single purpose: to cre-

ate Petition references, and it does this whenever invoked at method newPetition

(line 2). All our classes are equipped with usage annotations, even if inserted by

the compiler. In this case, method newPetition is repeatedly available, hence the

(implicit) annotation is Init where Init = un&{newPetition: Init }, which we abbre-

viate to ∗&{newPetition}, following the schema introduced in Section 2.

Class Petition follows the protocol described by its usage clause, lines 5–11.

With respect to type Petition , Section 2, we see that input (?) and output (!) are not

explicitly present for they can be read from method signatures. We take the chance

to make the protocol a little more realistic, by allowing, in the Promotion phase

and in addition to operation sign, an operation howMany to obtain the number of

signatures obtained so far. This is made possible by the fact that branch followed

by input is a natural atomic operation in object-oriented languages. This is what

we meant above by the extra flexibility provided by method calls.

The interesting part of the Petition class is exactly the (unrestricted) Promotion

phase, involving methods sign and howMany, where the object may be held by

multiple signatories. Being in an unrestricted phase, the object usage is of type

∗&{sign,howMany}, an abbreviation for the type in lines 10–11. But because the

object may be held by multiple threads, it is up to the programmer to control

concurrency, if so desired. In our case, we allow concurrency in the read method

howMany, but prevent concurrent accesses to the write method sign by prefixing

the method name with a sync qualifier.

We start the analysis of the client code by reading class Signatory. Method

setName plays the role of a constructor, as witnessed by usage lin&{setName: Sign}

in line 31. After initialization signatories can be shared while becoming ready to

sign multiple petitions, via method signPlease. The petition to be signed is given

as a parameter of type Petition [Promotion], an abbreviation for the type in lines

10-11, class Petition . This means that the reference received as parameter must

have been subject to the Setup phase (lines 6–9, class Petition).

Class SaveTheWolf comprises two methods: init and run. They are supposed

to be run in sequence; in fact init plays the role of an object constructor, a notion

our language is not provided with. We decided that objects of this class must be

initialised only once and run only once. This is enforced via the class annotation

usage lin&{init : lin&{run: un end}}, where end can now be short for &{}, meaning

that no further method is available to threads holding a reference to the object.

17

Rather than receiving the petition medium over a well-known channel (ps in

the previous sections), method init asks the petitionServer for one such reference

(line 10). The method also accepts two previously initialized signatories of type

Signatory[Sign], defined in line 32. Method run conducts petition setup. Notice the

presence of the switch construct to branch accordingly to the result of the submit

operation (lines 20–26). The subsequent usage of reference p crucially depends

on this test: if accepted then the protocol moves to the promotion phase, where the

reference is distributed to two signatories and used to convey the signature of the

petition creator itself (lines 22–24); if denied then reference p is at state lin end

and we use operation free to release the memory allocated by the object, since no

further operation is possible on the reference (witnessed by pre-type end) and p is

the only reference to the object (described by the qualifier lin). Lines 22–23 fork

two threads each running the code of method signPlease in class Signatory.

It is instructive to compare the “end” part of the session types for classes

SaveTheWolf and Petition , unrestricted for the former, linear in the latter. The only

reference to the only object of class SaveTheWolf is wolf in line 9, Main class. The

reference is used to fork a thread (running the code of method run); if we assume

that the fork operation succeeds immediately without waiting for the completion

of method run, then method main cannot free the object, for its code might still

be in use in the thus created thread. The case for reference p of type Petition is

different: in line 26 we know that there is no thread running code of the object and

may thus release the memory.

Finally, class Main creates a petition server, two signatories and forks a thread

to run the SaveTheWolf petition client.

Typing classes. The type checker of our language makes sure that a) client code

calls methods in the order specified in the class usage type; b) client code tests

method results, if applicable, before proceeding to the next call; and c) references

to linear objects are consumed to the end before being freed. Type-checking is

modular and performed following a top-down strategy: program checking is con-

ducted by checking each class separately, which in turn conducts the checking

of each method within the class in the order in which it appears in the classe’s

usage type. The type system keeps track of the state of each field, each parame-

ter and each local variable. When we call a method m on a field o. f , we check

that the context associates to o. f a type q&{m : T, . . . }, and we update the type

of the field to T . When switching on the result of a method call we check that

the reference on which the method was called is of type q ⊕ {c1 : T1, . . . , cn : Tn},

where c1, . . . , cn are the constants in the enumerated type returned by the call. The

context for branch ci is then updated with type Ti. The technical details can be

found in references [5, 1]; a prototype is available online.

18

Acknowledgements. This work was supported by FCT/MCTES via projects

PTDC/EIA–CCO/105359/2008 and CMU–PT/NGN44–2009–12. The author

would like to thank Joana Campos, Mariangiola Dezani-Ciancaglini, Simon Gay,

and Marco Giunti for insightful comments.

References

[1] Joana Campos. Linear and shared objects in concurrent programming. Master’s

thesis, University of Lisbon, 2010.

[2] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types:

an overview. In WS-FM’09, volume 6194 of LNCS, pages 1–28. Springer-Verlag,

2010.

[3] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia

Drossopolou. Session types for object-oriented languages. In Proceeding of

ECOOP’06, volume 4067 of LNCS, pages 328–352. Springer, 2006.

[4] Simon Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session

types. Journal of Functional Programming, 20(1):19–50, 2010. Subsumes Technical

Report 2007–251, University of Glasgow.

[5] Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.

Caldeira. Modular session types for distributed object-oriented programming. In

ACM Symposium on Principles of Programming Languages, pages 299–312. ACM

Press, 2010.

[6] Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus.

Acta Informatica, 42(2/3):191–225, 2005.

[7] Marco Giunti and Vasco T. Vasconcelos. A linear account of session types in the pi

calculus. In CONCUR’10, volume 6269 of LNCS, pages 432–446. Springer, 2010.

[8] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and

type disciplines for structured communication-based programming. In ESOP’98,

volume 1381 of LNCS, pages 22–138. Springer, 1998.

[9] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, May 1999.

[10] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,

part I/II. Information and Computation, 100:1–77, September 1992.

[11] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[12] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language

and its Typing System. In PARLE, volume 817 of LNCS, pages 398–413. Springer-

Verlag, 1994.

19

[13] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the be-

havior of objects and components using session types. Fundamenta Informaticæ,

73(4):583–598, 2006.

[14] Vasco T. Vasconcelos. 9th International School on Formal Methods for the Design

of Computer, Communication and Software Systems: Web Services (SFM 2009),

volume 5569 of LNCS, chapter Fundamentals of Session Types, pages 158–186.

Springer, 2009.

[15] David Walker. Advanced Topics in Types and Programming Languages, chapter

Substructural Type Systems. MIT Press, 2005.

[16] Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type disci-

pline for structured communication-based programming revisited: Two systems for

higher-order session communication. In 1st International Workshop on Security and

Rewriting Techniques, volume 171(4) of ENTCS, pages 73–93. Elsevier, 2007.

20

	Introduction
	Session Types
	Session types in the pi-calculus
	Session types in a functional language
	Session types in an object-based language

