
Set-Based Access Conflicts Analysis of Concurrent Workflow Definition

Minkyu Lee
Plastic Software, Inc.

485- 1 Youngdang-dong, Nam-gu, Pusan, Korea
niklaus @mail.plasticsoftware.com

Abstract

An error-comprising workflow dejinition might provoke
serious problems to an enterprise especially when it is in-
volved with mission critical business processes. Concur-
rency of workflow processes is known as one of the ma-
jor sources causing such an invalid workflow process def-
inition. So the conflicts caused by concurrent workflow
processes should be considered deliberately when dejining
concurrent workflow processes. However it is very dificult
to ascertain whether a workflow process is free from con-
flicts or not without any experimental executions at runtime.
Which will be very tedious and time consuming work to pro-
cess designers. If we can analyze the conflicts immanent in
concurrent workflow definition prior to runtime, it will be
very helpful to business process designers and many other
users of workflow management system. In this papel; we
propose a set-based constraint system to analyze possible
read-write conflicts and write-write conflicts between activ-
ities which reads and writes to the shared variables in a
workflow process dejinition. The system is composed of two
phases. In thejirst phase, it generates set constraints from a
structured workflow dejinition. I n the second phase, it jinds
the minimal solution of the set constraints.

1 Introduction

A workflow is a collection of cooperating, coordinated
activities designed to carry out a well-defined complex pro-
cess, such as trip planning, insurance claiming, health care
business processes[5]. An activity in workflow could be
performed either by a human, a device, or a program.
Workflow management system (WFMS) is a software sys-
tem which provides tools to define workflow processes and
enactment services to create and manage the execution of
workflows.

Once a workflow is invoked in WFMS, the activities are
executed along the control paths and data flow information

Dongsoo Han and Jaeyong Shim
Information and Communications University

School of Engineering
Yusong P.O.Box 77, Taejon, Korea

{dshan, jaeyong7) @icu.ac.kr

in the process definition. Several activities can be in active
state in a concurrent workflow process. We call them con-
current activities in this paper. Concurrent activities may
access the shared data in any order because their order of
accessing is situation dependent. But the non-deterministic
access of concurrent activities to shared data may bring un-
expected result from the workflow execution. The follow-
ing race problems can be considered from the execution of
concurrent activities :

1. read-write conflict is a situation when an activity A
tries to read data from a shared variable z and an ac-
tivity B tries to write data to the same shared variable
x where A and B are concurrent activities and vice
versa.

2 . write-write conflict is a situation when an activity A
tries to write data to a shared variable z and an activity
B also tries to write data to a shared variable z where
A and B are concurrent activities.

Above race conditions are difficult to be detected when
the workflow process is in execution state and can result
in serious problems to business critical processes. Thus
such access conflict-comprising definitions should be elim-
inated or cleared completely before the real execution of the
processes. When designing relatively small workflow pro-
cesses, such definitions might be avoided by careful design-
ing of the processes. However when the workflow processes
get complicated, it is not enough to leave all the responsi-
bilities for the access conflict free definitions to only work-
flow designers. More systematic ways to detect the conflicts
from the definitions and to notify them to the designers are
required.

Many researches to analyze race conditions have been
performed in programming language research communities.
War-lock[101 is a static race detection system for ANSI C
programs and Eraser[1 11 is a tool for detecting race condi-
tions and deadlocks dynamically. Aiken and Gay[11 stud-
ied static race detection in the context of SPMD(Sing1e

172
0-7695-1 128 7!C! 510.00 0 7001 EEE

mailto:mail.plasticsoftware.com

w ::= 0
I (w)
1 task t (p 1 , ..., pn)
I W O i W l

I WO I l W 1
I if-then W O else w1
I while-do w

p ::= i n x
I outa:

(inert task)
(priority)
(task execution)
(sequential composition)
(concurrent composition)
(branch)

(input parameter)
(output parameter)

(loop)

Figure 1. Abstract Syntax of SWDL

Program Multiple Data) style programs, and Flanagan and
Freund[3] presented a static race detection analysis tech-
nique for multithreaded Java programs. In while these re-
searches have been done in the context of programming lan-
guages, our analysis has done in different approach in the
context workflow.

In this paper, we propose a set-based access conflict anal-
ysis method to detect all the possible access conflicts prior
to the execution of workflow process. We define a small
target workflow definition language for the description of
the method focusing on the language. But the method
can be easily extended to the general workflow definition
languages like WPDL(Workflow Definition Language)[121.
The method is composed of two phases. In the first phase,
i t generates set constraints from a structured workflow def-
inition. In the second phase, i t solves the set constraints
obtained from the first phase.

This paper is organized as follows. In Section 2, we in-
troduce a simple workflow definition language that is used
as target language of the analysis. Section 3 presents details
of the analysis method with illustrations and Section 4 illus-
trate an implementation and experiment results. Finally, in
Section 5, we draw conclusion and future work.

2 A Workflow Definition Language

We define a simple workflow definition language, named
SWDL(Structured Workflow Definition Language), as tar-
get language for the succinct and clear description of our
access conflicts analysis method. Figure 1 shows abstract
syntax of SWDL. The SWDL only contains the features
that are necessary to express control flow and data flow of a
workflow process because they contain enough information
to analyze the access conflicts of a language. The semantics
of each feature are described as follows:

“ 0 ’ : Inert workflow process.

“(w)” : This is used only to bundle up.

“task t(p1, ...,pn)” : This means the execution of a

task named t. The task may have zero or more pa-
rameters. Each parameter is either input parameter,
denoted by in, or output parameter, denoted by out.
The semantics of execution is that the task reads all
the input parameters from shared database by pass-by-
value manner and evaluates the task with the parame-
ters and then replaces the shared data with the output
parameters of the evaluated task. The pass-by-value
parameter passing is more reasonable than pass-by-
reference in two reasons. The first reason is that re-
cent workflow management systems are implemented
in concerning with mobile environment. In mobile en-
vironment, each actor is mobile so the actor may be
disconnected to workflow management system[4]. To
perform the activity in disconnected state, all the input
values should be copied to the disconnected activity
site before the activity to be started. The second rea-
son is that the activities may be distributed in differ-
ent locations. We cannot assume that each activity is
always in connected state with other activities because
network bandwidth is amenable to change and the con-
nections are not stable. Input parameters of an activity
may not be delivered in time during the processing of
the activity. Thus, the assumption that all the input
parameters are prepared by call-by-value mechanism
before an activity starts its work is more reasonable.

e “WO ; w1” : Two workflow processes WO and w1 are
executed sequentially. So w1 starts its execution after
the end of WO.

0 “WO 1 1 w1” : Two workflow processes WO and w1 are
executed concurrently in interleaved manner. So race
conditions may occur between WO and w1.

“if-then WO else w1” : This is the same control struc-
ture as f-then-else statement in programming lan-
guages. One of the two workflow processes WO and
w1 are selected and executed. Condition expression to
determine which one is selected is omitted in SWDL
language because the selection is not necessarily re-
quired in our analysis.

0 “while-do w” : Workflow process w is executed repet-
itively. Repetition condition is omitted because of the
same reason as the above item.

Note that data flow of workflow process is not explicitly
defined but implicitly included in SWDL. It is obvious that
the features of SWDL are not sufficient but most features
necessary to analyze access conflicts between activities are
included in the SWDL specifications.

The control structure of SWDL is similar to that of struc-
tured programming languages such as C and Pascal. So it
can define structured control flow of a workflow process.

173

B(out x) C(in x)
A n

Figure 2. An example of workflow definition

Structured workflow process definition has two advantages
over WPDL[121-standard workflow specification languages
in which activities and control flow among them are defined
in separate manner.

Syntax-level prevention of invalid definition: Struc-
tured definition of workflow process is very useful
in preventing various invalid workflow definitions by
syntax-level grammar checking. Isolated activities and
transitions from outer-loop into inner-loop are the ex-
amples of invalid definitions. Some of invalid defini-
tions can be forced not be defined in SWDL and some
of them can be checked during the parsing phase.

/?edibility: Defining activities and transitions among
them in separate manner like WPDL makes it very
difficult for one to read the flow of process directly
from the process definition. Since control structure
of SWDL-like the approach of [2] is similar to that of
popular structured programming languages such as C
and Pascal, i t is more friendly to users and users can
grasp the control flow of the process more easily.

Figure 2 shows a simple workflow process definition. Ac-
tivity name is written in upper case letters and shared vari-
able is written in lower case letters. After activity -4 is exe-
cuted, (B;C) and (D ; E ; F) are executed concurrently and
then G and H are executed sequentially. Activity B and ac-
tivity E write to the variable z and activity C reads the value
of the variable x. This workflow process is represented in
SWDL as follows:

A ; (B(out x) ; C(in x) 11 D ; E (o u t z) ; F) ; G ; H

3 Access Conflict Analysis

In workflow process definition presented in Figure 2,
(B;C) and (D ; E ; F) may be executed concurrently and
they may access the shared variable z. In this case, two
access conflicts can be provoked. The first access conflict
is write-write conjict caused by B, E. The second access
conflict is read-write conjict caused by C and E.

To analyze all the possible conflicts, we adopt set con-
straint system that is used to analyze runtime features of
programming languages[8][9][6][7]. The method consists

[Null] 0 D 4

task z(in i l , . . . , in i n , out 0 1 , . . . ,out o m) D
{X 2 ta~kR(~,ii),...,X 2 t a s k R (z , i ,) , [Task]
X 2 t a s k W (z , o1), . ’ ’ , X 2 t a s k W (z , om))

WO D CO W I D CI
~ ~ O ; ~ ~ D { X > X , ~ , X Z X , , } U C O U C ~

WO D CO W I D ci

w D C
while-do w D {X 2 X u } U C

[While]

Figure 3. Constraint Generation Rules : D

of two phases. In the first phase, i t generates set constraints
from the source and in the second phase, it finds the minimal
solution from the set constraints generated at the first phase.
In our analysis, every workflow expression w of input work-
flow process definition has set constraints X , 2 se. The set
variable X is used to collect(represent) w’s possible access
conflicts. For example, suppose that (A)I B ; C) is an in-
put workflow, every workflow expression A, B, C , B ; C ,
(A 1 1 B ; C) has its own set variables X,, Xb, X,, Xbc , Xnbc

respectively. Finally, X a b c will have all the possible con-
flicts of the input workflow. Each set constraint is in the
form of X 2 se where se is a set expression. The meaning
of set constraint X 2 se is intuitive: that is, set X contains
the set represented by the set expression se.

In the next subsection, we present how to generate set
constraints from an input workflow definition and then show
how to solve the set constraints with an example.

3.1 Construction of Set Constraints

Figure 3 shows the rules to generate set constraints for
every workflow expression. The set variable X is for the
current workflow expression to which the rule applies and
the subscripted set variable X , is for the workflow expres-
sion w. The relation “w D c” represents that “constraints c
are generated from workflow expression w.”

Every workflow expression of workflow definition pre-
sented in Figure 2 is underlined and labeled. Each label
will be used as subscript of its set variable.

A ; (B (o u t z) ;C(inz) I I L l , ; E (o u t z) ;Ef) :Gg;Hh
gh -e

e f d f bf - b c -a -b-c

b h u h

Set constraints for this example generated by D is presented
in Figure 4 and the expected result is the minimal set which
satisfies all the constraints.

174

Figure 4. Set Constraints Generated by D

3.2 Solving Set Constraints

In the previous subsection we showed how to generate
set constraints. In this subsection we present how to com-
pute the solution from the set constraints. To solve the set
constraints we introduce constraint solving rules S, which
is presented in Figure 5. Each rule in S is written in the
following way:

cl...cn
c1 . . ' c,

Using this notation, one or more set constraints already con-
tained are written above a bar and new set constraints are
written below the bar. The structure states that if set con-
straints are found in written above a bar then add the new
set constraints to the set of constraints.

The minimum solution is computed by iterative appli-
cation of constraint solving rules S to set of constraints
C and the iterative application is denoted by S * (C) . Al-
though S*(C) certainly denotes the solution, we can have
more concise solution by eliminating unnecessary and re-
dundant constraints. Final result is in the followings:

{ (X 2 se) E S,"(C) I se = confZictRW(s, t , z) }
{ (X 2 se) E S,"(C) 1 se = conflictWW(s,t,z)} U

If C is same as Figure 4 then the final result becomes:

{x,h 2 con f lictRW (C, E , x) , X a h 2 con f ZictWW (B , E , x))

The time complexity of the algorithm to estimate access
conflicts is O(n3) where n is the size of input workflow
expression. The O(n3) bound is derived based on the fol-
lowing observations. First, the construction of constraints
is proportional to the n. So the time complexity becomes
O(n). Second, at most n2 new constraints can be added by
the constraints solving algorithm, and the cost of "adding"
each new constraint(i.e. determining what other new con-
straints need to be added, given this constraint is added) is
bounded by O(n). Thus, the sum of the first and the second
phase becomes O (n) + O(n3) = O(n3) .

X 2 Y Y 2 t a s k R (t , x)
X 2 t a s k R (t , z)

x 2 p a r (Y , 2) y 2 t a s k R (s , z) 2 2 t a s k W (t , z)

x _> conflictRW(s, t, z)

X 2 p a r (Y , 2) Y 2 t a s k W (s , z) 2 2 t a s k R (t , z)

x 2 conflictRW(s, t , 5)

x 2 c o n f l i c t W W (s , t , z)
X 2 p a r (Y , 2) y 2 t a s k W (s , z) 2 2 t a s k W (t , z)

X 2 y Y 2 conflictRW(s, t , z)

X _> conflictRW(s, t , z)

x 2 y y 2 c o n f l z c t W W (s , t , z)
x 2 c o n f r i c t w w (s , t ,

Figure 5. Constraint Solving Rules : S

using an automatic parser generator and implemented an
AST(abstract syntax tree) builder. The implementation con-
sists of two phases. The first phase traverses the AST and
generates a set of constraints based on the constraint gener-
ation rules presented in Figure 3. In the second phase, we
apply constraint solving rules iteratively until the set of con-
straints does not change. The algorithm certainly terminates
since the size of constraint set increases monotonically by
the iterations and the size of the set is limited by the number
of (y) , where n is the size of workflow expression.

The implemented system is tested for the various input
conditions and the execution time is measured. The inputs
are constructed by changing the number of activities, con-
flicts, and degree of parallelism. The empirical results are
presented in Figure 6. The graph (a) shows that as the num-
ber of activities and conflicts increases so does execution
time as expected by the time complexity. In the graph (b),
we measured the analysis time of processes having the same
100 activities with no conflict but difference degree of par-
allelism. It shows that the analysis time is influenced by
the degree of parallelism. Since most practical workflows
rarely exceeds hundreds of activities, and the result can be
obtained within a few seconds we can conclude that the pro-
posed method is practically useful.

5 Conclusion and Future Work
4 Implementation and Evaluation

We have implemented the access conflict analysis sys-
tem 'for SWDL in Java. First, we made a parser for SWDL

We have presented a set-based method to detect all pos-
sible access conflict situations in a workflow process defini-
tion before runtime. We also have proposed a workflow def-

175

(a) Time estimation with variation of number of activities and conflicts

20000

16000 -

16000 -

14WO -

12WO -

toWO -

8000 - l i L L l l 2WO 0 10 20 30 40 50 60 70 60 90 100

degree of parall~l~sm

(b) Time estimation with variation of degree of parallelism

Figure 6. Experiment Results

inition language, named SWDL, for the effective descrip-
tion of the method. Although SWDL lacks for some fea-
tures to become a general purpose workflow definition lan-
guage, i t has sufficient features to analyze access conflicts
in concurrent workflow definition. Thus we expect that the
method developed in this paper can be applied to general
purpose workflow definition languages fairly easily.

Our method is to predict the access conflicts among con-
current activities in a workflow instance not those among
inter-workflow instances. Actually in workflow manage-
ment system, the situation where multiple instances of
workflow processes try to access shared data simultane-
ously can happen. So the access conflicts among inter-
workflow instances also must be considered. It seems that
they are inherently the same problem but more in-depth
analysis will be required to be convinced and to solve such
a problem.

The other direction of our research is to generate new
conflict free workflow process definition automatically us-
ing the obtained conflict information from our analysis. One

possible approach is simply to put lock and unlock operation
on shared variables in the front and rear of activities which
may conflict. Such approach can free business process de-
signers from the concerning of provoking access conflicts
when defining workflow processes.

References

[l] A. Aiken and D. Gay, “Barrier inference,” Proceeding of the
25th Symposium on Principles of Programming Languages,
pages 243-354, 1998.

[2] C. Dengi and S. Neftci, “Dflow Workflow Management
System,” Proceedings of 8th International Workshop on
Database and Expert Systems Applications, 1997.

[3] C. Flanagan and S. Freund, “Qpe-Based Race Detection
for Java,” Proceedings of ACM Conference on Programming
Language Design and Implementation, June, 2000.

[4] G. Alonso, R. Gunthor, M. Kamath, D. Agrawal, A. El
Abbadi and C. Mohan, “ExoticaRMDC: Handling Discon-
nected Clients in a Workflow Management System,” 3rd In-
ternational Conference on Cooperative Information Systems,
Vienna, May 1995.

[5] H. Davulcu, M. Kifer, C.R. Ramakrishnan, and
I.V.Ramakrishnan, “Logic based modeling and analy-
sis of workflows,” In ACM Symposium on Principles of
Database Systems, June, 1998.

[6] K. Yi and B. Chang, “Exception Analysis for Java,”
ECOOP’99 Workshop on Formal Techniques for Java Pro-
grams, June, 1999.

[7] K. Yi and S. Ryu, “A Cost-effective Estimation of Uncaught
Exceptions in SML Programs,” Theoretical Computer Sci-
ence, Vol. 273, No. 1,2000.

[8] N. Heintze, “Set Based Program Analysis,” Ph.D.thesis,
School of Computer Science, Carnegie Mellon University,
October 1992.

[9] N. Heintze, “Set Based Analysis of ML Programs,” Carnegie
Mellon University Technical Report CMU-CS-93-193, July
1993.

[lo] N. Sterling, “A static data race analysis tool,” In USENIX
Winter Technical Conference, pages 97- 106, 1993.

[I l l S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Anderson, “Eraser: A dynamic data race detector for multi-
threaded programs,” ACM Transactions no Computer Sys-
tems, 15(4):391-411, 1997.

[121 Workflow Management Coalition, “Interface 1 : Process
Definition Interchange Process Model,” Document Number
WfMC TC-1016-P, October 29, 1999.

176

